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Abstract

Background: Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host.
To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription
factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each
transcription factor from an inducible promoter.

Results: We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory
signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors,
providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well
with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription
factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing
basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains,
we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular
drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict
the growth rates of individual TFOE strains with high fidelity.

Conclusion: This work has led to a systems-level framework describing the transcriptome of a devastating bacterial
pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis,
and demonstrated the utility of this resource. These results will stimulate additional systems-level and
hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease.
Background
Mycobacterium tuberculosis (MTB) is a remarkably suc-
cessful human pathogen, with a global burden of over
1.5 billion latently infected individuals and 1.3 million
deaths due to tuberculosis (TB) per year [1]. To survive
within the hostile environment of the human host, MTB
must sense and respond to a wide variety of microenvi-
ronments including naïve and activated macrophages,
dendritic cells, and evolving conditions within different
types of granulomas [2]. Regulation of these responses
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begins by controlling the expression of transcripts that
combine to form transient, often overlapping networks
and collectively coordinate adaptation to shifting host-
mediated stresses. MTB employs a set of approximately
200 transcription factors (TFs) and DNA binding pro-
teins to mediate signals from the changing environment
and, along with the RNA degradation machinery [3],
dictate the expression profiles of genes. Some MTB
TFs have been characterized previously by a variety of
approaches including gene knockout, overexpression,
chromatin immunoprecipitation, and an assortment of in
silico approaches [4-18]. The majority, however, have not
been studied and have unknown regulatory targets and
biological roles.
To investigate the MTB transcriptional landscape in

a systematic manner, we developed a high-throughput
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approach to identify the genes controlled by nearly all
predicted MTB TFs. We individually cloned and condi-
tionally overexpressed 206 MTB TFs to induce the regula-
tory signature of each one. This signature includes both
genes directly controlled by proximal binding of the TF as
well as genes indirectly influenced via a cascade of inter-
actions triggered by the TF. Using this approach we iden-
tified the sets of genes affected by TF overexpression
(TFOE) and assembled them into an easily searchable
map of transcriptional regulation in MTB. This network
defines the influence of 183 TFs and complements a com-
prehensive TF-DNA binding network and transcriptional
modeling efforts performed in parallel [19,20]. Our data
agree well with the small set of MTB regulons previously
reported in the literature, indicating that overexpression
of TFs can stimulate native gene expression even in the
absence of co-stimulatory factors and validating our over-
all approach. We show that the number of regulated genes
per TF varies by nearly 1,000-fold, and that the majority of
expression changes act to repress basal transcription. We
find evidence of regulation for 70% of all MTB genes,
two-thirds of which are controlled by more than one TF.
Identities of regulated genes and their associated gene
ontology categories suggest functional roles for many TFs
and their regulons. We then assessed the fidelity of
network-derived predictions, rewiring the MTB transcrip-
tome selectively to confer inducible phenotypic drug
resistance and testing growth rate predictions of individual
TFOE strains. Altogether, this work offers systems-level
insight into the transcriptome of a devastating bacterial
pathogen, delineates the functional impact of numerous
individual TFs, and should stimulate additional efforts to
understand MTB adaptations that promote disease.

Results
Construction and expression profiling of a library of TFOE
strains
All known and predicted TFs were selected for cloning
based on previously characterized function, sequence
similarity to known TFs in other organisms, and protein
domains with DNA binding motifs (Figure 1, Additional
file 1: Table S1). Tuberculist [21] annotated 178 genes as
TFs and an additional 13 as sigma factors. We excluded
a methyltransferase (Rv0560c) and three putative MoxR
orthologs (Rv1479, Rv3164c, and Rv3692), as those genes
do not have DNA binding domains and appear to be
mis-annotated. We then supplemented this list of 187
with 27 additional genes that matched to transcriptional
regulation-relevant COG domains [22]. Of the set of 214
candidates, 206 were subcloned into a vector under the
control of an anhydrotetracycline (ATc) inducible pro-
moter to allow overexpression of each TF independent
of the native stimulatory factors unique to each TF. The
resulting set of TFOE plasmids was transformed into the
MTB strain H37Rv. The remaining eight TF genes have
resisted our efforts at cloning thus far.
Overexpression assays were performed under stan-

dardized culture conditions (see Methods and [23]) in
order to facilitate transcriptome-wide comparisons and
potentially to identify activating environmental condi-
tions and/or small molecule triggers of these TFs. TF
overexpression was induced for a duration time of ap-
proximately one cell doubling (18 h) with 100 ng/mL of
anhydrotetracycline (ATc) and cells were subsequently
harvested for transcriptome analysis and ChIP-seq, as
described separately [19]. Global transcriptional changes
were assayed using densely tiled microarrays with 60mer
probes for both strands of the genome at an average
density of one probe per 100 nucleotides. This resulted
in a compendium of 702 transcriptome profiles for 206
strains, representing a sum total of 95 million data points
that we incorporated into a transcriptional regulatory
network of MTB.

TFOE defined regulatory effects
Altogether we identified 9,335 instances where TF over-
expression led to a significant gene expression change
(two-fold change, P value ≤0.01), driven by 183 of the
206 TFs assayed (Figure 2A, Additional file 1: Table S2).
Each TFOE regulon includes both direct interaction at
promoter regions and indirect effects, providing a holis-
tic picture of a TFs role in a system-wide context. We
expected that some TFs would be inactive in the absence
of their physiological trigger, but only approximately
10% of TFOE strains (23 of 206) failed to yield any genes
with significantly altered expression.
The level of induction for each TF is strongly influenced

by the baseline expression of that gene (Figure 2B). TFs that
are highly expressed prior to induction were not induced
much further, whereas TFs expressed at low levels were
induced up to 100-fold. In nearly all cases, after induction
the TF was among the more abundant transcripts in the
cell. However there were on average 40 genes more highly
expressed in each case, suggesting that TF overexpression
did not result in artificial saturation of the microarray.
To assess if the inducible promoter and standard

growth condition that we employed could in some
cases result in TF overexpression that exceeds physio-
logical levels, we assembled a collection of 2,483 publicly-
available MTB gene expression profiles [20] and compared
the level of induction seen in the TFOE experiments with
the largest fold change of the relevant TF in any previ-
ously published condition. For 82% of TFs there was at
least one condition where the level of induction was equal
to or larger than we report here, and for 94% of TFs
the level of induction was no more than 2X higher than
the largest previously reported change (Additional file 2:
Figure S1).



Figure 1 Schematic diagram of a high-throughput screen of transcription factor overexpression constructs. We cloned 206 of 214
annotated DNA binding proteins (TFs) into a plasmid that placed the tagged protein under control of a tetracycline inducible promoter and
fused the TF to a FLAG tag. Each of these TFs was then induced for one doubling period (approximately 18 h) and analyzed via expression
profiling and ChIPseq [19]. Expression profiles were characterized using microarrays that covered both strands of the genome with a probe every
approximately 100 bp.
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Characteristics of the TFOE dataset
When examined in aggregate, some features of the TFOE
regulons stand out. The number of regulated genes varied
over nearly three orders of magnitude (Figure 2A, bar
height). Overexpression of one TF, Rv0023, induces 488
genes and represses 404, leading to differential expression
of nearly a quarter of the genome. At the other extreme,
17 TFs changed the expression of only a single gene and
for 23 we could identify no regulated genes. Four of the
TFs with only a single responsive gene are induced to
a larger fold change than Rv0023, highlighting the
general phenomena that the number of genes differen-
tially regulated did not correlate with the level of induc-
tion (Figure 2C) or with uninduced expression levels (data
not shown). These results also suggest that overexpression
of these TFs does not induce a common stress response.
Most of the TFs were bifunctional, with some downstream
genes induced and others repressed. TFs acting exclusively
or primarily as repressors are nearly twice as common as
inducers (Figure 2B, bar color, Figure 3). Correspondingly,
57% of all instances of altered expression were repressions,
consistent with the pattern of regulation seen in the well-
studied model bacterium, E. coli [24].

Comparison of TFOE results with existing datasets
To assess the fidelity of our results, we compared 12
previously defined MTB putative regulons, with the
TFOE-derived regulatory influences of these TFs. Ectopic
induction necessarily masks potential autoregulation, as
auto-induction of the native gene is difficult to distinguish
from induced expression from the plasmid, so the TF-
encoding gene was excluded from the comparisons. The
majority of TFOE-defined regulons overlap significantly
with those previously identified (Table 1). For example,
overexpressing DosR in aerobic conditions produces
induction of nearly every gene previously included in
the DosR regulon (45 of 48 genes) [25], which was de-
fined using a DosR deletion mutant and hypoxic stress



Figure 3 Manually constructed TFOE network. Genes were grouped into sets with similar regulation patterns and the interaction of each TF
with each set was mapped. The size of each set of genes is indicated beneath the gene set name. The color of each TF indicates whether the
regulatory influence of that is primarily to repress (blue) or induce (orange) genes. Genes repressed by multiple TFs and those with no change in
expression were enriched for essential genes, many of which have GO terms assigned to them.

Figure 2 Features of the TFOE dataset. (A) TFOE-induced transcriptional changes vary widely in size and composition. Each of the 183 TFOE
regulons (genes differentially expressed (DE) two-fold with a FDR adjusted P value <0.01) is represented as a single bar indicating the total
number of genes DE. Each column representing a TF was further characterized as either entirely or primarily an inducer (red), repressor (blue), or
bifunctional regulator (yellow). (B) Ectopic induction inversely correlates with baseline expression level. The level of induction for each TF is
strongly correlated with the uninduced expression level, however neither of those variables is correlated with the size of the regulon (C).
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Table 1 Regulons culled from the literature compared to TFOE defined regulons

TF Name Type of analysisa Reference regulonb TFOE regulonc Overlapd P value Reference

Rv0022c whiB5 OE 61 436 59 <0.001 [4]

Rv0182c sigG OE 7 20 4 <0.001 [5]

Rv0195 KO 179 27 1 0.708 [6]

Rv0465c ramB KO 2 15 1 0.007 [8]

Rv0586 mce2R KO 4 11 4 <0.001 [9]

Rv1909c furA KO 1 12 1 0.003 [11]

Rv2034 Various 11 67 0 1.000 [12]

Rv2359 furB KO 23 6 5 <0.001 [13]

Rv3124 moaR OE 4 9 4 <0.001 [14]

Rv3133c dosR KO 48 127 45 <0.001 [15]

Rv3557c kstR2 KO 15 19 15 <0.001 [16]

Rv3574 kstR KO 70 74 32 <0.001 [16]

For each transcription factor set of genes differentially expressed by overexpression was compared to a previously reported regulon.
aThe type of analysis done in the reference (OE, KO, or various).
bThe number of genes in the previously published regulon.
cThe number of genes differentially expressed in our assay.
dThe number of genes that change in both our assay in prior reports.
KO, knockout; OE, overexpression.
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[15,26]. Additionally, two previously characterized regu-
lons of cholesterol metabolism, KstR and KstR2, overlap
very significantly with their TFOE derived regulons
(P value <0.001). On average, the genes triggered by TF
overexpression included 70% of genes in previously char-
acterized regulons (P value on average less than 0.001). In
two-thirds of cases, the number of genes regulated by
TFOE is substantially larger than the corresponding regu-
lons described in the literature. Perhaps by inducing TFs
we were better able to capture secondary/indirect regula-
tion when compared to gene knockout or in silico studies.
Only two previously reported regulons, from Rv0195 and
Rv2034, showed poor overlap with the TFOE dataset. Both
are associated with the MTB Enduring Hypoxic Response
(her) [27] and might therefore require reduced oxygen
tension as a signal to trigger their activity.

Network model of the MTB transcriptional network
Using Cytoscape [28], we manually constructed a net-
work of TFs and targets that reveals a highly intercon-
nected landscape with a complex pattern of regulatory
influences (Figure 3). This network divides the MTB
genome into six sets of similarly regulated genes: genes
that are exclusively induced or repressed; those both
induced and repressed; and those with no change in
expression in response to overexpression of any TF.
Genes that are only repressed or induced can be further
separated into those regulated by a single TF as opposed
to multiple TFs. We then showed the interaction, if any,
with each of those gene sets for every TF assayed. Of
the 4,026 genes in MTB, the majority (70%) change
expression in response to overexpression of at least
one TF, and two-thirds of those are regulated by
more than one TF.
To understand better the underlying differences in the

sets of genes with similar patterns of regulation we
looked for gene ontology (GO) terms that were enriched
in each set using the R application TopGO (Additional
file 1: Table S3). The 636 solely induced genes were not
enriched for any GO terms, suggesting that their func-
tional distribution matches that of the MTB genome as a
whole. Exclusively repressed genes were broadly enriched
in GO terms associated with growth and metabolism. In
particular, those genes regulated by multiple repres-
sors are enriched in terms involved in energy production
through central metabolism. Genes with more complex
regulation (–that is, those that were induced in response
to some TF overexpression and repressed in response to
others) were enriched for four GO terms, all linked to syn-
thesis and use of acyl carrier proteins.
In contrast, genes that did not change expression in

any of the TFOE experiments had 272 GO terms
enriched - 10 times as many as the other categories
combined. These terms include many unrelated categor-
ies, including the essential processes of DNA synthesis
and repair, protein synthesis, and ATP synthesis. We
therefore assessed the behavior of essential genes [29] in
the TFOE dataset. We found that the more often a gene’s
expression was regulated the less likely it was to be essen-
tial. In fact, genes with no changes in expression were 50%
more likely to be essential than random (Additional file 1:
Table S4).
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Gene ontology terms significantly enriched in TFOE
regulons
To assess the potential role of each TF, we performed
gene ontology (GO) enrichment analyses on their regu-
lated genes. Very small regulons can appear to be highly
enriched if only a single gene falls by chance into an
uncommon GO term, so this analysis was limited to the
130 TFs with at least five genes differentially regulated
after TF overexpression. For similar reasons, this analysis
was limited to GO terms with at least three member
genes.
Enrichment of one or more GO terms was evident in

67 of the TFOE regulons (Additional file 1: Table S5).
The few previously well-characterized TFs were enriched
for expected GO terms. For example, the genes induced
by DosR include the Rv0082-87 operon, which leads to
an enrichment of terms related to electron transport
(GO:0003954); and the ArgR regulon was enriched for
small molecule biosynthesis of nitrogen-containing com-
pounds (GO:0006807). In addition, many of the TFs with
no previously identified function have putative roles sug-
gested by the enriched GO terms. For instance, the TF
Rv1990c is strongly induced by hypoxic stress [27], but
has no identified role or regulatory function. We found that
the TFOE-identified Rv1990c regulon is enriched for genes
linked to DNA damage repair (GO:0042578), DNA synthe-
sis (GO:0006281), and stress response (GO:0006950), sug-
gesting that it may be involved in protecting the organism
from DNA damage under hypoxic non-replicative con-
ditions. Similarly, the TF Rv0023 is poorly studied at
present. We found that the Rv0023 regulon is enriched for
regulation of NAD reductases (GO:0016655). Rv0023
represses the type I NADH dehydrogenase (nuoD-N), but
induces the alternate enzymes ndh and ndhA. Interest-
ingly, ndh is essential for replenishing NADH during hyp-
oxic stress [30], and the nuo operons are repressed in
hypoxia [23,27], suggesting that Rv0023 has a heretofore
unappreciated role in the MTB adaptation to reduced
oxygen tension.

TFOE network predicts function and phenotype of a
regulator of isoniazid susceptibility
The TFOE regulatory map allows rapid identification of
potential regulators of genes and gene sets, and the TFOE
strains (available from BEI Resources: NR-46512) can be
used to help form and test hypotheses of gene and regu-
latory function. To demonstrate the potential of these
tools we explored the regulation of katG (Rv1908c), which
encodes the catalase/peroxidase that converts isoniazid
prodrug to its active form and is therefore essential for
activity of this front-line TB drug [31]. Querying the TFOE
dataset revealed that the repressor furA (Rv1909c) is the
only transcriptional regulator of katG. These genes lie
in an operon along with Rv1907c. Autoregulation of this
operon by FurA has been suggested in MTB [32] and
demonstrated in M. smegmatis using a deletion of the
orthologous gene [11]. We found that over-expression of
furA had limited transcriptional impact: repression of
three genes other than katG, including the next gene
downstream (Rv1907c); and induction of seven genes,
three of which are in an operon of ribosomal proteins. To
test if this transcriptional change resulted in reduced
sensitivity to isoniazid, we induced a furA overexpressing
strain before adding isoniazid. We found that the strain
overexpressing furA grew in the presence of a concen-
tration of isoniazid that completely inhibited growth of
uninduced strains (Figure 4).

TFOE expression data predict MTB strain growth rates
We mapped transcriptional profiles generated from the
TFOE strains onto a published genome-scale metabolic
model [33] of MTB to generate condition-specific meta-
bolic models that predict growth rates of the TFOE strains
(see Methods for details). To demonstrate the utility of
these models, we compared the model-predicted growth
phenotypes with experimental growth data for 51 TFOE
strains, and we compared the ratio of the uninduced vs.
induced growth rates for each strain to the growth ratios
predicted by their corresponding TFOE condition-specific
metabolic models. Figure 5 shows the measured growth
ratios of the TFOE strains, color-coded by whether the
corresponding TFOE condition-specific metabolic models
predicted a growth defect. The TFOE condition-specific
metabolic models demonstrated a statistically significant
predictive ability to identify strains with growth ratio of
greater than the 85% quantile (corresponding to 1.8-fold
reduction), with sensitivity = 1.0 and specificity = 0.72
(P <0.001, Fisher’s Exact Test), and TFOE strains with
a predicted growth defect had significantly greater unin-
duced vs. induced growth ratios than strains without a
predicted growth defect (P = 0.01, t-test). Growth defects
were associated somewhat with repression of essential tar-
get genes (sensitivity = 0.88, specificity =0.56, P = 0.0496,
Fisher’s Exact Test; P = 0.0498, t-test comparing growth
ratios of TFOE strains with repressed targets and those
without), but the TFOE condition-specific metabolic
models achieved higher performance and improved confi-
dence. Therefore, the TFOE datasets contextualize the
metabolic model to gain additional physiological insight
and predictive power.

Discussion
MTB is arguably the world’s most successful bacterial
pathogen, adapting readily to changing conditions within
the human host and responsible for one death every 25 s
[2]. We describe here a transcriptional regulatory net-
work that includes 183 TFs regulating 2,834 genes via
9,335 discrete regulatory events. For comparison, the



Figure 4 Isoniazid susceptibility regulator predicted from the TFOE dataset. (A) KatG converts the prodrug isoniazid (INH) into its active
form. One TF, Rv1909c, repressed katG when overexpressed, which should lead to reduced levels of KatG, less efficient conversion of INH, and a
reduced effect of INH. (B) We confirmed this prediction by showing that, in the presence of twice the MIC of isoniazid (0.2 μg/mL), the furA TFOE
strain was able to grow only when the TF was induced. This increased resistance to isoniazid was not seen in a control strain carrying the parent
empty-vector plasmid.
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best characterized prokaryotic regulatory network is
arguably that of the model organism E. coli, which is
catalogued in the actively curated RegulonDB [24] that
includes data from over 5,000 publications and identifies
3,122 regulatory interactions from 197 TFs. The number
Figure 5 TFOE expression data mapped onto a a model of MTB meta
TFOE dataset was binarized and applied as constraints on simulations using a
51 TFOE strains were measured in the presence and absence of TF overexpre
given TF, and the strains predicted to have restricted growth are colored red.
successfully predicted using this approach.
of regulated genes per TF in MTB varies from one to
nearly 1,000 and most TFs are bifunctional, producing
both increases and decreases of selected genes. Altogether
however, 57% of gene expression changes repress tran-
script levels. We found no correlation between the level of
bolism predicts growth restriction. The gene expression from the
MTB genome-scale metabolic model [33]. The growth rates of a set of
ssion. Each bar shows the ratio of growth rates (uninduced/induced) for a
Of the 10 strains with the largest increase in doubling time, nine were
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TF expression or its level of induction and the number of
attendant gene expression changes (Figure 2).
About 11% of MTB TFs (23 total) produced no tran-

scriptional changes when overexpressed. As mentioned
above, this could in some cases result from the absence
of a needed activating cofactor. Alternatively, a TF may
be present at a saturating level under baseline condi-
tions, in which case the addition of more TF would have
no further impact. It is also possible in some cases that
the cloned TF was inactivated by interference from the
FLAG tag we added or through other artifacts intro-
duced during cloning. However, these issues were likely
minor. Both the high percentage of induced TFs that
triggered expression changes and the strong overlap with
previously reported regulons (Table 1) argue for the gen-
eral validity of the TFOE approach and results. For the
12 previously studied TFs, we sometimes detected more
downstream expression changes than in earlier reports.
This is not surprising given that the earlier reports stem
from a wide range of experimental conditions and me-
thods of varying sensitivity, which we compare to a sin-
gle, highly sensitive transcriptomic platform [23,25]. A
few TFs may produce exaggerated effects as a conse-
quence of inflated overexpression. However, all but 13
TFs (6% of total) were induced to within two-fold of ex-
pression levels previously reported in other experiments
(Additional file 2: Figure S1).
The TFOE expression data described here are com-

plemented by ChIP-seq experiments done in parallel to
map the DNA-transcription factor binding sites [19].
The TFOE and DNA-binding regulatory networks
exhibit significant overlap, with nearly 1,000 cases where
TF binding within promoters could be tied directly to
significant gene expression changes (P value <1 × 1010;
Additional file 1: Table S2, and [19]). The majority of indi-
vidual TFs for which we generated both expression and
ChIP-seq data show significant overlap (P value <0.05)
that will likely increase as additional data are collected
and incorporated. For example, we hypothesize that the
physical TF-DNA binding measured in ChIP-seq may
sometimes require additional condition-specific co-factors
(sigma factors, small molecules, and so on) not present
in our experiments to produce expression changes. In
addition, the TFOE expression changes were measured
18 h after TF induction, allowing ample time for indirect
transcriptional effects to accumulate.
To visualize the MTB transcriptome, we manually

constructed a Cytoscape [28] network portraying the
influence of individual TFs on groups of similarly regu-
lated genes. As evident in Figure 3, at least 50% of all
MTB genes are subject to multiple transcriptional in-
fluences. Genes that were not regulated in TFOE experi-
ments and those controlled by a single repressor were
more likely to be essential. Essential genes may be under
more complex regulation than is revealed in TFOE
experiments, with their expression levels potentially
less susceptible than other genes to change within
cells.
The TFOE system suggests a new approach to explor-

ing transcriptional regulation and phenotypes in MTB.
Instead of perturbing single genes we can now leverage
the multiplicative effect of TFs that evolved to rewire
the transcriptome in response to complex and shifting
signals. TFOE data can be readily searched for regulators
of specific genes and gene sets of interest, producing
testable hypotheses as with FurA regulation of the iso-
niazid activator KatG (Figure 4). Similarly, we identified
67 TFs whose regulated genes were enriched in parti-
cular functional categories (Additional file 1: Table S5),
suggesting further experiments to test regulon func-
tion. We can also merge TFOE transcriptional data
with other systems-level analyses to generate robust
and testable condition-specific phenotypic predictions
(Figure 5) [19,20]. The fidelity with which TFOE tran-
scriptional signatures mapped onto the previously de-
scribed MTB metabolic model [34] predicts growth
defects highlights the utility of both the TFOE dataset
and metabolic models, as well as the synergy to be
realized in combining methods. We are currently employ-
ing such approaches to investigate regulatory modules
responsible for adaptation to physiologically relevant
stresses, both in vitro and in vivo.

Conclusion
The TFOE dataset and strain library presented here pro-
vide valuable information and novel tools for exploring
the transcriptome of MTB, identifying sets of co-regulated
genes, and generating/testing hypotheses by simultan-
eously manipulating co-regulated sets of genes. All tools,
reagents, and data described here are available through
public repositories. The TFOE strains are available through
the BEI strain repository at ATCC ([35], NR-46512). Acces-
sing large datasets like the TFOE expression data can be
difficult when the data spread over thousands of genes and
hundreds of regulators. To address the difficulties usually
associated with accessing large datasets, we have designed
a simple Excel spreadsheet for querying TFOE data to find
regulators of specific genes or sets of genes. This spread-
sheet and all associated data are available in searchable
form [36].

Methods
Expression vectors and strains
Transcription factor overexpressing strains were generated
as described previously [23,25]. In brief, we attempted to
clone 214 putative DNA binding genes in the M. tubercu-
losis genome into a tagged, inducible vector using a Gate-
way Entry Clone library (PFGRC/Colorado State University
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under NIAID contract HHSN266200400091c, currently
available from BEI). For a small set of TFs that were not in
the library we created entry clones de novo. Eight genes
proved recalcitrant to sub-cloning efforts and so were
removed from subsequent analyses leaving 206 TFs used in
this study. Each of these entry clones was then sub-cloned
into a vector via a Gateway cloning recombination cassette
(kind gift of Eric Rubin) that placed the TF under con-
trol a tetracycline inducible promoter [37] and added a
C-terminal FLAG epitope tag. This construct was then
transformed into M. tuberculosis H37Rv using standard
methods. These strains are available from the BEI strain
repository at ATCC ([35], NR-46512).

Culturing conditions
M. tuberculosis strain H37Rv was cultured in Middlebrook
7H9 with the ADC supplement (Difco), 0.05% Tween80 at
37°C with constant agitation. Strains containing the ATc-
inducible expression vector were grown with the addition
of 50 μg/mL hygromycin B to maintain the plasmid. All
experiments were performed under aerobic conditions
and growth was monitored by OD600. At an OD600 of
0.35, expression of a gene of interest was induced for the
approximate duration of one cell doubling (18 h) using an
ATc concentration 100 ng/mL culture.

RNA isolation
RNA was isolated as described previously [27,38]. Briefly,
cell pellets in Trizol were transferred to a tube containing
Lysing Matrix B (QBiogene, Inc.), and vigorously shaken
at max speed for 30 s in a FastPrep 120 homogenizer
(Qbiogene) three times, with cooling on ice between steps.
This mixture was centrifuged at max speed for 1 min
and the supernatant was transferred to a tube containing
300 μL chloroform and Heavy Phase Lock Gel (Eppendorf
North America, Inc.), inverted for 2 min, and centrifuged
at max speed for 5 min. RNA in the aqueous phase was
then precipitated with 300 μL isopropanol and 300 μL
high salt solution (0.8 M Na citrate, 1.2 M NaCl). RNA
was purified using an RNeasy kit following manufacturer’s
recommendations (Qiagen) with one on-column DNase
treatment (Qiagen). Total RNA yield was quantified using
a Nanodrop (Thermo Scientific).

Microarray analysis
RNA was converted to Cy dye-labeled cDNA probes as
described previously [27]. For all microarrays described
here, 3 μg of total RNA was used to generate probes.
Sets of fluorescent probes were then hybridized to
custom NimbleGen tiling arrays consisting of 135,000
probes spaced at approximately 100 bp intervals around
the M. tuberculosis H37Rv genome (NCBI Geo Acces-
sion #: GPL14896). These arrays provide 105,000 data
points for each expression profile covering approximately
13,000 sense, antisense, and intergenic genome features.
For background we compared the expression levels of
these probes to a set of 30,000 randomers of equivalent
GC distribution. These arrays are no longer commercially
available, but arrays with identical probes are available
from Agilent (Array ID ‘MTB.tiled.3.2013’). Arrays were
scanned and spots were quantified using Genepix 4000B
scanner with GenePix 6.0 software. Each TFOE strain
was analyzed a minimum of three times. These data
were exported to NimbleScan for mask alignment and
robust multichip average (RMA) normalization [39]. Sub-
sequent statistical analysis and data visualization were
carried out using Arraystar software. To compare against
a standard, baseline, expression set, median expression
values were calculated for all genes across all 698 input
microarrays. Altered gene expression was considered
significant if it produced a moderated t-test P <0.01
after Benjamini Hochberg multiple testing correction.
Array data are available at NCBI-GEO, series GSE59086
and [36].

Mapping TFOE expression data to metabolism
We generated condition-specific metabolic models based
on the transcriptional profiles of TFOE strains and a
published genome-scale metabolic model of MTB [21]
using the iMAT approach implemented in the COBRA
Toolbox [40-42]. The transcriptional profiles of all repli-
cates for each TFOE strains were summarized and binar-
ized such that genes with negative fold change relative
to the median over all experiments in at least 75% of the
replicates are designated ‘off ’, and the remaining genes
are designated ‘on’. The binarized transcriptional profiles
of each TFOE strain were mapped to the genome-scale
metabolic model to generate a predicted growth and
reaction flux profile that obeys stoichiometric and
thermodynamic constraints and maximizes the number
of reactions with nonzero flux activity that map to ‘on’
genes and minimizes the number of reactions with non-
zero flux that map to ‘off ’ genes. The resulting simulated
growth rate of each TFOE condition-specific model was
compared to the simulated wild-type growth rate simu-
lated from the genome-scale metabolic model. The
TFOE-specific models yielded essentially binary simu-
lated growth rates, with ratios relative to wild-type of ei-
ther less than 0.01 or greater than 0.95. Therefore,
TFOE strains with models that predicted growth rates of
less than 95% of wild-type were deemed to predict a
growth defect. To assess predictive performance of the
models, we set TFOE strains with experimental unin-
duced vs. induced growth ratios above the threshold
value as having a growth defect and those below the
threshold of having no growth defect, and we calculated
sensitivity as the fraction of strains correctly predicted to
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have a growth defect true positive
true positiveþfalse negative

� �
and specifi-

city as the fraction of strains correctly predicted not to

have a growth defect true negative
true negativeþfalse positive

� �
.
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