1,120 research outputs found
Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies
We present an analysis of multifragmentation events observed in central Xe+Sn
reactions at Fermi energies. Performing a comparison between the predictions of
the Stochastic Mean Field (SMF) transport model and experimental data, we
investigate the impact of the compression-expansion dynamics on the properties
of the final reaction products. We show that the amount of radial collective
expansion, which characterizes the dynamical stage of the reaction, influences
directly the onset of multifragmentation and the kinematic properties of
multifragmentation events. For the same set of events we also undertake a shape
analysis in momentum space, looking at the degree of stopping reached in the
collision, as proposed in recent experimental studies. We show that full
stopping is achieved for the most central collisions at Fermi energies.
However, considering the same central event selection as in the experimental
data, we observe a similar behavior of the stopping power with the beam energy,
which can be associated with a change of the fragmentation mechanism, from
statistical to prompt fragment emission.Comment: 15 page
Evolution of the decay mechanisms in central collisions of + from = 8 to 29
Collisions of Xe+Sn at beam energies of = 8 to 29 and leading to
fusion-like heavy residues are studied using the INDRA multidetector.
The fusion cross section was measured and shows a maximum at = 18-20
. A decomposition into four exit-channels consisting of the number of
heavy fragments produced in central collisions has been made. Their relative
yields are measured as a function of the incident beam energy. The energy
spectra of light charged particles (LCP) in coincidence with the fragments of
each exit-channel have been analyzed. They reveal that a composite system is
formed, it is highly excited and first decays by emitting light particles and
then may breakup into 2- or many- fragments or survives as an evaporative
residue. A quantitative estimation of this primary emission is given and
compared to the secondary decay of the fragments. These analyses indicate that
most of the evaporative LCP precede not only fission but also breakup into
several fragments.Comment: Invited Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Pseudo-critical clusterization in nuclear multifragmentation
In this contribution we show that the biggest fragment charge distribution in
central collisions of Xe+Sn leading to multifragmentation is an admixture of
two asymptotic distributions observed for the lowest and highest bombarding
energies. The evolution of the relative weights of the two components with
bombarding energy is shown to be analogous to that observed as a function of
time for the largest cluster produced in irreversible aggregation for a finite
system. We infer that the size distribution of the largest fragment in nuclear
multifragmentation is also characteristic of the time scale of the process,
which is largely determined by the onset of radial expansion in this energy
range.Comment: 4 pages, 3 figures, Contribution to conference proceedings of the
25th International Nuclear Physics Conference (INPC 2013
Freeze-out volume in multifragmentation - dynamical simulations
Stochastic mean-field simulations for multifragmenting sources at the same
excitation energy per nucleon have been performed. The freeze-out volume, a
concept which needs to be precisely defined in this dynamical approach, was
shown to increase as a function of three parameters: freeze-out instant,
fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200
New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions
A previous analysis of the charge (Z) correlations in the
plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the
production of equally sized fragments (low ) which was interpreted as
an evidence for spinodal decomposition. However the signal is weak and rises
the question of the estimation of the uncorrelated yield. After a critical
analysis of its robustness, we propose in this paper a new technique to build
the uncorrelated yield in the charge correlation function. The application of
this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not
show any particular enhancement of the correlation function in any
bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor
changes. To appear in Nuclear Physics
Sequential fissions of heavy nuclear systems
In Xe+Sn central collisions from 12 to 20 MeV/A measured with the INDRA
4 multidetector, the three-fragment exit channel occurs with a significant
cross section. In this contribution, we show that these fragments arise from
two successive binary splittings of a heavy composite system. Strong Coulomb
proximity effects are observed in the three-fragment final state. By comparison
with Coulomb trajectory calculations, we show that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
compatible with quasi-simultaneous multifragmentation above 18 MeV/A.Comment: 6 pages, 5 figures, contribution to conference proceedings of the
Fifth International Workshop on Nuclear fission and Fission-Product
Spectroscop
Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions
Fragment properties of hot fragmenting sources of similar sizes produced in
central and semi-peripheral collisions are compared in the excitation energy
range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact
quasi-projectiles sources in velocity space similar to those of fused systems
(central collisions) is proposed. The two major results are related to
collective energy. The weak radial collective energy observed for
quasi-projectile sources is shown to originate from thermal pressure only. The
larger fragment multiplicity observed for fused systems and their more
symmetric fragmentation are related to the extra radial collective energy due
to expansion following a compression phase during central collisions. A first
attempt to locate where the different sources break in the phase diagram is
proposed.Comment: 23 pages submitted to NP
MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES
A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident
- âŠ