87 research outputs found
Discovery of a Low-Mass Companion to the F7V star HD 984
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V
star HD 984. The companion is detected 0.19" away from its host star in the L'
band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band
non-coronagraphic imaging data taken a few days later. We confirm the companion
is co-moving with the star with SINFONI integral field spectrograph H+K data.
We present the first published data obtained with SINFONI in pupil-tracking
mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba
group, and its HR diagram position is not altogether inconsistent with being a
ZAMS star of this age. By consolidating different age indicators, including
isochronal age, coronal X-ray emission, and stellar rotation, we independently
estimate a main sequence age of 11585 Myr (95% CL) which does not rely on
this kinematic association. The mass of directly imaged companions are usually
inferred from theoretical evolutionary tracks, which are highly dependent on
the age of the star. Based on the age extrema, we demonstrate that with our
photometric data alone, the companion's mass is highly uncertain: between 33
and 96 M (0.03-0.09 M) using the COND evolutionary
models. We compare the companion's SINFONI spectrum with field dwarf spectra to
break this degeneracy. Based on the slope and shape of the spectrum in the
H-band, we conclude that the companion is an M dwarf. The age of the
system is not further constrained by the companion, as M dwarfs are poorly fit
on low-mass evolutionary tracks. This discovery emphasizes the importance of
obtaining a spectrum to spectral type companions around F-stars.Comment: Accepted for publication in MNRAS, 10 pages, 5 figure
Discovery of a low-mass companion to the F7V star HD 984
We report the discovery of a low-mass companion to the nearby (d = 47pc) F7V star HD 984. The companion is detected 0.19 arcsec away from its host star in the L′ band with the Apodized Phase Plate on NaCo/Very Large Telescope and was recovered by L′-band non-coronagraphic imaging data taken a few days later. We confirm the companion is comoving with the star with SINFONI integral field spectrograph H + K data. We present the first published data obtained with SINFONI in pupil-tracking mode. HD 984 has been argued to be a kinematic member of the 30Myr-old Columba group, and its HR diagram position is not altogether inconsistent with being a zero-age main sequence star of this age. By consolidating different age indicators, including isochronal age, coronal X-ray emission, and stellar rotation, we independently estimate a main-sequence age of 115±85Myr (95 per cent CL) which does not rely on this kinematic association. The mass of directly imaged companions are usually inferred from theoretical evolutionary tracks, which are highly dependent on the age of the star. Based on the age extrema, we demonstrate that with our photometric data alone, the companion's mass is highly uncertain: between 33 and 96 MJup (0.03-0.09M⊙) using the COND evolutionary models. We compare the companion's SINFONI spectrum with field dwarf spectra to break this degeneracy. Based on the slope and shape of the spectrum in the H band, we conclude that the companion is an M6.0 ± 0.5 dwarf. The age of the system is not further constrained by the companion, as M dwarfs are poorly fit on low-mass evolutionary tracks. This discovery emphasizes the importance of obtaining a spectrum to spectral type companions around F-star
A narrow, edge-on disk resolved around HD 106906 with SPHERE
HD~106906AB is so far the only young binary system around which a planet has
been imaged and a debris disk evidenced thanks to a strong IR excess. As such,
it represents a unique opportunity to study the dynamics of young planetary
systems. We aim at further investigating the close (tens of au scales)
environment of the HD~106906AB system. We used the extreme AO fed, high
contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both
the IRDIS imager and the Integral Field Spectrometer were used. We discovered a
very inclined, ring-like disk at a distance of 65~au from the star. The disk
shows a strong brightness asymmetry with respect to its semi-major axis. It
shows a smooth outer edge, compatible with ejection of small grains by the
stellar radiation pressure. We show furthermore that the planet's projected
position is significantly above the disk's PA. Given the determined disk
inclination, it is not excluded though that the planet could still orbit within
the disk plane if at a large separation (2000--3000 au). We identified several
additional point sources in the SPHERE/IRDIS field-of-view, that appear to be
background objects. We compare this system with other debris disks sharing
similarities, and we briefly discuss the present results in the framework of
dynamical evolution.Comment: 7 pages, 6 figures, accepted by Astronomy & Astrophysic
Post conjunction detection of Pictoris b with VLT/SPHERE
With an orbital distance comparable to that of Saturn in the solar system,
\bpic b is the closest (semi-major axis \,9\,au) exoplanet that has
been imaged to orbit a star. Thus it offers unique opportunities for detailed
studies of its orbital, physical, and atmospheric properties, and of
disk-planet interactions. With the exception of the discovery observations in
2003 with NaCo at the Very Large Telescope (VLT), all following astrometric
measurements relative to \bpic have been obtained in the southwestern part of
the orbit, which severely limits the determination of the planet's orbital
parameters. We aimed at further constraining \bpic b orbital properties using
more data, and, in particular, data taken in the northeastern part of the
orbit.
We used SPHERE at the VLT to precisely monitor the orbital motion of beta
\bpic b since first light of the instrument in 2014. We were able to monitor
the planet until November 2016, when its angular separation became too small
(125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b
on the northeast side of the disk at a separation of 139\,mas and a PA of
30 in September 2018. The planetary orbit is now well constrained.
With a semi-major axis (sma) of au (1 ), it
definitely excludes previously reported possible long orbital periods, and
excludes \bpic b as the origin of photometric variations that took place in
1981. We also refine the eccentricity and inclination of the planet. From an
instrumental point of view, these data demonstrate that it is possible to
detect, if they exist, young massive Jupiters that orbit at less than 2 au from
a star that is 20 pc away.Comment: accepted by A&
The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE
The SHINE project is a 500-star survey performed with SPHERE on the VLT for
the purpose of directly detecting new substellar companions and understanding
their formation and early evolution. Here we present an initial statistical
analysis for a subsample of 150 stars that are representative of the full SHINE
sample. Our goal is to constrain the frequency of substellar companions with
masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. We adopt
detection limits as a function of angular separation from the survey data for
all stars converted into mass and projected orbital separation using the
BEX-COND-hot evolutionary tracks and known distance to each system. Based on
the results obtained for each star and on the 13 detections in the sample, we
use a MCMC tool to compare our observations to two different types of models.
The first is a parametric model based on observational constraints, and the
second type are numerical models that combine advanced core accretion and
gravitational instability planet population synthesis. Using the parametric
model, we show that the frequencies of systems with at least one substellar
companion are , , and
for BA, FGK, and M stars, respectively. We also
demonstrate that a planet-like formation pathway probably dominates the mass
range from 1-75 MJup for companions around BA stars, while for M dwarfs, brown
dwarf binaries dominate detections. In contrast, a combination of binary
star-like and planet-like formation is required to best fit the observations
for FGK stars. Using our population model and restricting our sample to FGK
stars, we derive a frequency of , consistent with
predictions from the parametric model. More generally, the frequency values
that we derive are in excellent agreement with values obtained in previous
studies.Comment: 24 pages, 14 figures, 3 tables. Accepted for publication in A&
Imaging radial velocity planets with SPHERE
We present observations with the planet finder SPHERE of a selected sample of
the most promising radial velocity (RV) companions for high-contrast imaging.
Using a Monte Carlo simulation to explore all the possible inclinations of the
orbit of wide RV companions, we identified the systems with companions that
could potentially be detected with SPHERE. We found the most favorable RV
systems to observe are : HD\,142, GJ\,676, HD\,39091, HIP\,70849, and HD\,30177
and carried out observations of these systems during SPHERE Guaranteed Time
Observing (GTO).
To reduce the intensity of the starlight and reveal faint companions, we used
Principle Component Analysis (PCA) algorithms alongside angular and spectral
differential imaging. We injected synthetic planets with known flux to evaluate
the self-subtraction caused by our data reduction and to determine the
5 contrast in the J band separation for our reduced images. We
estimated the upper limit on detectable companion mass around the selected
stars from the contrast plot obtained from our data reduction.
Although our observations enabled contrasts larger than 15 mag at a few
tenths of arcsec from the host stars, we detected no planets. However, we were
able to set upper mass limits around the stars using AMES-COND evolutionary
models. We can exclude the presence of companions more massive than 25-28 \MJup
around these stars, confirming the substellar nature of these RV companions.Comment: 14 pages, 11 figures, accepted by MNRA
- …