126 research outputs found

    The 15 years of comet photometry: A comparative analysis of 80 comets

    Get PDF
    In 1976, a program of narrowband photometry of comets was initiated that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which were observed during multiple apparitions. The filters (initially isolating CN, C2, and continuum and later including C3, OH, and NH) as well as the detectors used for the observations were changed over time, and the parameters adopted in the reduction and modeling of the data have likewise evolved. Accordingly, we have re-reduced the entire database and have derived production rates using current values for scalelengths and fluorescence efficiencies. Having completed this task, the results for different comets can now be meaningfully compared. The general characteristics that are discussed include ranges in composition (molecular production rate ratios) and dustiness (gas production compared with Af(rho)). Additionally an analysis of trends on how the production rates vary with heliocentric distance and on pre- and post-perihelion asymmetries in the production rates of individual comets. Possible taxonomic groupings are also described

    Machine Learning for Optical Scanning Probe Nanoscopy

    Full text link
    The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. The scattering-type scanning near-field optical microscopy (s-SNOM) technique has recently spread to many research fields and enabled notable discoveries. In this brief perspective, we show that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial intelligence (AI) and machine learning (ML) algorithms. We show that, with the help of AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent

    Magnetism and Structural Distortion in the La0.7Sr0.3MnO3 Metallic Ferromagnet

    Full text link
    Neutron scattering studies on a single crystal of the highly-correlated electron system, La1-xSrxMnO3 with x~0.3, have been carried out elucidating both the spin and lattice dynamics of this metallic ferromagnet. We report a large measured value of the spin wave stiffness constant, which directly shows that the electron transfer energy of the d band is large. The spin dynamics, including magnetic critical scattering, demonstrate that this material behaves similar to other typical metallic ferromagnets such as Fe or Ni. The crystal structure is rhombohedral, as previously reported, for all temperatures studied (below ~425K). We have observed new superlattice peaks which show that the primary rhombohedral lattice distortion arises from oxygen octahedra rotations resulting in an R-3c structure. The superlattice reflection intensities which are very sensitive to structural changes are independent of temperature demonstrating that there is no primary lattice distortion anomaly at the magnetic transition temperature, Tc = 378.1 K, however there is a lattice contraction.Comment: Submitted to Phys. Rev. B. (03Aug95) Uuencoded gz-compressed .tar file of Postscript text (12 pages) and 6 figures. Also available by WWW from http://insti.physics.sunysb.edu/~mmartin/ under my list of publications or by e-mail reques

    Patient-reported outcomes of periacetabular osteotomy from the prospective ANCHOR cohort study

    Get PDF
    BACKGROUND: Current literature describing the periacetabular osteotomy (PAO) is mostly limited to retrospective case series. Larger, prospective cohort studies are needed to provide better clinical evidence regarding this procedure. The goals of the current study were to (1) report minimum 2-year patient-reported outcomes (pain, hip function, activity, overall health, and quality of life), (2) investigate preoperative clinical and disease characteristics as predictors of clinical outcomes, and (3) report the rate of early failures and reoperations in patients undergoing contemporary PAO surgery. METHODS: A large, prospective, multicenter cohort of PAO procedures was established, and outcomes at a minimum of 2 years were analyzed. A total of 391 hips were included for analysis (79% of the patients were female, and the average patient age was 25.4 years). Patient-reported outcomes, conversion to total hip replacement, reoperations, and major complications were documented. Variables with a p value of ≤0.10 in the univariate linear regressions were included in the multivariate linear regression. The backward stepwise selection method was used to determine the final risk factors of clinical outcomes. RESULTS: Clinical outcome analysis demonstrated major clinically important improvements in pain, function, quality of life, overall health, and activity level. Increasing age and a body mass index status of overweight or obese were predictive of improved results for certain outcome metrics. Male sex and mild acetabular dysplasia were predictive of lesser improvements in certain outcome measures. Three (0.8%) of the hips underwent early conversion to total hip arthroplasty, 12 (3%) required reoperation, and 26 (7%) experienced a major complication. CONCLUSIONS: This large, prospective cohort study demonstrated the clinical success of contemporary PAO surgery for the treatment of symptomatic acetabular dysplasia. Patient and disease characteristics demonstrated predictive value that should be considered in surgical decision-making. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime mapping

    Full text link
    Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its collective modes: surface plasmon polaritons (SPPs). The group velocity and lifetime of SPPs have a direct correspondence with the reactive and dissipative parts of the tera-Hertz (THz) conductivity of the Dirac fluid. We succeeded in tracking the propagation of SPPs over sub-micron distances at femto-second (fs) time scales. Our experiments uncovered prominent departures from the predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when the densities of electrons and holes are approximately equal. Our imaging methodology can be used to probe the electromagnetics of quantum materials other than graphene in order to provide fs-scale diagnostics under near-equilibrium conditions

    Graphene/α\alpha-RuCl3_3: An Emergent 2D Plasmonic Interface

    Full text link
    Work function-mediated charge transfer in graphene/α\alpha-RuCl3_3 heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasmon-polaritons (SPPs and EPPs, respectively). Characterization of the SPP and EPP behavior as a function of frequency and temperature can be used to simultaneously probe the magnitude of interlayer charge transfer while extracting the optical response of the interfacial doped α\alpha-RuCl3_3. We accomplish this using scanning near-field optical microscopy (SNOM) in conjunction with first-principles DFT calculations. This reveals massive interlayer charge transfer (2.7 ×\times 1013^{13} cm−2^{-2}) and enhanced optical conductivity in α\alpha-RuCl3_3 as a result of significant electron doping. Our results provide a general strategy for generating highly-doped plasmonic interfaces in the 2D limit in a scanning probe-accessible geometry without need of an electrostatic gate.Comment: 22 pages, 5 figure
    • …
    corecore