343 research outputs found
N-TERMINAL PROCESSING OF RIBOSOMAL PROTEIN L27 IN STAPHYLOCOCCUS AUREUS
The bacterial ribosome is essential to cell growth yet little is known about how its proteins attain their mature structures. Recent studies indicate that certain Staphlyococcus aureus bacteriophage protein sequences contain specific sites that may be cleaved by a non-bacteriophage enzyme (Poliakov et al. 2008). The phage cleavage site was found to bear sequence similarity to the N-terminus of S. aureus ribosomal protein L27. Previous studies in E. coli (Wower et al.1998; Maguire et al. 2005) found that L27 is situated adjacent to the ribosomal peptidyl transferase site, where it likely aids in new peptide formation. The predicted S. aureus L27 protein contains an additional N-terminal sequence not observed within the N-terminus of the otherwise similar E. coli L27; this sequence appears to be cleaved, indicating yet-unobserved ribosomal protein post-translational processing and use of host processes by phage. Phylogenetic analysis shows that L27 processing has the potential to be highly conserved. Further study of this phenomenon may aid antibiotic development
Interactomics-Based Functional Analysis: Using Interaction Conservation To Probe Bacterial Protein Functions
The emergence of genomics as a discrete field of biology has changed humanityās understanding of our relationship with bacteria. Sequencing the genome of each newly-discovered bacterial species can reveal novel gene sequences, though the genome may contain genes coding for hundreds or thousands of proteins of unknown function (PUFs). In some cases, these coding sequences appear to be conserved across nearly all bacteria. Exploring the functional roles of these cases ideally requires an integrative, cross-species approach involving not only gene sequences but knowledge of interactions among their products. Protein interactions, studied at genome scale, extend genomics into the field of interactomics. I have employed novel computational methods to provide context for bacterial PUFs and to leverage the rich genomic, proteomic, and interactomic data available for hundreds of bacterial species.
The methods employed in this study began with sets of protein complexes. I initially hypothesized that, if protein interactions reveal protein functions and interactions are frequently conserved through protein complexes, then conserved protein functions should be revealed through the extent of conservation of protein complexes and their components. The subsequent analyses revealed how partial protein complex conservation may, unexpectedly, be the rule rather than the exception. Next, I expanded the analysis by combining sets of thousands of experimental protein-protein interactions. Progressing beyond the scope of protein complexes into interactions across full proteomes revealed novel evolutionary consistencies across bacteria but also exposed deficiencies among interactomics-based approaches. I have concluded this study with an expansion beyond bacterial protein interactions and into those involving bacteriophage-encoded proteins.
This work concerns emergent evolutionary properties among bacterial proteins. It is primarily intended to serve as a resource for microbiologists but is relevant to any research into evolutionary biology. As microbiomes and their occupants become increasingly critical to human health, similar approaches may become increasingly necessary
Protein Complexes in Bacteria
Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometrycharacterized protein complexes with the 285 āgold standardā protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 āgold standardā protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial āmodelā species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies
Bacterial protein meta-interactomes predict cross-species interactions and protein function
Background Protein-protein interactions (PPIs) can offer compelling evidence for protein function, especially when viewed in the context of proteome-wide interactomes. Bacteria have been popular subjects of interactome studies: more than six different bacterial species have been the subjects of comprehensive interactome studies while several more have had substantial segments of their proteomes screened for interactions. The protein interactomes of several bacterial species have been completed, including several from prominent human pathogens. The availability of interactome data has brought challenges, as these large data sets are difficult to compare across species, limiting their usefulness for broad studies of microbial genetics and evolution. Results In this study, we use more than 52,000 unique protein-protein interactions (PPIs) across 349 different bacterial species and strains to determine their conservation across data sets and taxonomic groups. When proteins are collapsed into orthologous groups (OGs) the resulting meta-interactome still includes more than 43,000 interactions, about 14,000 of which involve proteins of unknown function. While conserved interactions provide support for protein function in their respective species data, we found only 429 PPIs (~1% of the available data) conserved in two or more species, rendering any cross-species interactome comparison immediately useful. The meta-interactome serves as a model for predicting interactions, protein functions, and even full interactome sizes for species with limited to no experimentally observed PPI, including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 31,000 PPIs, respectively. Conclusions In the course of this work, we have assembled cross-species interactome comparisons that will allow interactomics researchers to anticipate the structures of yet-unexplored microbial interactomes and to focus on well-conserved yet uncharacterized interactors for further study. Such conserved interactions should provide evidence for important but yet-uncharacterized aspects of bacterial physiology and may provide targets for anti-microbial therapies
Pembagian Harta Warisan dalam Masyarakat Minangkabau di Kecamatan Medan Area Kelurahan Tegal Sari III Kota Medan
The change in the inheritance law of Minangkabau was identified by the agreement among ninik mamak (clan heads), cerdik pandai (the intellectuals), and generasi muda (the youth) in Bukittinggi in 1952. The agreement was strengthened by the seminar on the Minangkabau Customary Law in Padang in 1968. One of the clause was that joint property inherited by heirs had to comply with Faraid (religious obligation). The out-migrated Minangkabau community creates acculturation which influences their way of perception and thinking. Based on this background, the researcher studied the distribution of inheritance among the out-migrated Minangkabau community The Distribution of inheritance in the Minangkabau community at Kelurahan Tegal Sari III, Medan Area Subdistrict, Medan, is based on the Islamic Law. The factors of compliance and piety will cause customary law to be avoided. The change in heritance law can also accurs because of the factors of necessities of life
Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference
There has been a steady need in the medical community to precisely extract
the temporal relations between clinical events. In particular, temporal
information can facilitate a variety of downstream applications such as case
report retrieval and medical question answering. Existing methods either
require expensive feature engineering or are incapable of modeling the global
relational dependencies among the events. In this paper, we propose a novel
method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic
Regularization and Global Inference (CTRL-PG) to tackle the problem at the
document level. Extensive experiments on two benchmark datasets, I2B2-2012 and
TB-Dense, demonstrate that CTRL-PG significantly outperforms baseline methods
for temporal relation extraction.Comment: 10 pages, 4 figures, 7 tables, accepted by AAAI 202
Symmetrized mean-field description of magnetic instabilities in k-(BEDT-TTF)_2Cu[N(CN)]_2 Y salts
We present a novel and convenient mean-field method, and apply it to study
the metallic/antiferromagnetic interface of k-(BEDT-TTF)_2Cu[N(CN)]_2 Y organic
superconductors (BEDT_TTF is bis-ethylen-dithio-tetrathiafulvalene, Y=Cl, Br).
The method, which fully exploits the crystal symmetry, allows one to obtain the
mean-field solution of the 2D Hubbard model for very large lattices, up to
6x10^5 sites, yielding a reliable description of the phase boundary in a wide
region of the parameter space. The metal/antiferromagnet transtion appears to
be second order, except for a narrow region of the parameter space, where the
transition is very sharp and possibly first order. The cohexistence of metallic
and antiferromagnetic properties is only observed for the transient state in
the case of smooth second order transitions. The relevance of the present
resaults to the complex experimental behavior of centrosymmetric k-phase
BEDT-TTF salts is discussed.Comment: 9 pages in PS format, 7 figures (included in PS), 1 tabl
Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease,using transposonaided capture (TRACA)
The human oral cavity is host to a complex microbial community estimated to comprise > 700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated
- ā¦