161 research outputs found

    Behavioral Interactions Of Opioid Agonists And Antagonists With Serotonergic Systems

    Get PDF
    Morphine interacts with brain serotonergic (5-HT) systems; these systems have been implicated in morphine analgesia and dependence (see Cervo et al., 1981). The 5-HT agonist quipazine induces analgesia in rats that is attenuated by naloxone and 5-HT antagonists (Minnema et al., 1980; Samanin et al., 1976). Behavioral disruption by the hallucinogens LSD, DMT and mescaline, mediated primarily through brain 5-HT effects (Rech and Commissaris, 1982), is potentiated by naloxone and naltrexone (Commissaris et al., 1980; Ruffing and Domino, 1981) and is variably antagonized or potentiated by morphine and methadone (Ruffing and Domino, 1981). Cyclazocine causes a disruption of operant behavior similar to that of the hallucinogens which is reversed in part by nalozone and the 5-HT antagonist metergoline, and to a greater extent by the combination of maloxone and metergoline (Henck et al., 1983). These studies indicate that indole and phenethylamine hallucinogens interact to some extent with brain opioid mechanisms as well as brain 5-HT components, whereas opioid drugs influence behavior in part by actions on 5-HT systems. We have extended these drug studies in an attempt to characterize interactions with 5-HT mechanisms and to identify the various types of opioid receptors involved

    DNA transport by a micromachined Brownian ratchet device

    Get PDF
    We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single nucleotide polymorphisms.Comment: Latex: 8 pages, 4 figure

    Single-cell sequencing of the human midbrain reveals glial activation and a neuronal state specific to Parkinson's disease

    Get PDF
    Parkinson's disease (PD) etiology is associated with genetic and environmental factors that lead to a loss of dopaminergic neurons. However, the functional interpretation of PD-associated risk variants and how other midbrain cells contribute to this neurodegenerative process are poorly understood. Here, we profiled >41,000 single-nuclei transcriptomes of postmortem midbrain tissue from 6 idiopathic PD (IPD) patients and 5 matched controls. We show that PD-risk variants are associated with glia- and neuron-specific gene expression patterns. Furthermore, Microglia and astrocytes presented IPD-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. IPD-microglia revealed a specific pro-inflammatory trajectory. Finally, we discovered a neuronal cell cluster exclusively present in IPD midbrains characterized by CADPS2 overexpression and a high proportion of cycling cells. We conclude that elevated CADPS2 expression is specific to dysfunctional dopaminergic neurons, which have lost their dopaminergic identity and unsuccessful attempt to re-enter the cell cycle

    Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    Get PDF
    International audienceStacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene

    Large area molybdenum disulphide-epitaxial graphene vertical Van der Waals heterostructures

    Get PDF
    International audienceTwo-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design

    New form discovery for the analgesics flurbiprofen and sulindac facilitated by polymer-induced heteronucleation

    Full text link
    The selection and discovery of new crystalline forms is a longstanding issue in solid-state chemistry of critical importance because of the effect molecular packing arrangement exerts on materials properties. Polymer-induced heteronucleation has recently been developed as a powerful approach to discover and control the production of crystal modifications based on the insoluble polymer heteronucleant added to the crystallization solution. The selective nucleation and discovery of new crystal forms of the well-studied pharmaceuticals flurbiprofen (FBP) and sulindac (SUL) has been achieved utilizing this approach. For the first time, FBP form III was produced in bulk quantities and its crystal structure was also determined. Furthermore, a novel 3:2 FBP:H 2 O phase was discovered that nucleates selectively from only a few polymers. Crystallization of SUL in the presence of insoluble polymers facilitated the growth of form I single crystals suitable for structure determination. Additionally, a new SUL polymorph (form IV) was discovered by this method. The crystal forms of FBP and SUL are characterized by Raman and FTIR spectroscopies, X-ray diffraction, and differential scanning calorimetry. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2978–2986, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57336/1/20954_ftp.pd

    Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state

    Get PDF
    Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease etiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease employing the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of postmortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabeling of the same tissues. Moreover, we analyzed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in IPD midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signaling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease-microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB, and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signaling and immunomodulatory treatments in Parkinson's disease

    Fizikokemijska karakterizacija čvrstih disperzijskih sustava tadalafila s poloksamerom 407

    Get PDF
    Dissolution behaviour of a poorly water-soluble drug, tadalafil, from its solid dispersion systems with poloxamer 407 has been investigated. Solid dispersion systems of tadalafil were prepared with poloxamer 407 in 1:0.5, 1:1.5 and 1:2.5 ratios using the melting method. Characterization of binary systems with FTIR and powder XRPD studies demonstrated the presence of strong hydrogen bonding interactions, a significant decrease in crystallinity and the possibility of existence of amorphous entities of the drug. In the binary systems tested, 1:0.5 proportion of tadalafil/poloxamer 407 showed rapid dissolution of tadalafil (DE30 70.9 ± 3.6 %). In contrast, higher proportions of poloxamer 407 (1:1.5 and 1:2.5) offered no advantage towards dissolution enhancement of the drug from corresponding binary systems indicating altered rheological characteristics of the polymer, at its higher concentration, which might have retarded the release rate of tadalafil.U radu je ispitivano oslobađanje u vodi teško topljivog lijeka tadalafila iz čvrstih disperzijskih sustava. Ti sustavi pripravljeni su s poloksamerom 407 u omjeru lijeka i polimera 1:0,5, 1:1,5 i 1:2,5, koristeći metodu taljenja. Karakterizacija binarnih sustava s FTIR i rendgenskom difrakcijom praha XRD ukazuje na prisutnost snažnih vodikovih veza, značajno smanjenje kristaliničnosti i moguću prisutnost amorfnog lijeka. Iz binarnog sustava tadalafil/poloksamer 1:0,5 oslobađanje ljekovite tvari je brzo (DE30 70,9 ± 3,6 %). Nasuprot tome, iz pripravaka s višim omjerima lijeka i polimera (1:1,5 i 1:2,5) oslobađanje ljekovite tvari nije povećano. Usporavanje oslobađanja tadalafila moglo bi biti posljedicom promjene reoloških svojstava polimera pri višim koncentracijama
    corecore