192 research outputs found

    Classical Effects of Laser Pulse Duration on Strong-field Double Ionization

    Full text link
    We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 10141016W/cm210^{14}-10^{16} W/cm^2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis

    Measurement campaign on the JRC Ispra decommissioning site

    Get PDF
    The purpose of this document is to describe the measurement campaign with the Free Release Measurement Facility (FRMF) at building 41m “Interim Storage Facility” (ISF) of material clearable according to existing licenses as part of the collaborative research project MetroDecom. The description of the measurement campaign includes the technical requirements and safety implementations necessary for carrying out this project. The Free Release Measurement Facility (FRMF) was designed as a state of the art facility for measurement of low gamma-ray activity waste packages. Gamma spectrometric method for free release measurment was developed. The complemented with passive neutron counting method. The both methods are used for different nuclide contents in the waste and are complementary. For this purpose the instrument incorporates: — Three passive neutron counters (design of JRC) — A gamma-ray detection system HPGe Interchangeable Detector Module IDM-200-V (ORTEC) — NuDET Plastic Scintillation Detectors (design of NUVIA) Decommissioning unit delivered seventy containers with material clearable according to existing JRC licenses. JRC G.II.7 performed the testing of the free release measurement system. The document contains the overview of that measurement campaign. The detailed measurement protocols, spectra generated by FRMF software are shared with MetroDecom Partners.JRC.G.II.7-Nuclear securit

    A theoretical approach for the interpretation of pulsating PMS intermediate-mass stars

    Full text link
    The investigation of the pulsation properties of pre-main-sequence intermediate-mass stars is a promising tool to evaluate the intrinsic properties of these stars and to constrain current evolutionary models. Many new candidates of this class have been discovered during the last decade and very accurate data are expected from space observations obtained for example with the CoRoT satellite. In this context we aim at developing a theoretical approach for the interpretation of observed frequencies, both from the already available ground-based observations and from the future more accurate and extensive CoRoT results. To this purpose we have started a project devoted to the computations of fine and extensive grids of asteroseismic models of intermediate mass pre-main-sequence stars. The obtained frequencies are used to derive an analytical relation between the large frequency separation and the stellar luminosity and effective temperature and to develop a tool to compare theory and observations in the echelle diagram. The predictive capabilities of the proposed method are verified through the application to two test stars. As a second step, we apply the procedure to two true observations from multisite campaigns and we are able to constrain their stellar parameters, in particular the mass, in spite of the small number of frequencies. We expect that with a significantly higher number of frequencies both the stellar mass and age could be constrained and, at the same time, the physics of the models could be tested.Comment: Accepted for publication on A&

    Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study

    Get PDF
    Ventricular fibrillation (VF) is a lethal condition that affects millions worldwide. The mechanism underlying VF is unstable reentrant electrical waves rotating around lines called filaments. These complex spatio-temporal patterns can be studied using both experimental and numerical methods. Computer simulations provide unique insights including high resolution dynamics throughout the heart and systematic control of quantities such as fiber orientation and cellular kinetics that are not feasible experimentally. Here we study filament dynamics using two bi-ventricular 3-D high-resolution rabbit heart geometries, one with detailed fine structure and another without fine structure. We studied filament dynamics using anisotropic and isotropic conductivities, and with four cellular action potential models with different recovery kinetics. Spiral wave dynamics observed in isotropic two-dimensional sheets were not predictive of the behavior in the whole heart. In 2-D the four cell models exhibited stable reentry, meandering spiral waves, and spiral-wave breakup. In the whole heart with fine structure, all simulation results exhibited complex dynamics reminiscent of fibrillation observed experimentally. In the whole heart without fine structure, anisotropy acted to destabilize filament dynamics although the number of filaments was reduced compared to the heart with structure. In addition, in isotropic hearts without structure the two cell models that exhibited meandering spiral waves in 2-D, stabilized into figure-of-eight surface patterns. We also studied the sensitivity of filament dynamics to computer system configuration and initial conditions. After large simulation times, different macroscopic results sometimes occurred across different system configurations, likely due to a lack of bitwise reproducibility. The study conclusions were insensitive to initial condition perturbations, however, the exact number of filaments over time and their trends were altered by these changes. In summary, we present the following new results. First, we provide a new cell model that resembles the surface patterns of VF in the rabbit heart both qualitatively and quantitatively. Second, filament dynamics in the whole heart cannot be predicted from spiral wave dynamics in 2-D and we identified anisotropy as one destabilizing factor. Third, the exact dynamics of filaments are sensitive to a variety of factors, so we suggest caution in their interpretation and their quantitative analyses

    Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model

    Full text link
    In order to make astroseismology a powerful tool to explore stellar interiors, different numerical codes should give the same oscillation frequencies for the same input physics. This work is devoted to test, compare and, if needed, optimize the seismic codes used to calculate the eigenfrequencies to be finally compared with observations. The oscillation codes of nine research groups in the field have been used in this study. The same physics has been imposed for all the codes in order to isolate the non-physical dependence of any possible difference. Two equilibrium models with different grids, 2172 and 4042 mesh points, have been used, and the latter model includes an explicit modelling of semiconvection just outside the convective core. Comparing the results for these two models illustrates the effect of the number of mesh points and their distribution in particularly critical parts of the model, such as the steep composition gradient outside the convective core. A comprehensive study of the frequency differences found for the different codes is given as well. These differences are mainly due to the use of different numerical integration schemes. The use of a second-order integration scheme plus a Richardson extrapolation provides similar results to a fourth-order integration scheme. The proper numerical description of the Brunt-Vaisala frequency in the equilibrium model is also critical for some modes. An unexpected result of this study is the high sensitivity of the frequency differences to the inconsistent use of values of the gravitational constant (G) in the oscillation codes, within the range of the experimentally determined ones, which differ from the value used to compute the equilibrium model.Comment: 18 pages, 34 figure

    Potential of Endangered Local Donkey Breeds in Meat and Milk Production

    Get PDF
    The problem of the erosion of animal genetic resources is evident in certain local donkey breeds, and their long-term sustainability can be achieved by economically repositioning them. To develop alternative and sustainable commercial programs, the meat and milk production characteristics of Istrian donkey and Littoral Dinaric donkey breeds were investigated. The meat production characteristics were examined in mature males, whose carcasses were dissected, and meat composition was determined using NIT spectrophotometry and gas chromatography. Milk yield and milk composition were determined in jennies in second or subsequent lactations by measuring milk volume and using infrared spectrometry and gas chromatography. Compared to the Littoral Dinaric donkey, the Istrian donkey has a higher carcass weight and dressing percentage (p < 0.001). The share of boneless meat in relation to live weight was 28.27% in the Istrian donkey and 26.18% in the Littoral Dinaric donkey. The absolute masses of primal cuts of meat in E, I, and II classes were significantly greater in Istrian donkeys than in Littoral Dinaric donkeys (p < 0.01), although the differences in the proportions of primal cuts were not significant. The breed did not have a significant impact on the color, pH, or meat composition. A significant influence of breed on milk yield, lactose, protein, and the fat content of milk was observed (p < 0.01). A significant influence of breed on the ratio of n-6/n-3 PUFA fatty acids in donkey milk was observed (p = 0.002). The values of the atherogenic and thrombogenic indexes were favorable, considering potential beneficial effects of donkey milk and meat on consumer health. The findings of this research suggest that local donkey breeds hold significant potential for meat and milk production, focusing on the uniqueness and quality of their products rather than the quantity of meat and milk they can produce

    Solar-like oscillations in low-luminosity red giants: first results from Kepler

    Get PDF
    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.Comment: accepted by ApJ Letters, to appear in special Kepler issue. Updated reference

    Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler Mission

    Get PDF
    We use asteroseismic data obtained by the NASA Kepler Mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in a survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures were available for the entire ensemble from complementary photometry; spectroscopic estimates of T_eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. [Abbreviated version... see paper for full abstract.]Comment: Accepted for publication in ApJS; 90 pages, 22 figures, 6 tables. Units on rho in tables now listed correctly as rho(Sun

    Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions

    Full text link
    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly correlated "instantaneous" emission of up to four electrons is triggered by a recollisional electron impact, whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a major role. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure
    corecore