194 research outputs found

    Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing

    Get PDF
    Alfalfa canopy structure reveals useful information for managing this forage crop, but manual measurements are impractical at field-scale. Photogrammetry processing with images from Unmanned Aerial Vehicles (UAVs) can create a field-wide three-dimensional model of the crop canopy. The goal of this study was to determine the appropriate flight parameters for the UAV that would enable reliable generation of canopy models at all stages of alfalfa growth. Flights were conducted over two separate fields on four different dates using three different flight parameters. This provided a total of 24 flights. The flight parameters considered were the following: 30 m altitude with 90° camera gimbal angle, 50 m altitude with 90° camera gimbal angle, and 50 m altitude with 75° camera gimbal angle. A total of 32 three-dimensional canopy models were created using photogrammetry. Images from each of the 24 flights were used to create 24 separate models and images from multiple flights were combined to create an additional eight models. The models were analyzed based on Model Ground Sampling Distance (GSD), Model Root Mean Square Error (RMSE), and camera calibration difference. Of the 32 attempted models, 30 or 94% were judged acceptable. The models were then used to estimate alfalfa yield and the best yield estimates occurred with flights at a 50 m altitude with a 75° camera gimbal angle; therefore, these flight parameters are suggested for the most consistent results

    The numerical Modelling and Analysis of RC cracked Structures

    Get PDF
    The purpose of this paper is to review model for finite element techniques for non-linear crack analysis of reinforced concrete beams and slabs. The non-linear behaviour of concrete and steel were described. Some calculations of >self-stress< for concrete and reinforced concrete beam was made. Current computational aspects are discussed. Several remarks for future studies are also given. The numerical model of the concrete and reinforced concrete was described. The paper shows the results of calculations on a reinforced concrete plane stress panel with cracks. The non-linear, numerical model of calculations of reinforced concrete was assumed. Using finite elements method some calculations were made. The results of calculations like displacements, stresses and cracking are shown on diagrams. They were compared with experimental results and other finding. Some conclusions about the described model and results of calculation are shown

    Reinforced Concrete Floors in Historic Buildings from the Beginning and the Middle of the 20th Century - Examples of Structural Strengthening in the Process of Revitalization

    Get PDF
    The paper presents a historical outline of structural solutions of reinforced concrete floors from the turn of the 19th and 20th centuries to the half of the 20th century in the Lower Silesia region of Poland. It is based on the analysis of archival documentation and expert research carried out during the design of the revitalization of historic public and industrial buildings. The structural typology of some simple RC floors slabs used in that time of introduction of concrete into construction life as well as constructional solutions of buildings erected in western Poland in those days are presented. Nowadays, while some of these buildings undergo refurbishment process to adapt them to new functional aims these RC floors have to be strengthened using different methods, depending on the assessment results. In some of the presented design study cases assessed technical state and load bearing capacity of floors ensure the possibility of their further use without the need for significant reinforcements, except for the need for surface material repairs. However, in some cases due to concrete deterioration processes and loss of its durability, despite necessity of material renovation, structural strengthening methods needed to be applied. For example, increasing the load bearing capacity of floors by making additional concrete layers cooperating with the existing reinforced concrete slab or by changing the static scheme by making new supports up to the complete replacement of floors (not only concrete ones) with modern, concrete rib-andbeam or composite ones were considered

    Ein neues, unkompliziertes Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische

    Get PDF
    Ein neues Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische mit Hilfe solvatochromer Farbstoffe wird beschrieben. Die Analyse erfolgt durch einfache UV/VIS-Absorptionsmessung und ist unter Verwendung einer Zwei-Parameter-Gleichung ein exakter Schnelltest

    A convenient band-gap interpolation technique and an improved band line-up model for InGaAlAs on InP

    Get PDF
    The band-gap energy and the band line-up of InGaAlAs quaternary compound material on InP are essential information for the theoretical study of physical properties and the design of optoelectronics devices operating in the long-wavelength communication window. The band-gap interpolation of In1-x-y Ga (x) Al (y) As on InP is known to be a challenging task due to the observed discrepancy of experimental results arising from the bowing effect. Besides, the band line-up results of In1-x-y Ga (x) Al (y) As on InP based on previously reported models have limited success by far. In this work, we propose an interpolation solution using the single-variable surface bowing estimation interpolation method for the fitting of experimentally measured In1-x-y Ga (x) Al (y) As band-gap data with various degree of bowing using the same set of input parameters. The suggested solution provides an easier and more physically interpretable way to determine not only lattice matched, but also strained band-gap energy of In1-x-y Ga (x) Al (y) As on InP based on the experimental results. Interpolated results from this convenient method show a more favourable match to multiple independent experiment data sets measured under different temperature conditions as compared to those obtained from the commonly used weighted-sum approach. On top of that, extended framework of the model-solid theory for the band line-up of In1-x-y Ga (x) Al (y) As/InP heterostructure is proposed. Our model-solid theory band line-up result using the proposed extended framework has shown an improved accuracy over those without the extension. In contrast to some previously reported works, it is worth noting that the band line-up result based on our proposed extended model-solid theory has also shown to be more accurate than those given by Harrison's mode
    corecore