266 research outputs found

    Decay rate measurement of the first vibrationally excited state of MgH+^+ in a cryogenic Paul trap

    Full text link
    We present a method to measure the decay rate of the first excited vibrational state of simple polar molecular ions being part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the âˆŁÎœ|\nu=1,J1,J=1⟩X1 \rangle_X towards the âˆŁÎœ|\nu=0,J0,J=0⟩X0 \rangle_X level in MgH+^+ by saturated laser excitation of the âˆŁÎœ|\nu=0,J0,J=2⟩X2 \rangle_X-âˆŁÎœ|\nu=1,J1,J=1⟩X1 \rangle_X transition followed by state selective resonance enhanced two-photon dissociation out of the âˆŁÎœ|\nu=0,J0,J=2⟩X2 \rangle_X level. The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure

    Turbulence-driven magnetic reconnection and the magnetic correlation length: observations from magnetospheric multiscale in Earth's magnetosheath

    Get PDF
    Turbulent plasmas generate a multitude of thin current structures that can be sites for magnetic reconnection. The Magnetospheric Multiscale (MMS) mission has recently enabled the detailed examination of such turbulent current structures in Earth's magnetosheath and revealed that a novel type of reconnection, known as electron-only reconnection, can occur. In electron-only reconnection, ions do not have enough space to couple to the newly reconnected magnetic fields, suppressing ion jet formation and resulting in thinner sub-proton-scale current structures with faster super-AlfvĂ©nic electron jets. In this study, MMS observations are used to examine how the magnetic correlation length (λC) of the turbulence, which characterizes the size of the large-scale magnetic structures and constrains the length of the current sheets formed, influences the nature of turbulence-driven reconnection. We systematically identify 256 reconnection events across 60 intervals of magnetosheath turbulence. Most events do not appear to have ion jets; however, 18 events are identified with ion jets that are at least partially coupled to the reconnected magnetic field. The current sheet thickness and electron jet speed have a weak anti-correlation, with faster electron jets at thinner current sheets. When â‰Č20 ion inertial lengths, as is typical near the sub-solar magnetosheath, a tendency for thinner current sheets and potentially faster electron jets is present. The results are consistent with electron-only reconnection being more prevalent for turbulent plasmas with relatively short λC and may be relevant to the nonlinear dynamics and energy dissipation in turbulent plasmas

    The unacknowledged legacy

    Get PDF
    This paper presents a critical discussion of the treatment of mimetic art, and particularly poetry and the theatre, in the work of the Athenian philosopher Plato (427-347 BC). It centres on Plato's discussion of the corrupting powers of the arts in the Republic, and the implications that his fierce attack on poetry and theatre have for his construction of the ideal polity. The legacy of Platonic ideas in later elaborations of the corrupting power of the arts is discussed. Furthermore, the paper investigates the relationship between current debates on cultural policy and the Platonic idea that the transformative powers of the arts ought to be harnessed by the state to promote a just society. The conclusion thus reached is that “instrumental cultural policy”, rather then being a modern invention, was in fact first theorized precisely in Plato's Republic

    Pre-transplant CDKN2A expression in kidney biopsies predicts renal function and is a future component of donor scoring criteria

    Get PDF
    CDKN2A is a proven and validated biomarker of ageing which acts as an off switch for cell proliferation. We have demonstrated previously that CDKN2A is the most robust and the strongest pre-transplant predictor of post- transplant serum creatinine when compared to “Gold Standard” clinical factors, such as cold ischaemic time and donor chronological age. This report shows that CDKN2A is better than telomere length, the most celebrated biomarker of ageing, as a predictor of post-transplant renal function. It also shows that CDKN2A is as strong a determinant of post-transplant organ function when compared to extended criteria (ECD) kidneys. A multivariate analysis model was able to predict up to 27.1% of eGFR at one year post-transplant (p = 0.008). Significantly, CDKN2A was also able to strongly predict delayed graft function. A pre-transplant donor risk classification system based on CDKN2A and ECD criteria is shown to be feasible and commendable for implementation in the near future

    THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY

    Get PDF
    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection

    Future studies on electron scattering; A renaissance

    Get PDF
    2014 is the centenary of the first announcement of the Franck-Hertz experiment [1], now regarded as one of the pivotal experiments of modern physics. The Franck-Hertz experiment is widely regarded as an experiment that provided validation of the Bohr theory of atomic structure, itself only published in 2013, however it should also be viewed as the first quantitative experiment in electron scattering and the birth of scientific study of atomic and molecular phenomena by collisions. Today we recognize that electron-atom and electron- molecule collisions are prevalent across nature, describing disparate phenomena whilst the exploitation of such collisions underpins many of the technologies upon which modern society relies. The centenary of the Franck-Hertz experiment is thus a suitable opportunity to review both our current knowledge of electron interactions and to consider the directions of future research. In this article I therefore aim to both review our current state of knowledge and look forward, proposing that recent advances are providing something of a renaissance to the field and are vital for emerging technologies as well as answering some of the greatest scientific challenges of the 21st century

    Weaning practices in phenylketonuria vary between health professionals in Europe

    Get PDF
    Background: In phenylketonuria (PKU), weaning is considered more challenging when compared to feeding healthy infants. The primary aim of weaning is to gradually replace natural protein from breast milk or standard infant formula with solids containing equivalent phenylalanine (Phe). In addition, a Phe-free second stage L-amino acid supplement is usually recommended from around 6 months to replace Phe-free infant formula. Our aim was to assess different weaning approaches used by health professionals across Europe. Methods: A cross sectional questionnaire (survey monkey (R)) composed of 31 multiple and single choice questions was sent to European colleagues caring for inherited metabolic disorders (IMD). Centres were grouped into geographical regions for analysis. Results: Weaning started at 17-26 weeks in 85% (n=81/95) of centres, > 26 weeks in 12% (n=11/95) and 26 weeks. First solids were mainly low Phe vegetables (59%, n=56/95) and fruit (34%, n=32/95). A Phe exchange system to allocate dietary Phe was used by 52% (n=49/95) of centres predominantly from Northern and Southern Europe and 48% (n=46/95) calculated most Phe containing food sources (all centres in Eastern Europe and the majority from Germany and Austria). Some centres used a combination of both methods. A second stage Phe-free L-amino acid supplement containing a higher protein equivalent was introduced by 41% (n=39/95) of centres at infant age 26-36 weeks (mainly from Germany, Austria, Northern and Eastern Europe) and 37% (n=35/95) at infant age > 1y mainly from Southern Europe. 53% (n=50/95) of centres recommended a second stage Phe-free L-amino acid supplement in a spoonable or semi-solid form. Conclusions: Weaning strategies vary throughout European PKU centres. There is evidence to suggest that different infant weaning strategies may influence longer term adherence to the PKU diet or acceptance of Phe-free L-amino acid supplements; rendering prospective long-term studies important. It is essential to identify an effective weaning strategy that reduces caregiver burden but is associated with acceptable dietary adherence and optimal infant feeding development.Peer reviewe

    Early feeding practices in infants with phenylketonuria across Europe

    Get PDF
    Background: In infants with phenylketonuria (PKU), dietary management is based on lowering and titrating phenylalanine (Phe) intake from breast milk or standard infant formula in combination with a Phe-free infant formula in order to maintain blood Phe levels within target range. Professionals use different methods to feed infants with PKU and our survey aimed to document practices across Europe. Methods: We sent a cross sectional, survey monkey (R) questionnaire to European health professionals working in IMD. It contained 31 open and multiple-choice questions. The results were analysed according to different geographical regions. Results: Ninety-five centres from 21 countries responded. Over 60% of centres commenced diet in infants by age 10 days, with 58% of centres implementing newborn screening by day 3 post birth. At diagnosis, infant hospital admission occurred in 61% of metabolic centres, mainly in Eastern, Western and Southern Europe. Breastfeeding fell sharply following diagnosis with only 30% of women still breast feeding at 6 months. 53% of centres gave pre-measured Phe-free infant formula before each breast feed and 23% alternated breast feeds with Phe-free infant formula. With standard infant formula feeds, measured amounts were followed by Phe-free infant formula to satiety in 37% of centres (n = 35/95), whereas 44% (n = 42/95) advised mixing both formulas together. Weaning commenced between 17 and 26 weeks in 85% centres, >= 26 weeks in 12% and <17 weeks in 3%. Discussion: This is the largest European survey completed on PKU infant feeding practices. It is evident that practices varied widely across Europe, and the practicalities of infant feeding in PKU received little focus in the PKU European Guidelines (2017). There are few reports comparing different feeding techniques with blood Phe control, Phe fluctuations and growth. Controlled prospective studies are necessary to assess how different infant feeding practices may influence longer term feeding development.Peer reviewe

    An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    Get PDF
    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class
    • 

    corecore