443 research outputs found
Vortex rectification effects in films with periodic asymmetric pinning
We study the transport of vortices excited by an ac current in an Al film
with an array of nanoengineered asymmetric antidots. The vortex response to the
ac current is investigated by detailed measurements of the voltage output as a
function of ac current amplitude, magnetic field and temperature. The
measurements revealed pronounced voltage rectification effects which are mainly
characterized by the two critical depinning forces of the asymmetric potential.
The shape of the net dc voltage as a function of the excitation amplitude
indicates that our vortex ratchet behaves in a way very different from standard
overdamped models. Rather, as demonstrated by the observed output signal, the
repinning force, necessary to stop vortex motion, is considerably smaller than
the depinning force, resembling the behavior of the so-called inertia ratchets.
Calculations based on an underdamped ratchet model provide a very good fit to
the experimental data.Comment: 5 pages, 4 figure
Measurement of the Michel Parameter xi" in Polarized Muon Decay and Implications on Exotic Couplings of the Leptonic Weak Interaction
The Michel parameter xi" has been determined from a measurement of the
longitudinal polarization of positrons emitted in the decay of polarized and
depolarized muons. The result, xi" = 0.981 +- 0.045stat +- 0.003syst, is
consistent with the Standard Model prediction of unity, and provides an order
of magnitude improvement in the relative precision of this parameter. This
value sets new constraints on exotic couplings beyond the dominant V-A
description of the leptonic weak interaction.Comment: 15 pages, 16 figures, 3 tables; submitted to Phys. Rev.
Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops
We study the magnetic interaction between two superconducting concentric
mesoscopic Al loops, close to the superconducting/normal phase transition. The
phase boundary is measured resistively for the two-loop structure as well as
for a reference single loop. In both systems Little-Parks oscillations,
periodic in field are observed in the critical temperature Tc versus applied
magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak
'low frequency' response shows up, which can be attributed to the inner loop
supercurrent magnetic coupling to the flux of the outer loop. The amplitude of
this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.
Spin states of asteroids in the Eos collisional family
Eos family was created during a catastrophic impact about 1.3 Gyr ago.
Rotation states of individual family members contain information about the
history of the whole population. We aim to increase the number of asteroid
shape models and rotation states within the Eos collision family, as well as to
revise previously published shape models from the literature. Such results can
be used to constrain theoretical collisional and evolution models of the
family, or to estimate other physical parameters by a thermophysical modeling
of the thermal infrared data. We use all available disk-integrated optical data
(i.e., classical dense-in-time photometry obtained from public databases and
through a large collaboration network as well as sparse-in-time individual
measurements from a few sky surveys) as input for the convex inversion method,
and derive 3D shape models of asteroids together with their rotation periods
and orientations of rotation axes. We present updated shape models for 15
asteroids and new shape model determinations for 16 asteroids. Together with
the already published models from the publicly available DAMIT database, we
compiled a sample of 56 Eos family members with known shape models that we used
in our analysis of physical properties within the family. Rotation states of
asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst
the large objects more or less retained their rotation state properties since
the family creation. Moreover, we also present a shape model and bulk density
of asteroid (423) Diotima, an interloper in the Eos family, based on the
disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the
W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin,
Evolution & Characterizatio
OA011-03. Clusterin, a natural ligand of DC-SIGN present in human semen inhibits HIV capture and transmission by dendritic cells
International audiencen.
The non-convex shape of (234) Barbara, the first Barbarian
Asteroid (234) Barbara is the prototype of a category of asteroids that has
been shown to be extremely rich in refractory inclusions, the oldest material
ever found in the Solar System. It exhibits several peculiar features, most
notably its polarimetric behavior. In recent years other objects sharing the
same property (collectively known as "Barbarians") have been discovered.
Interferometric observations in the mid-infrared with the ESO VLTI suggested
that (234) Barbara might have a bi-lobated shape or even a large companion
satellite. We use a large set of 57 optical lightcurves acquired between 1979
and 2014, together with the timings of two stellar occultations in 2009, to
determine the rotation period, spin-vector coordinates, and 3-D shape of (234)
Barbara, using two different shape reconstruction algorithms. By using the
lightcurves combined to the results obtained from stellar occultations, we are
able to show that the shape of (234) Barbara exhibits large concave areas.
Possible links of the shape to the polarimetric properties and the object
evolution are discussed. We also show that VLTI data can be modeled without the
presence of a satellite.Comment: 10 pages, 6 figure
Little-Parks effect and multiquanta vortices in a hybrid superconductor--ferromagnet system
Within the phenomenological Ginzburg-Landau theory we investigate the phase
diagram of a thin superconducting film with ferromagnetic nanoparticles. We
study the oscillatory dependence of the critical temperature on an external
magnetic field similar to the Little-Parks effect and formation of multiquantum
vortex structures. The structure of a superconducting state is studied both
analytically and numerically.Comment: 7 pages, 1 figure. Submitted to J. Phys.: Condens. Mat
Recommended from our members
Fatigue fracture of tough hydrogels
Tough hydrogels of many chemical compositions have been developed in recent years, but their fatigue fracture has not been studied. The lack of study hinders further development of hydrogels for applications that require long lifetimes under cyclic loads. Examples include tissue engineering, soft robots, and stretchable electronics. Here we study the fatigue fracture of a polyacrylamide-alginate tough hydrogel. We find that the stress-stretch curve changes cycle by cycle, and reaches a steady state after thousands of cycles. The threshold for fatigue fracture is about 53 J/m2, much below the fracture energy (~10,000 J/m2) measured under monotonic load. Nonetheless, the extension of crack per cycle in the polyacrylamide-alginate tough hydrogel is much smaller than that in a single-network polyacrylamide hydrogel.Engineering and Applied Science
- …