251 research outputs found

    Efficient Exploration of the Space of Reconciled Gene Trees

    Get PDF
    Gene trees record the combination of gene level events, such as duplication, transfer and loss, and species level events, such as speciation and extinction. Gene tree-species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree-species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of trees. We implement ALE in the context of a reconciliation model, which allows for the duplication, transfer and loss of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic topologies, branch lengths and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with 24%, 59% and 46% percent reductions in the mean numbers of duplications, transfers and losses.Comment: Manuscript accepted pending revision in Systematic Biolog

    The inference of gene trees with species trees

    Get PDF
    Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can co-exist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice-versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. In this article we review the various models that have been used to describe the relationship between gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a better basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution.Comment: Review article in relation to the "Mathematical and Computational Evolutionary Biology" conference, Montpellier, 201

    Genome-scale phylogenetic analysis finds extensive gene transfer among Fungi

    Get PDF
    Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis we compare the dynamics of genome evolution in two groups of organisms: Cyanobacteria and Fungi. Ancestral genomes are inferred in both clades using two types of methods. First, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome. Second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss, and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of Fungi

    The inference of gene trees with species trees.

    Get PDF
    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution

    Horizontal Gene Transfer and the History of Life

    Get PDF
    Microbes acquire DNA from a variety of sources. The last decades, which have seen the development of genome sequencing, have revealed that horizontal gene transfer has been a major evolutionary force that has constantly reshaped genomes throughout evolution. However, because the history of life must ultimately be deduced from gene phylogenies, the lack of methods to account for horizontal gene transfer has thrown into confusion the very concept of the tree of life. As a result, many questions remain open, but emerging method- ological developments promise to use information conveyed by horizontal gene transfer that remains unexploited today

    Relative time constraints improve molecular dating

    Get PDF
    Dating the tree of life is central to understanding the evolution of life on Earth. Molecular clocks calibrated with fossils represent the state of the art for inferring the ages of major groups. Yet, other information on the timing of species diversification can be used to date the tree of life. This is the case for instance for horizontal gene transfer events and ancient coevolutionary relationships such as (endo)symbioses, which can imply temporal relationships between two nodes in a phylogeny (Davín et al. 2018). This can be particularly helpful when the geological record is sparse, e.g. for microorganisms, which represent the vast majority of extant and extinct biodiversity

    Horizontal Gene Transfer and the History of Life

    Full text link

    Hubungan Kadar Timbel dalam Darah dengan Kadar Hemoglobin dan Hematokrit pada Petugas Pintu Tol Jagorawi

    Get PDF
    A study on the association of lead in blood and haemoglobin and hematocrit value as a measure of anaemia among toll booth workers at Jagorawi Jakarta, has been conducted. The rational of the study is that high aerial lead content has been reported by the Jakarta environmental authority and health literature indicates that lead is toxic to human hemopoeitic system. The toll booth workers are exposed to air pollutants in their day to day work. One hundred workers, randomly selected, participated in the study. On the haemoglobin concentration, 12% of the study subjects were categorized as anaemia, while on hematocrit values 10% were considered as anaemia. Blood lead concentrations found in this study were 20,1 ± 1,1 (mean ± SD) μgr% and the maximum value was 22,9μgr%. The haemoglobin values were 15,2 ± 1,5gr% with a minimum of 9,9gr%, while the hematocrit values were 45,2 ± 4,4% with a minimum of 30%. All blood lead values were above 10μgr% including 16 women of child-bearing age. In general, no association was found between blood lead and haemoglobin and hematocrit values. This discovery is in line with other studies which found that there is no meaningful association between blood lead and anaemia when the blood lead concentrations were below 40 μgr%
    corecore