165 research outputs found

    Pyrroloquinoline Quinone Aza-Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases**

    Get PDF
    Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone-dependent methanol dehydrogenases (MDH). Here we evaluate a literature-known pyrroloquinoline quinone (PQQ) and 1-aza-15-crown-5 based ligand platform as scaffold for Ca2+^{2+}, Ba2+^{2+}, La3+^{3+} and Lu3+^{3+} biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone-based radical

    Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study

    Get PDF
    Interest in the bioinorganic chemistry of lanthanides is growing rapidly as more and more lanthanide-dependent bacteria are being discovered. Especially the earlier lanthanides have been shown to be preferentially utilized by bacteria that need these Lewis acids as cofactors in their alcohol dehydrogenase enzymes. Here, we investigate the impact of the lanthanide ions lanthanum(III) to lutetium(III) (excluding Pm) on the catalytic parameters (v(max), K-M, k(cat)/K-M) of a methanol dehydrogenase (MDH) isolated from Methylacidiphilum fumariolicum SolV. Kinetic experiments and DFT calculations were used to discuss why only the earlier lanthanides (La-Gd) promote high MDH activity. Impact of Lewis acidity, coordination number preferences, stability constants and other properties that are a direct result of the lanthanide contraction are discussed in light of the two proposed mechanisms for MDH

    Role of Suppressor of Cytokine Signaling-1 In Murine Atherosclerosis

    Get PDF
    BACKGROUND: While the impact of inflammation as the substantial driving force of atherosclerosis has been investigated in detail throughout the years, the influence of negative regulators of pro-atherogenic pathways on plaque development has remained largely unknown. Suppressor of cytokine signaling (SOCS)-1 potently restricts transduction of various inflammatory signals and, thereby modulates T-cell development, macrophage activation and dendritic cell maturation. Its role in atherogenesis, however has not been elucidated so far. METHODS AND RESULTS: Loss of SOCS-1 in the low-density lipoprotein receptor deficient murine model of atherosclerosis resulted in a complex, systemic and ultimately lethal inflammation with increased generation of Ly-6C(hi) monocytes and activated macrophages. Even short-term exposure of these mice to high-cholesterol dieting caused enhanced atherosclerotic plaque development with accumulation of M1 macrophages, Ly-6C positive cells and neutrophils. CONCLUSION: Our data not only imply that SOCS-1 is athero-protective but also emphasize the fundamental, regulatory importance of SOCS-1 in inflammation-prone organisms

    The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone

    Get PDF
    Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent

    Teachers as Educational Innovators in Inquiry-Based Science Teaching and Learning

    Get PDF
    This chapter describes inquiry-based science teaching and learning (IBST/L) pilots designed by teachers during a professional development programme. There is research-based evidence that IBSL/T may promote students’ learning and their motivation to learn science, and therefore it is beneficial to familiarise the teachers with this approach. Building on teachers’ existing expertise in designing their teaching, the programme introduced theoretical aspects of the IBST/L approach and its research-based benefits for students’ motivation, interest and science learning. The course aimed to support teachers as educational innovators in the process of designing and testing IBST/L pilots, during which they collaboratively reflected on and revised their existing practices. The data of this piece of research consists of the teachers’ poster presentations of their IBST/L pilots and a video recording of the reflection session. The content analysis revealed that the pilots’ structure seemed traditional but encompassed some IBST/L features. It is concluded that teacher educators need to understand teachers’ views of IBST/L in order to more effectively support planning and reflection.This chapter describes inquiry-based science teaching and learning (IBST/L) pilots designed by teachers during a professional development programme. There is research-based evidence that IBSL/T may promote students’ learning and their motivation to learn science, and therefore it is beneficial to familiarise the teachers with this approach. Building on teachers’ existing expertise in designing their teaching, the programme introduced theoretical aspects of the IBST/L approach and its research-based benefits for students’ motivation, interest and science learning. The course aimed to support teachers as educational innovators in the process of designing and testing IBST/L pilots, during which they collaboratively reflected on and revised their existing practices. The data of this piece of research consists of the teachers’ poster presentations of their IBST/L pilots and a video recording of the reflection session. The content analysis revealed that the pilots’ structure seemed traditional but encompassed some IBST/L features. It is concluded that teacher educators need to understand teachers’ views of IBST/L in order to more effectively support planning and reflection.Peer reviewe

    A Semantic Reasoning Method Towards Ontological Model for Automated Learning Analysis

    Get PDF
    Semantic reasoning can help solve the problem of regulating the evolving and static measures of knowledge at theoretical and technological levels. The technique has been proven to enhance the capability of process models by making inferences, retaining and applying what they have learned as well as discovery of new processes. The work in this paper propose a semantic rule-based approach directed towards discovering learners interaction patterns within a learning knowledge base, and then respond by making decision based on adaptive rules centred on captured user profiles. The method applies semantic rules and description logic queries to build ontology model capable of automatically computing the various learning activities within a Learning Knowledge-Base, and to check the consistency of learning object/data types. The approach is grounded on inductive and deductive logic descriptions that allows the use of a Reasoner to check that all definitions within the learning model are consistent and can also recognise which concepts that fit within each defined class. Inductive reasoning is practically applied in order to discover sets of inferred learner categories, while deductive approach is used to prove and enhance the discovered rules and logic expressions. Thus, this work applies effective reasoning methods to make inferences over a Learning Process Knowledge-Base that leads to automated discovery of learning patterns/behaviour
    • 

    corecore