6,484 research outputs found

    Structure and dynamics of Oxide Melts and Glasses : a view from multinuclear and high temperature NMR

    Get PDF
    Solid State Nuclear Magnetic Resonance (NMR) experiments allow characterizing the local structure and dynamics of oxide glasses and melts. Thanks to the development of new experiments, it now becomes possible to evidence not only the details of the coordination state of the network formers of glasses but also to characterize the nature of polyatomic molecular motifs extending over several chemical bonds. We present results involving 31P homonuclear experiments that allow description of groups of up to three phosphate units and 27Al/17O heteronuclear that allows evidencing μ3 oxygen bridges in aluminate glasses and rediscussion of the structure of high temperature melts.Comment: Journal of Non-Crystalline Solids (2007) in press; Also available online at: http://crmht.cnrs-orleans.fr/Intranet/Publications/?id=207

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths

    Full text link
    We study the dynamics of the Potassium atom in the mid-infrared, high intensity, short laser pulse regime. We ascertain numerical convergence by comparing the results obtained by the direct expansion of the time-dependent Schroedinger equation onto B-Splines, to those obtained by the eigenbasis expansion method. We present ionization curves in the 12-, 13-, and 14-photon ionization range for Potassium. The ionization curve of a scaled system, namely Hydrogen starting from the 2s, is compared to the 12-photon results. In the 13-photon regime, a dynamic resonance is found and analyzed in some detail. The results for all wavelengths and intensities, including Hydrogen, display a clear plateau in the peak-heights of the low energy part of the Above Threshold Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for publication in Phys. Rev A. Improved figures, language and punctuation, and made minor corrections. We also added a comparison to the ADK theor

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu

    Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity

    Get PDF
    © 2020 The Author(s). Background: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infections in infants. There are still no vaccines or specific antiviral therapies against RSV, mainly due to the inadequate understanding of RSV pathogenesis. Recent data suggest a role for gut microbiota community structure in determining RSV disease severity. Our objective was to determine the gut microbial profile associated with severe RSV patients, which could be used to help identify at-risk patients and develop therapeutically protective microbial assemblages that may stimulate immuno-protection. Results: We enrolled 95 infants from Le Bonheur during the 2014 to 2016 RSV season. Of these, 37 were well-babies and 58 were hospitalized with RSV. Of the RSV infected babies, 53 remained in the pediatric ward (moderate) and 5 were moved to the pediatric intensive care unit at a later date (severe). Stool samples were collected within 72 h of admission; and the composition of gut microbiota was evaluated via 16S sequencing of fecal DNA. There was a significant enrichment in S24_7, Clostridiales, Odoribacteraceae, Lactobacillaceae, and Actinomyces in RSV (moderate and severe) vs. controls. Patients with severe RSV disease had slightly lower alpha diversity (richness and evenness of the bacterial community) of the gut microbiota compared to patients with moderate RSV and healthy controls. Beta diversity (overall microbial composition) was significantly different between all RSV patients (moderate and severe) compared to controls and had significant microbial composition separating all three groups (control, moderate RSV, and severe RSV). Conclusions: Collectively, these data demonstrate that a unique gut microbial profile is associated with RSV disease and with severe RSV disease with admission to the pediatric intensive care unit. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of severe RSV disease

    Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy

    Get PDF
    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 μ\mum, [NII] 122, 205 μ\mum, [OI] 63, 145 μ\mum, and [OIII] 88 μ\mum. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} ratio, varies from a mean of 3.5×\times103^{-3} in the centre up to 8×\times103^{-3} at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} but constant ([CII]+[OI]63)/FPAHF_{\mathrm{PAH}} with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, G0G_{0}. Resolving details on physical scales of ~0.6 kpc, a pixel-by-pixel analysis reveals that the majority of the PDRs in NGC 891's disc have hydrogen densities of 1 < log (nn/cm3^{-3}) < 3.5 experiencing an incident FUV radiation field with strengths of 1.7 < log G0G_0 < 3. Although these values we derive for most of the disc are consistent with the gas properties found in PDRs in the spiral arms and inter-arm regions of M51, observed radial trends in nn and G0G_0 are shown to be sensitive to varying optical thickness in the lines, demonstrating the importance of accurately accounting for optical depth effects when interpreting observations of high inclination systems. With an empirical relationship between the MIPS 24 μ\mum and [NII] 205 μ\mum emission, we estimate an enhancement of the FUV radiation field strength in the far north-eastern side of the disc.Comment: Accepted for publication in A&A. 25 pages, including 17 figures and 3 tables, abstract abridged for arXi

    The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    Full text link
    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.Comment: 7 pages, 5 figures, ApJL accepte

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of 30\sim30%.Comment: 13 pages, 7 figure

    Charged Particle Pseudorapidity Distributions in Au+Al, Cu, Au, and U Collisions at 10.8 A\cdotGeV/c

    Full text link
    We present the results of an analysis of charged particle pseudorapidity distributions in the central region in collisions of a Au projectile with Al, Cu, Au, and U targets at an incident energy of 10.8~GeV/c per nucleon. The pseudorapidity distributions are presented as a function of transverse energy produced in the target or central pseudorapidity regions. The correlation between charged multiplicity and transverse energy measured in the central region, as well as the target and projectile regions is also presented. We give results for transverse energy per charged particle as a function of pseudorapidity and centrality.Comment: 31 pages + 12 figures (compressed and uuencoded by uufiles), LATEX, Submitted to PR

    Linking dust emission to fundamental properties in galaxies: The low-metallicity picture

    Get PDF
    In this work, we aim at providing a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and KINGFISH, totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties. Using a different SED model (modified blackbody), dust composition (amorphous carbon), or wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. For eight galaxies in our sample, we find a rather small excess at 500 microns (< 1.5 sigma). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and the dust temperature distribution are found to be driven mostly by the specific star-formation rate, SSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing SSFR. The relation is more complex for highly star-forming low-metallicity galaxies and depends on the chemical evolutionary stage of the source (i.e., gas-to-dust mass ratio). Dust growth processes in the ISM play a key role in the dust mass build-up with respect to the stellar content at high SSFR and low metallicity. (abridged)Comment: 44 pages (20 pages main body plus 5 Appendices), 11 figures, 9 tables, accepted for publication in A&
    corecore