26 research outputs found

    Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    Get PDF
    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

    Get PDF
    During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain

    DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans

    Get PDF
    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has ?, ? and ? subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory ? subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ?75% of total ? subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 ? subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ? subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved

    Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in C. elegans

    No full text
    Anatomically and functionally defined neuron types are sometimes further classified into individual subtypes based on unique functional or molecular properties. To better understand how developmental programs controlling neuron type specification are mechanistically linked to programs controlling neuronal subtype specification, we have analyzed a neuronal subtype specification program that occurs across the left/right axis in the nervous system of the nematode C. elegans. A terminal selector transcription factor, CHE-1, is required for the specification of the ASE neuron class, and a gene regulatory feedback loop of transcription factors and miRNAs is required to diversify the two ASE neurons into an asymmetric left and right subtype (ASEL and ASER). However, the link between the CHE-1-dependent ASE neuron class specification and the ensuing left-right subtype specification program is poorly understood. We show here that CHE-1 has genetically separable functions in controlling bilaterally symmetric ASE neuron class specification and the ensuing left-right subtype specification program. Both neuron class specification and asymmetric subclass specification depend on CHE-1-binding sites (`ASE motifs') in symmetrically and asymmetrically expressed target genes, but in the case of asymmetrically expressed target genes, the activity of the ASE motif is modulated through a diverse set of additional cis-regulatory elements. Depending on the target gene, these cis-regulatory elements either promote or inhibit the activity of CHE-1. The activity of these L/R asymmetric cis-regulatory elements is indirectly controlled by che-1 itself, revealing a feed-forward loop configuration in which che-1 restricts its own activity. Relative binding affinity of CHE-1 to ASE motifs also depends on whether a gene is expressed bilaterally or in a left/right asymmetric manner. Our analysis provides insights into the molecular mechanisms of neuronal subtype specification, demonstrating that the activity of a neuron type-specific selector gene is modulated by a variety of distinct means to diversify individual neuron classes into specific subclasses. It also suggests that feed-forward loop motifs may be a prominent feature of neuronal diversification events
    corecore