
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2016

Interactomics-Based Functional Analysis: Using Interaction Interactomics-Based Functional Analysis: Using Interaction

Conservation To Probe Bacterial Protein Functions Conservation To Probe Bacterial Protein Functions

J. Harry Caufield
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Bioinformatics Commons, and the Other Microbiology Commons

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4580

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarscompass.vcu.edu%2Fetd%2F4580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/54?utm_source=scholarscompass.vcu.edu%2Fetd%2F4580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4580?utm_source=scholarscompass.vcu.edu%2Fetd%2F4580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

INTERACTOMICS-BASED FUNCTIONAL ANALYSIS: USING INTERACTION
CONSERVATION TO PROBE BACTERIAL PROTEIN FUNCTIONS

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

by

J. Harry Caufield
Master of Science, Virginia Commonwealth University, 2012

Bachelor of Science, University of Delaware, 2008

Director: Peter H. Uetz, PhD
Associate Professor, Center for the Study of Biological Complexity,

VCU Life Sciences

Virginia Commonwealth University
Richmond, Virginia
December, 2016

i

ACKNOWLEDGEMENTS

I would like to thank my parents, my sister, my extended family, Danielle, my

friends, the University, my advisor, my lab, my committee, and millions of

generations of mammalian evolution for their assistance with this work and my

well-being.

ii

TABLE OF CONTENTS

Page Number

List of Tables..v
List of Figures...vii
List of Abbreviations... ix
Abstract..1
1. Introduction..3
 1.1 Background..3
 1.1.1 The challenge of finding protein function...3
 1.1.2 Interactomics as an approach to defining protein function...............................5
 1.1.3 Protein complexes: the stable products of protein interactions......................11
 1.1.4 Interactomics of bacteriophages and their hosts..14
 1.2 Research objectives...15
 1.2.1 Addressing protein function through protein interaction networks..................15
 1.2.2 Measuring the extent of protein complex conservation..................................17
 1.2.3 Using a meta-interactome to find commonalities between interactomes.......18
 1.2.4 Building a set of phage-host interactions to compare viral proteins...............18
 1.3 Project design and rationale...19
 1.4 Intellectual merit...24
 1.5 Broader impact...25
2. Conservation of Proteins in Bacterial Protein Complexes...28
 2.1 Abstract..28
 2.2 Introduction...29
 2.2.1 The challenge of plentiful protein interaction data..29
 2.2.2 Extending interaction analysis across species...32
 2.3 Experimental methods..35
 2.3.1 Scripts...35
 2.3.2 Genome and complex data sources..36
 2.3.3 Orthologous groups...37
 2.3.4 Comparative proteome and complexome analysis..38
 2.3.5 Protein complex interaction network assembly..46
 2.4 Results and discussion...46
 2.4.1 Conservation of proteins across bacterial genomes......................................46
 2.4.2 The protein complexomes of E. coli and Mycoplasma pneumoniae..............52
 2.4.3 Using protein complexomes to predict complexes conserved in other species
...57
 2.4.4 Protein complexes and their essentiality are poorly conserved in bacteria....63
 2.4.5 The E. coli protein complexome as a model for other species.......................74
 2.4.6 Essentiality of proteins in complexes and the impact of paralogy..................81

iii

 2.4.7 Proteins of unknown function...89
 2.4.8 Flexibility of protein complexes..94
 2.4.9 Further discussion...102
3. Conservation of Protein-Protein Interactions among Bacteria..................................106
 3.1 Abstract..106
 3.2 Introduction...107
 3.3 Experimental methods..113
 3.3.1 PPI detection assay comparisons..113
 3.3.2 Literature mining for citation analysis...115
 3.3.3 Protein interaction data sets..116
 3.3.4 Construction of meta-interactome networks...117
 3.3.5 Interactome size prediction..120
 3.3.6 Functional annotation..121
 3.4 Results and discussion...122
 3.4.1 The bacterial meta-interactome resembles individual interactomes in structure
...122
 3.4.2 Functional annotation of orthologous groups and their conservation...........129
 3.4.3 The meta-interactome predicts interactomes and their size.........................134
 3.4.4 Biological differences vs. technical differences in interactomes...................138
 3.4.5 Meta-interactomes reveal broadly-conserved interactions involving proteins of
unknown function...140
 3.4.6 Interactomes are impacted by high-throughput experimental methods........145
 3.4.7 Further discussion...152
4. Assessing Bacterial Protein Function using Bacteriophage Proteins........................155
 4.1 Abstract..155
 4.2 Introduction...156
 4.2.1 Microbiology in the context of bacteriophage interactions............................156
 4.2.2 Extending interaction analysis to viral proteins..157
 4.3 Experimental methods..158
 4.3.1 Data curation and data set assembly...158
 4.3.2 Mycobacteriophage Giles protein-protein interactome.................................161
 4.3.3 Data analysis...164
 4.4 Results and discussion...164
 4.4.1 An example of phage protein interactions from Mycobacteriophage Giles...164
 4.4.2 A curated set of phage-host PPI..170
 4.4.3 A network and meta-network analysis of phage-host PPI............................174
 4.4.4 Phage-host PPI involve broadly-conserved protein complex components...178
 4.4.5 Additional discussion and future work..184
5. Conclusions..186
 5.1 Protein complexes are irregularly conserved across divergent bacterial species
...186
 5.2 A protein-protein meta-interactome provides context for conserved interactions 186

iv

 5.3 A curated set of phage-host protein interactions provides a starting point for
phage-host interactome screens..187
 5.3 Future work..187
References...190
Vita...204
APPENDIX I. Guide to spicednog..205
 I.I. User’s guide to spicednog...205
 I.I.I Setup..205
 I.I.II Running spicednog..206
 I.I.III Running accessory scripts..207
 I.II. Code...209
 I.II.I spicednog.py...209
 I.II.II spicednog-convert.py...214
 I.II.III spicednog-marshmallow.py...216
 I.II.IV ConToComplexCon.py..218
APPENDIX II. Guide to network_umbra...220
 II.I. User’s guide to network_umbra..220
 II.I.I Setup...220
 II.I.II Running Network_umbra..221
 II.II. Code..226
 II.II.I Network_umbra.py...226
 II.II.II proteins_umbra.py...265
APPENDIX III. Additional data tables for Chapter 2..283
APPENDIX IV. Additional data tables for Chapter 3..305
APPENDIX V. Additional data table for Chapter 4...311

v

TABLES

Page Number

1-A. A selection of published, comprehensive protein-protein interactomes.....................8
2-A. Core set of bacterial species and strains with published essentiality screen results.
...37
2-B. List of general functional categories used to describe protein complex function.....45
2-C. Hu et al. (2009) E. coli protein complexes and the best matches among EcoCyc E.
coli protein complexes..79
3-A. Experimental microbial interactome sizes...107
3-B. Set of comprehensive bacterial protein interactome studies used for citation
analysis..115
3-C. Reference proteomes used for interactome size prediction..................................121
3-D. Functional categories used to describe orthologous groups of bacterial proteins. 121
3-E. Predicted bacterial interactome sizes...135
3-F. Conserved interactions involving selected OGs of unclear function.......................141
4-A. Descriptive statistics of the phage-host protein interaction data set......................171
APPENDIX III-A. Average conservation of loci and orthologous groups across numerous
bacterial species...283
APPENDIX III-B. Average conservation of orthologous groups among protein complex
components..284
APPENDIX III-C. Conservation of orthologous groups and protein-coding loci between
pairs of model bacterial species...285
APPENDIX III-D. Key to short protein complex IDs..286
APPENDIX III-E. Conservation of E. coli complexes from Hu et al. (2009)...................290
APPENDIX III-F. Essentiality of E. coli complexes from Hu et al. (2009)......................291
APPENDIX III-G. Conservation of E. coli complexes from EcoCyc..............................292
APPENDIX III-H. Essentiality of E. coli complexes from EcoCyc..................................293
APPENDIX III-I. Conservation of Mycoplasma pneumoniae complexes from Kühner et
al. (2009)..294
APPENDIX III-J. Essentiality of Mycoplasma pneumoniae complexes from Kühner et al.
(2009)...295
APPENDIX III-K. Experimental protein complexes containing uncharacterized
components..296
APPENDIX III-L. Complex-based protein-protein interactions for E. coli......................304
APPENDIX IV-A. Counts of literature citing multiple bacterial interactomes.................305
APPENDIX IV-B. All interactions in the meta-interactome network...............................308
APPENDIX IV-C. All interactions in the consensus meta-interactome network.............309
APPENDIX IV-D. Conserved interactions of unclear function.......................................310
APPENDIX V-A. Interactions between bacteriophage and bacterial proteins...............311

vi

APPENDIX V-B. Citations for phage-host protein interaction sources..........................313

vii

FIGURES

Page Number

1-A. Concept of the interactome...6
1-B. Example interactomes from modeled and experimental data..................................10
1-C. Example interactomes from experimental data and interactors common between
them...13
1-D. Flow chart of core elements of this study..22
2-A. Structure of the proteasome and interactions across five non-bacterial species.....34
2-B. Example of fractional conservation value assignment...40
2-C. Example of protein complex size determination..42
2-D. Protein complexes are enriched for highly conserved components........................48
2-E. Protein complex data sets vary in composition...54
2-F. Histogram of Kühner et al. M. pneumoniae complexes and average conservation
fractions..58
2-G. Protein complex sets vary in conservation across bacteria.....................................61
2-H. Examples of protein complex conservation across bacteria....................................65
2-I. Fractional essentiality and conservation of protein complexes across species........68
Image2...69
2-J. All EcoCyc complexes and their fractional conservation in selected bacterial
species...69
2-K. All EcoCyc complexes and their fractional essentiality in selected bacterial species.
...71
2-L. E. coli complex conservation across Bacteria corresponds to taxonomic boundaries.
...76
2-M. E. coli experimentally-observed complex conservation across bacteria corresponds
to taxonomic boundaries..80
2-N. Conserved complex components are enriched for essential proteins.....................83
2-O. Cross-species conservation of experimentally-observed protein complexes and the
sums of the counts of potential paralogs of their components..86
2-P. Essentiality of proteins in complexes...88
2-Q. Protein complexes are rich in highly-conserved proteins of unknown function.......90
2-R. Interaction network of E. coli protein complexes...93
2-S. All EcoCyc complexes and their fractional conservation in selected strains of E. coli
and Shigella...98
2-T. Predicted protein complexes in H. pylori..101
3-A. Analysis of citations of bacterial protein interactome literature..............................110
3-B. Concept and construction of the meta-interactome...119
3-C. Composition of the meta-interactome...125
3-D. Overall structure of the main component of the consensus meta-interactome......126

viii

3-E. Properties of the consensus meta-interactome...127
3-F. Conserved interactions in the consensus meta-interactome..................................131
3-G. Cross-functional interactions in the consensus meta-interactome........................133
3-H. Predictions of maximal interactome size...137
3-I. The NDH-1 complex as an example of conserved interactions..............................144
3-J. Composition of the meta-interactome by interaction detection method..................147
3-K. A comparison of high-throughput yeast two hybrid screens..................................149
4-A. The mycobacteriophage Giles interactome...166
4-B. Composition of the observed phage vs. host protein-protein interactions by phage
or host..173
4-C. The network of phage vs. host protein-protein interactions...................................175
4-D. The meta-network of multiple-incidence phage vs. host protein-protein interactions.
...177
4-E. The meta-network of phage protein vs. host complex interactions........................181
A1. The initial spicednog prompt..206
A2. The results of a spicednog search...206
A3. The results of an example spicednog-convert.py search..208
A4. The results of an example spicednog-marshmallow.py search..............................208
A5. The network-umbra menu seen after meta-interactome construction.....................221
A6. Using network-umbra to retrieve a proteome...224
A7. Example of interactome prediction process..225

ix

ABBREVIATIONS

3-AT 3-Amino-1,2,4-triazole

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

DNA Deoxyribonucleic acid

Mb Megabase (one million base pairs) of DNA

OG Orthologous Group

ORF Open Reading Frame

PPI Protein-Protein Interaction

PUF Protein of Unknown Function

RNA Ribonucleic acid

Y2H Yeast Two Hybrid

ABSTRACT

INTERACTOMICS-BASED FUNCTIONAL ANALYSIS: USING INTERACTION
CONSERVATION TO PROBE BACTERIAL PROTEIN FUNCTIONS

By J. Harry Caufield, M.S.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Major Director: Peter H. Uetz, PhD
Associate Professor, Center for the Study of Biological Complexity,

VCU Life Sciences

The emergence of genomics as a discrete field of biology has changed humanity’s

understanding of our relationship with bacteria. Sequencing the genome of each newly-

discovered bacterial species can reveal novel gene sequences, though the genome

may contain genes coding for hundreds or thousands of proteins of unknown function

(PUFs). In some cases, these coding sequences appear to be conserved across nearly

all bacteria. Exploring the functional roles of these cases ideally requires an integrative,

cross-species approach involving not only gene sequences but knowledge of

interactions among their products. Protein interactions, studied at genome scale, extend

genomics into the field of interactomics. I have employed novel computational methods

to provide context for bacterial PUFs and to leverage the rich genomic, proteomic, and

interactomic data available for hundreds of bacterial species.

The methods employed in this study began with sets of protein complexes. I initially

hypothesized that, if protein interactions reveal protein functions and interactions are

1

frequently conserved through protein complexes, then conserved protein functions

should be revealed through the extent of conservation of protein complexes and their

components. The subsequent analyses revealed how partial protein complex

conservation may, unexpectedly, be the rule rather than the exception. Next, I expanded

the analysis by combining sets of thousands of experimental protein-protein

interactions. Progressing beyond the scope of protein complexes into interactions

across full proteomes revealed novel evolutionary consistencies across bacteria but

also exposed deficiencies among interactomics-based approaches. I have concluded

this study with an expansion beyond bacterial protein interactions and into those

involving bacteriophage-encoded proteins.

This work concerns emergent evolutionary properties among bacterial proteins. It is

primarily intended to serve as a resource for microbiologists but is relevant to any

research into evolutionary biology. As microbiomes and their occupants become

increasingly critical to human health, similar approaches may become increasingly

necessary.

2

DISSERTATION

Chapter 1 – Introduction

1.1 Background

1.1.1 The challenge of finding protein function

Bacteria are ubiquitous, diverse, and constantly subject to genetic flux at a colossal

scope. Despite more than 150 years of research since the emergence of modern

microbiology, many of the intricate components and processes within even well-studied

bacterial species remain mysterious. Even E. coli, the microbiologist’s workhorse,

contains a genome with more than a thousand open reading frames of unclear function.

Identifying the roles, regulation, and interactions of microbial proteins depends upon a

combination of comparison to known, conserved phenomena and experimental

analysis. The latter approach has not been able to keep pace with the constant influx of

genome and proteome data: fewer than 1% of protein sequences have functional

annotations from experimental results (Erdin et al. 2011). The NCBI RefSeq database

contained more than 50 million entries for bacterial proteins alone as of June 2016,

suggesting that the functions of more than 49 million proteins have not been

experimentally determined or even investigated.

The issue of defining protein function is not simply an issue of staggeringly large

numbers. Meaningful associations between proteins may only emerge once proteins are

3

placed in their functional context, though this context may include dozens of other

proteins. Recent developments in genome sequencing and high-throughput proteomics

have been employed to address this issue. Additionally, a full understanding of proteins

of unknown function must be considered within the context of other species. E. coli

serves as an ideal model organism but provides just one, isolated genetic background.

The roles of many proteins may only emerge once microbiomes and cross-species

interactions are included in analyses. Confronting this issue therefore requires a

philosophical shift. We must unify methodological advancements with holistic, data-

aggregating approaches if we wish to illuminate the darker corners of bacterial

proteomes.

Unclear protein function is not a purely research-based concern. Numerous recent

microbiological studies have highlighted the tenuous relationships between humans and

the bacteria in our environment and have revealed how otherwise uncharacterized

proteins and cross-species interactions impact these relationships. Work by Zipperer et

al. (2016) showed that a commensal bacterial species found in the human nose,

Staphylococcus lugenensis, releases a peptide which can prevent colonization by

pathogenic Staphylococcus aureus and Enterococcus strains. A multi-faceted analysis

by Kamran et al. (2016) identified novel cell division-related proteins in the common

human pathogen Helicobacter pylori. A study by Wu et al. (2016) identified a previously-

unknown magnesium uptake protein and virulence factor in the virulent human

pathogen Francisella tularensis. These are just three examples of how a better

4

understanding of bacterial protein function – and especially a focus on proteins of

unknown function – can enhance understanding of common bacterial pathogens.

1.1.2 Interactomics as an approach to defining protein function

In this study, I leverage plentiful interactomics results using bioinformatics methods to

re-interpret the data and draw new conclusions about bacterial genomes and proteins.

Interactomics refers to the study of interactomes, where a single interactome is a further

level of complexity beyond a genome or proteome: while a genome is the set of all

genes in a genome and a proteome is the set of all proteins, an interactome is the set of

all protein-protein interactions (PPIs) among the members of a proteome. Interactomes

are frequently visualized and interpreted as graphs (Fig. 1-A). Like genomes and

proteomes, interactomes may be conceptually complete but functionally incomplete. A

protein present in nature but omitted from experimental observations of a proteome will

in turn be missing from an interactome and experimental screens performed to build an

interactome nearly always fail to detect some fraction of the true interactome.

Furthermore, the conceptual interactome is an abstraction, as the significance of a PPI

may vary between pairs or complexes of proteins. Even so, interactomics is a crucial

element of a modern, systems biology approach to microbiology and provides rich

context for informing protein function.

5

Fig. 1-A. Concept of the interactome. Each genome (shown here as a circle, with open reading frames
shown as colored boxes) codes for proteins that contribute to a proteome. The proteome, in turn, is the
source of the interactors in an interactome, as the interactome defines the set of interactions among
proteome members. All three concepts shown here are abstractions and may be incomplete for a
combination of biological and methodological reasons, e.g., a protein-coding sequence may exist in a
genome but may escape annotation or its product may not be detected in a purified proteome. As binary
protein-protein interactomes are usually determined using cloned open reading frames rather than
purified proteins, a protein not found in an experimentally-defined proteome may still be included in an
interactome, as is shown here.

6

Complete interactomes have been defined for a handful of species, most of them

microbial (Table 1-A). This table is not intended to be a complete listing of all

interactomes as this remains an active field. As shown in Fig. 1-A, a complete

experimental interactome is always some fraction of the true biological interactome for a

combination of natural and methodological reasons. Even a well-designed study of

numerous protein-protein interactions may therefore not be comprehensive if

researchers intentionally omit potential interactors. Some researchers have used the

term “interactome” to refer to other large sets of interaction screens, such as a study of

C. elegans proteins by Li et al. (2004). This study focused on 3,024 protein-coding

genes out of an estimated 17,800, or only ~17% genome coverage and likely less

coverage of the C. elegans proteome. In this work, I use the term “comprehensive” to

refer only to studies with at least ~60% proteome coverage.

Sets of microbial proteins serve as ideal subjects for interactomics studies: their

proteomes generally contain only a few thousand proteins rather than the potentially

more than 20 thousand proteins in the human proteome (Kim et al. 2014) without

counting protein variants or post-translational modifications. Single-celled organisms

also offer the benefit of comparatively few cell compartments; interactomes in higher

organisms may only make sense for each cell type. Comprehensive interactomes have

been published for more than nine microbial species, and in some cases, researchers

have also identified comprehensive sets of protein complexes (or, more simply, the

stable products of protein-protein interactions).

7

Table 1-A. A selection of published, comprehensive protein-protein interactomes.

Taxonomic
Superkingdom

Species Proteins in
Ref. Proteome

Complexes Binary
Interactions

Citation(s)

Bacteria Campylobacter jejuni 1,623 - 11,687 Parrish et al.
(2007)

E. coli 4,305 310* 2,234** *Hu et al.
(2009);
**Rajagopala et
al. (2014)

Helicobacter pylori 1,553 - 1,515 Häuser et al.
(2014)

Mesorhizobium loti 7,255 - 3,121 Shimoda et al.
(2008)

Mycobacterium
tuberculosis

3,991 - >8,000 Wang et al.
(2010)

Mycoplasma
pneumoniae

687 259 - Kühner et al.
(2009)

Synechocystis spp.
PCC 6803

3,507 - 3,236 Sato et al.
(2007)

Treponema pallidum 1,028 - 3,649 Titz et al. (2008)

Eukaryota Saccharomyces
cerevisiae

~3,500 – 6,700 491 - 547 10,000 –
30,000

Uetz et al.
(2000); Ito et al.
(2001);
Schwikowski et
al. (2000); Gavin
et al. (2005);
Krogan et al.
(2006)

Schizosaccharomyces
pombe

5,121 - 2,278 Vo et al. (2016)

Viruses Bacteriophage lambda 66 - 97 Rajagopala et al.
(2011)

Bacteriophage Giles 77 - 137 Mehla et al.
(2015)

Hepatitis E virus 3 (processed
into >11
fragments)

- 25 Osterman et al.
(2015)

“Proteins in Ref. Proteome” refers to the number of proteins in the specified proteome as defined by
Uniprot; individual studies may not include all proteins in their interaction screens.

8

It should be noted that the expected size of an interactome can be difficult to estimate

based only on the interactors involved. In a very simple network such as that defined by

a Barabási–Albert model (Albert and Barabási 2002) (Fig. 1-B-A), the overall structure

may appear similar to that of a protein interaction network in that it has a scale-free

degree distribution (Fig. 1-B-C). It fails to capture additional properties of an

experimental protein interactome such as that of E. coli (Fig. 1-B-B). In comparing sets

of protein interactions, we therefore must recognize that the overall data sets may follow

similar trends in terms of degree distribution, but likely demonstrate novel properties at

the local level.

9

Fig. 1-B. Example interactomes from modeled and experimental data. A) A network of 1,230 nodes
generated using a Barabasi-Albert model such that each node is connected to at least two other nodes.
Generated with the Network Randomizer 1.1.1 plugin for Cytoscape 3.4.0. B) Network of E. coli protein-
protein interactions as reported by Rajagopala et al. (2014). This network also contains 1,230, though in
this network each node corresponds to an E. coli protein. C) Comparison of degree distributions for each
network, with both axes on a log scale. Both degree distributions appear to follow a power law.

10

1.1.3 Protein complexes: the stable products of protein interactions

Protein complexes provide some of the most easily understood and most evolutionarily

conserved examples of protein interactions. Nearly all of the enzymes most crucial to all

forms of life are constructed from proteins, including RNA and DNA polymerases,

chaperones like GroEL and Hsp60, the proteasome, the degradosome, and ATP

synthases. Even the ribosome, with its substantial RNA content, depends upon the

interactions between numerous proteins for stability. It is therefore critical to consider

protein complexes when discussing comprehensive sets of PPIs. The most easily

observable PPIs will generally be those participating in the most stable interactions and

forming the most stable complexes.

Protein complexes contribute just one fraction of the total potential for PPI in any single

organism. The general structure of some complexes is well-conserved, even when the

exact sequences of the interacting complex components differ. We may then expect to

see similar numbers of PPIs across different species, especially if their genomes code

for broadly-conserved protein complexes, but also if they code for other well-conserved,

interacting proteins. Even with cases of differing sequence, however, the lack of a given

protein sequence in a proteome may also indicate lack of a corresponding protein

complex component and hence lack of the PPIs involving that component.

11

As seen in Table 1-A, there does not appear to be a consistent relationship between

proteome size and interactome size. Two different species (e.g., C. jejuni and H. pylori)

may code for very similar counts of proteins in their respective proteomes but may differ

in interactome sizes by thousands of interactions. These results appear surprising

without the context of biology and methodology (though even with the context, the

inconsistency is puzzling). Some proteins may have hundreds of interacting partners yet

remain restricted to specific taxons, just as some phenotypes and behaviors are

restricted to various branches of the tree of life (Fig. 1-C). Other proteins may appear to

be conserved between species but may operate in different functional contexts and

contribute different amounts of interactions in different species.

12

Fig. 1-C. Example
interactomes from
experimental data and
interactors common
between them. A) The
largest component of the
Campylobacter jejuni
interactome as published
by Parrish et al. (2007),
containing 1,307 nodes
and 11,918 edges. The
highest degree node in this
network, with 208 edges,
is the predicted histidine
triad (hIT) protein Cj0499
(Uniprot: Q0PB14). All
proteins interacting with
Cj0499 are highlighted in
red. B) The largest
component of the
Helicobacter pylori
interactome as published
by Häuser et al. (2014),
containing 502 nodes and
1,263 edges. The closest
ortholog to Cj0499 is
HP_0741 (Uniprot:
O25440), a protein coded
for by an H. pylori gene but
not present in this
interactome. The highest
degree interactor in this
network, with 31 edges, is
HP_1262 (Uniprot:
O25852), a NADH-quinone
oxidoreductase. All
proteins interacting with
HP_1262 are highlighted
in red.

13

It is likely, however, that much of these differences are the result of methodological

discrepancies. Researchers performing experimental interaction screens start with

different proteins but often assume this set is representative of the entire proteome.

They then apply different filtering procedures to the resulting interaction data based on

internal considerations of confidence and relevance. In the C. jejuni interactome study

published by Parrish et al. (2007), the authors used 1,477 ORFs (or 91 percent of the

reference proteome, roughly) in their interaction screens, found 11,687 repeatable

interactions in their screens, and filtered this set to 2,884 using measures of biogical

relevance (primarily, similarity to the E. coli and H. pylori interactomes available at the

time). In comparison, the H. pylori interactome produced by Häuser et al. (2014) is the

product of 1,587 ORFs from two different H. pylori strains which yielded a “raw”

interactome of 2,154 PPIs, a filtered set of 1,515 and a final, “high quality” core set of

908 PPIs. In this study, the final filtering procedure was based on a threshold where the

authors observed “a conspicuous increase of the prey count”. (Interaction screens

frequently distinguish between the two halves of a binary interaction as bait and prey

interactors.) A discussion of differences in interactomics methodologies continues in

Chapter 3.

1.1.4 Interactomics of bacteriophages and their hosts

Interactomics studies have not been limited to cellular life: work has included analyses

of viruses infecting humans and, more frequently, those infecting bacteria. These

14

viruses – the bacteriophages – are just as ubiquitous as bacteria, if not more so.

Starting with a rough population estimate of 1030 bacterial cells on Earth, various

estimates have suggested between an equivalent to a 100-fold greater population of

bacteriophages (Wommack and Colwell 2000, Rowher 2003, Clokie et al. 2011).

Phages serve as a massive and constant source of new genetic variation, both as the

result of phage-mediated genetic transfer (that is, transduction) and through the

perpetual battle between viruses and their hosts (Hambly and Suttle 2005, Hatfull and

Hendrix 2011). For these reasons, it is likely that any discussion of bacterial

interactomes is limited if it fails to consider interactions between viral and host proteins.

Bacteriophage interactome studies, including those of famous coliphage lambda

(Rajagopala et al. 2011) and the Streptococcus phages Cp-1 (Häuser et al. 2011) and

Dp-1 (Sabri et al. 2011), have provided attractive interactomics subjects due to the small

viral proteome sizes and corresponding lower level of expected complexity. Protein-

protein interactions between phage and their hosts are, with a few exceptions (Roucourt

and Lavigne 2009, Blasche et al. 2013), largely unexplored. Due to the intimate

relationships between bacteria and viruses, we may use these interactions as a novel

venue for exploring bacterial genes of unknown function.

1.2 Research objectives

1.2.1 Addressing protein function through protein interaction networks

15

Interactomics is a promising field with the potential to revolutionize our understanding of

protein functions and evolution. The results of interactomics approaches exemplify the

core tenets of systems biology: rather than considering proteins as discrete entities with

inherent properties driving their functions, interactomics considers each protein to be

one participant in a full interactome. The functions of a particular protein are then

dependent not only on the proteins and other materials it interacts with, but also upon

the other participants in this interaction network. Our understanding of each of these

interactome networks is always incomplete (Fig. 1-A). One of the primary challenges in

working with any interactome is therefore addressing the limits of the data.

As part of the studies described here, I have developed novel bioinformatics-based

approaches to interpreting protein-protein interactomes. Moreover, I have constructed

ways to predict interactome size and composition for bacterial species with limited

protein interaction data. I have extended my results beyond single-species interactomes

into host vs. virus protein interactions, resulting in a unique, curated collection of these

interactions. This project essentially defines a bacterial pan-interactome.

This work addresses a major conceptual gap in how the results of microbiological

research are interpreted. Bacterial genomics studies provide a wealth of data: with

73,397 genome entries in NCBI GenBank as of September 2016 (though just 5,813

genomes, or about 8 percent, are annotated as “complete”), more species of bacteria

have had their genomes sequenced than any other branch of the tree of life. Similarly,

16

as of September 2016, the Gene Ontology Consortium's AmiGO 2 database contains

458,273 different gene annotations for bacteria, yet 133,988 have no experimental

evidence to support any functional role. Numerous other genes have annotations based

on observations from distantly-related species. At this point, the overall question is quite

simple: what is the most efficient way to obtain functional information for bacterial genes

of unknown or unclear function? Furthermore, given a set of gene products and their

functions for a single bacterial species, how useful are those products as a model for

those encoded by the genomes of other bacterial species?

1.2.2 Measuring the extent of protein complex conservation

I have designed this project from the perspective that protein function is best

understood using a protein's role within multiple sets of interactions between those

proteins. This work applies such an approach across hundreds of different bacterial

species. As noted above, protein complexes provide useful sets of protein interactions

but provide just one part of the interactome of any species. To date, few studies have

compared protein complexes across multiple species and none have taken a purely

bacteria-centric perspective. Comparative interactomics studies have been performed

with the eukaryotes yeast (Saccharomyces cerevisiae), nematode (Caenorhabditis

elegans), fly (Drosophila melanogaster) and human (Gandhi et al 2006; Haynes et al

2006). In these cases, the similarities between interactomes were generally found to be

small: Gandhi et al. (2006) found just 42 protein-protein interactions shared between the

four species listed above.

17

Determining the conservation of bacterial protein complexes therefore allows these

complexes to be used as controls in the comparison of interactomes. If a complex is

expected be conserved among a set of genomes, then its interactions are also expected

to be conserved. Bacterial genomes are particularly useful in this context, as unlike the

human interactome, several bacterial interactomes are as close as possible to complete

(see Table 1-A).

1.2.3 Using a meta-interactome to find commonalities between interactomes

A cross-species approach not only permits observation of similarities among protein

interactions and functions but also allows quantification of deficiencies in the available

interaction data. Due to methodological differences and the inherent bias of growing

bacteria in the lab rather than in the wild – among other factors – no experimental

interactome can capture the full extent of biologically-relevant protein-protein

interactions. This renders cross-species interactome comparison difficult, as an

interaction found in one species but missing in another may be missing due to biological

phenomena or methodological variation. This work establishes a model set of

interactions (in the form of a meta-interactome; see Ch. 3) to provide predicted

interactions for bacterial species with limited to no experimental interaction data.

1.2.4 Building a set of phage-host interactions to compare viral proteins

18

The penultimate chapter of this work demonstrates how a cross-species protein

interaction comparison can be extended further. In this case, the goal is to quantify

similarities among interactions between bacteriophage and bacterial proteins. Though

the evolutionary history of bacteria as a whole has been and continues to be shaped by

interactions with bacteriophages, few studies have identified comprehensive sets of

interactions between these viruses and their hosts. Furthermore, little work has been

done to observe patterns among virus vs. bacterial protein interactions. This work

provides a database of interactions to serve as a resource for all researchers concerned

with bacteriophage and bacterial evolution.

1.3 Project design and rationale

This project uses computational approaches to interpret under-utilized sequence and

interaction data. A primarily bioinformatics-based approach is preferred in studies of

protein-protein interactions for three primary reasons. First, much as in the field of

genomics, the amount of data produced by even a single experimental study is so vast

that its original authors may find a comprehensive analysis impractical (or, at least,

outside the scope of the original study). Additionally, comparing data sets requires the

development of new, flexible data analysis methods, occasionally because the

researchers responsible for the experimental data designed their methods in a species-

specific manner. A cross-species approach can therefore extend conclusions to species

for which experimental work is not feasible, such as non-culturable or highly pathogenic

bacteria. Finally, computational approaches yield resources which are directly

19

applicable to future work. The software and data sets produced during the course of this

work are immediately usable for any researcher concerned with bacterial protein-protein

interactions.

Fig. 1-D provides an overview of the strategy of this overall work and the initial data

sets used in the process. All three of the primary focus areas of this work depend upon

two primary types of data: protein-protein interactions (PPI) and orthologous groups. In

the first segment of this work – as described in Chapter 2 – the PPI are abstracted from

sets of protein complexes. These sets include a set of literature-defined complexes from

the EcoCyc database (Keseler et al. 2013) and two sets of protein complexes defined

directly from individual proteomes (Hu et al. 2009; Kühner et al. 2009). Each member of

a protein complex is inferred to have the potential for an interaction with each other

member of that complex. The PPI in the second two segments of this work are binary

interactions primarily curated from the IntAct molecular interaction database (Orchard et

al. 2014), chosen specifically for its large collection of bacterial PPI and its inclusion of

interactions from several other relevant databases. In all areas of this project, the

proteins involved in each interaction are compared across species by mapping each to

an orthologous group (OG). OGs permit proteins to be clustered together by sequence

similarity and enable taxonomy comparisons (e.g., we may find members of a particular

OG in strains of E. coli but rarely in other species). In lieu of developing an entirely

novel method for defining OGs, I elected to use eggNOG (Huerta-Cepas et al. 2016), as

it defines OGs using specific taxonomic levels rather than by similarity with every other

20

known sequence. The most recent version of eggNOG also includes OG assignment for

viral proteins, enabling cross-virus comparisons of virus vs. host PPI (specifically, those

described in Chapter 4 of this work).

21

Fig. 1-D. Flow chart of core elements of this study.

22

The first aspect of this study, detailed in Chapter 2, focuses on conservation of protein

complexes in bacteria. Protein complexes and their associated sequences (e.g.,

ribosomal RNA) are known to include the most broadly conserved sequences in

bacterial genomes. Perhaps more importantly, protein complexes generally retain their

structures and functions across species. This assumption is, of course, based on well-

studied protein complexes such as ribosomes, polymerases, and chaperones. I

therefore began this work with the expectation that the conservation of protein

complexes would serve as an ideal proxy for the conservation of protein-protein

interactions (PPIs). If a protein complex seen in one species is missing in another, for

example, we may naturally predict that the PPIs seen among the complex components

in the first species cannot be present in the second species. Conservation of protein

complexes also provides a functional viewpoint into PPI conservation, as a complex

with a missing component presumably either can no longer participate in functions

necessitating that component or has gained a novel function.

Chapter 3 of this work concerns comparisons of experimental interaction data. While

comprehensive interactomes have been published for more than a few bacterial species

and beyond (see Table 1-A), it is difficult to quantify the similarities among data sets.

These similarities are crucial to understanding biological phenomena in a broader

evolutionary context. I elected to combine the available data in an orthology-dependent

manner, forming a “meta-interactome” in which each interaction represents PPI from

one or more data sets or species.

23

The final chapter of the work, Chapter 4, is a compilation of bacteriophage vs. host

protein interactions. Thus far, few interactome studies have studied the PPIs involved in

the course of a full bacteriophage life cycle. The process is poorly understood and likely

varies significantly between viruses and hosts, yet some similarities must exist,

especially in cases when the phage and host each contain proteins found to interact in a

different pair of virus and host. The majority of the effort in this section is therefore

based upon curation of PPIs observed in published experimental results. I then

integrate these interactions using an orthology-based approach and network analysis to

ascertain how consistent phage vs. host PPIs may be.

1.4 Intellectual merit

This study focuses on three concepts directly relevant to bacterial evolution: protein

conservation, protein-protein interaction conservation, and the functions of

uncharacterized proteins in the context of their interactions. The core idea behind all

three of these aspects is that protein sequences are best understood using a cross-

species approach. Furthermore, it is the pattern of a protein or interaction's conservation

across species that offers the clearest viewpoint of its role or roles in different branches

of bacterial taxonomy. Such an approach is made possible by the wealth of sequence

and interaction data available at this time but differs from the single-protein or single-

species approach traditionally employed by microbiologists.

24

The encoded PUFs and domains of unknown function (DUFs), despite their unexplained

biological roles, are not simply dispensable. Many of the genes in these regions code

for proteins essential to life in numerous bacterial species (Goodacre et al. 2013). If

these genes are found to interact with phage proteins, we may reverse-engineer the

interactions as novel methods for controlling bacterial pathogens.

This work is unique among computational biology studies in that I have included all of its

resulting data tables, the code I used to produce the data, and guides to re-using the

code. It is unfortunately not yet common practice to provide all three of these features. It

is my hope that these contributions will maximize this work's potential for long-term re-

use.

1.5 Broader impact

Bacteria and their proteins pose a quandary for human health. Growing resistance to

the usual antibiotic therapies threatens thousands of lives each year; as of 2013,

approximately 23,000 deaths could be directly connected to antibiotic-resistant

infections each year in the United States alone (Centers for Disease Control and

Prevention 2013). Staphylococcus aureus, the canonical example of antibiotic resistant

pathogenesis, has been evading antibiotic treatments since at least the 1950's

(Shanson 1981) and is associated with between 60,000 to 320,000 deaths each year in

the United States (van Hal et al. 2012). Antibiotic resistance also has the potential to

allow treatable infections such as those from foodborne Salmonella (Helms et al. 2004;

25

Helke et al. 2016), opportunistic Klebsiella pneumoniae (Holt et al. 2015) to become

chronic diseases with dangerous consequences. Even when infections are not life-

threatening, antibiotic resistance can increase their duration, as has been observed with

ear infections (Sillanpää et al. 2016). We have also found that a scorched-earth, all-or-

nothing approach to antibacterials is ineffective and often lethal: eliminating bacterial

pathogens in human patients with broad-spectrum antibiotics is known to eliminate the

commensal microbiome as well, increasing the incidence of infections by enterobacteria

and other opportunistic species. It is clear that more targeted approaches are necessary

to control bacterial infections.

An element of this work concerns bacteriophage vs. bacterial interactions. These

interactions are relevant to global ecology as their sheer scope creates global

phenomena. Viral lysis in the oceans, for example, may directly mediate sequestration

of more than 3 gigatons of carbon every year (Suttle 2007). Phages have been found in

Antarctic desert soil, Pacific deep sea vents, California's hypersaline Mono Lake, and -

though a decidedly less extreme environment - silty Delaware soil (Srinivasiah 2008).

Phage life cycles may have significant impacts on ecosystems of every size (reviewed

in Díaz-Muñoz and Koskella 2014). In the broadest sense, this area of my study

concerns the most common yet least-understood protein interactions on Earth.

Work such as that presented here offers numerous opportunities for drug development

and other approaches to combating bacteria. The cross-species approach I employ is

26

representative of that necessary to consider the secondary impact of an antimicrobial: a

targeted drug should ideally be very specific to the pathogen in question as killing non-

target species may cause dysbiosis. Opportunistic Clostridium difficile infections provide

a clear example of the danger of such a phenomenon (Abt et al. 2016). A network

approach offers the opportunity to not only observe weak points in a bacterial protein

interaction network (and, crucially, the proteins and processes most suitable as drug

targets) but also permits rapid observation of interactors several steps away in the

network.

27

Chapter 2 - Conservation of Proteins in Bacterial Protein Complexes

Significant portions of this work have been published in the following papers:

Caufield, J.H., Abreu, M., Wimble, C., & Uetz, P. (2015). Protein complexes in Bacteria.

PLoS Computational Biology, 11(2), e1004107.

doi:10.1371/journal.pcbi.1004107.

Rajagopala, S. V., Sikorski, P., Caufield, J.H., Tovchigrechko, A., & Uetz, P. (2012).

Studying protein complexes by the yeast two-hybrid system. Methods, 58(4),

392–399. doi:10.1016/j.ymeth.2012.07.015.

Marco Abreu and Christopher Wimble assisted with initial versions of some analyses

presented here and are thanked in figure legends.

2.1 Abstract

Large-scale analyses of protein complexes have recently become available for the

model bacterial species Escherichia coli (Hu et al. 2009) and Mycoplasma pneumoniae

(Kühner et al. 2009), yielding 443 and 116 heteromultimeric protein complexes,

respectively. I have coupled the results of these mass spectrometry-characterized

protein complexes with the 285 “gold standard” protein complexes identified by the

EcoCyc database. A comparison with databases of gene orthology, conservation, and

essentiality identified proteins conserved or lost in complexes of other species. For

instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully

conserved among a set of 7 more distantly-related bacterial species. Expanding the

28

comparison to 894 distinct bacterial genomes illustrates fractional conservation and the

limits of co-conservation among components of protein complexes: just 14 out of 285

model protein complexes are perfectly conserved across 95% of the genomes used, yet

I predict more than 180 may be partially conserved across at least half of the genomes.

No clear relationship between gene essentiality and protein complex conservation is

observed, as even poorly conserved complexes contain a significant number of

essential proteins. I have identified 183 complexes containing well-conserved

components and uncharacterized proteins which will be interesting targets for future

experimental studies. Finally, I have assembled a cross-complex protein interaction

network, underscoring the surprising extent of interactions between bacterial protein

complexes.

2.2 Introduction

2.2.1 The challenge of plentiful protein interaction data

Abundant genome sequencing data have revealed astounding diversity among bacterial

genomes. Even species inhabiting the same environment may share only a fraction of

their genes, raising the question of how these organisms have adapted to their

environments in seemingly independent ways. Here, I investigate the protein

complements across bacterial genomes, how proteins are combined into protein

complexes across species, and whether these complexes have been conserved across

diverse branches on the bacterial branch of the tree of life.

29

Numerous studies of protein-protein interactions have revealed the organization of

proteomes into networks of interactions. Though much of this field of study focuses on

individual biological pathways or protein complexes at a time, some studies have

attempted to map entire interactomes of every protein-protein interaction among the

members of a proteome (See Table 1-A for a selection of relevant studies). Few studies

have included systematic surveys of protein complexes alone. Just few bacterial

species, namely E. coli (Arifuzzaman et al. 2006; Hu et al. 2009) and Mycoplasma

pneumoniae (Kühner et al. 2009) have been the topics of such projects. Studies of

protein complexes and those of interactomes are, in theory, complementary:

interactomes provide raw, generally unbiased sets of biomolecular interactions, while

protein complex sets provide context for interactions (though both approaches make

numerous methodological assumptions about protein relationships, of course). In

practice, the limited number of data sets and the inherent differences across different

species render interaction data sets difficult to interpret.

Previous research has compared the protein interaction networks of S. cerevisiae, S.

pombe and E. coli and has found notable differences in their structure and content

(Ryan et al. 2012; Dixon et al. 2009; Wuchty and Uetz 2014). Components of interaction

networks also appear to vary in biological importance across species: a comparison of

S. cerevisiae and S. pombe found numerous essential genes in one species were not

essential in the other and vice-versa (Ryan et al. 2013). This phenomenon may be a

result of methodological differences but may also reveal functional redundancy (that is,

30

one species may tolerate gene deletion better than another if the gene’s function can be

replaced by another) or species-specific adaptations (e.g., gene deletion may disrupt a

crucial metabolic pathway but may have a less deleterious effect if the metabolite can

be obtained from the environment). Though not specifically concerned with protein

complexes, these studies have a relevant, major finding: protein interactions can be

modular with respect to biological processes.

I sought to enhance the usefulness of existing protein complex sets using a multi-

pronged computational strategy. I first investigated whether the complexes found in a

few model organisms are sufficient to reconstruct homologous protein complexes in

other species. This is a particular challenge with members of the Eubacteria as the

genomes of most species are highly divergent from the few model species used here.

However, E. coli and Mycoplasma pneumoniae provide two important paradigms: E. coli

is a generalist capable of living in a variety of environmental conditions while M.

pneumoniae is a specialized parasite with a reduced genome and a reliance on its host

cell - usually a human respiratory tract cell. With ~4,300 and ~700 genes in their

respective genomes, these bacterial species represent medium-sized as well as

minimal genomes. Most crucially, and as noted above, both species have been subjects

of protein complex surveys.

Existing studies comparing sets of interactome data have generally limited their

comparisons to a few well-characterized protein-protein interaction networks, such as

31

comparisons of S. cerevisiae, S. pombe and E. coli (de Matos Simoes et al. 2013; Wiles

et al. 2010; Dixon et al. 2009; Sharan et al. 2005). Methodological frameworks for

predicting co-evolution on the basis of gene presence/absence (Ryan et al. 2012;

Cohen et al. 2013) may also be employed to predict novel interactions in other species.

Here, I initially use eight distinct bacterial species as models. Seven of these species

have been subjects of gene essentiality screens and two have comprehensive, affinity

purification/mass spectrometry derived protein complex surveys available. I then

expand the focus to a set of 894 bacterial genomes in order to predict patterns of

protein complex evolution across the entire tree of known bacterial life.

2.2.2 Extending interaction analysis across species

Few studies have investigated the evolution and diversity of protein complexes across a

wide range of taxa. We may now perform such studies much more easily than in

previous decades due to the prevalence of large experimental studies and a wealth of

bacterial genome sequences. The number of publicly-available, sequenced bacterial

genomes increased more than one hundredfold - from just two genomes to three

hundred - between 1995 and 2006 and increased another hundredfold by 2015. Last

year, NCBI Genbank reached a total of more than 30,000 bacterial genome sequences

(Land et al. 2015), and as of September 2016 had – as mentioned above in Chapter 1 –

entries for more than 70 thousand bacterial genomes at various stages of completion.

Even individually, these sequences permit integrative analyses with proteomic data

sets, yet we can specifically use these sequences together to evaluate the extent to

32

which protein complexes are likely to be conserved across microbial species.

Furthermore, we can evaluate the biological role of proteins and complexes of unknown

function across many species.

I began comparing well-characterized protein complexes across species (in this case,

comparing model eukaryotes) to determine the extent of their conservation (Rajagopala

et al. 2012). Protein complex conservation in this context is more of a function of

observed interactions than of the presence or absence of complex components,

especially due to my initial choice to focus on well-conserved complexes; I operated

under the assumption that one version of the complex is a good model for other

species. I specifically focused on the proteasome, the protein complex responsible for

proteolytic breakdown of unnecessary proteins in the cells of all eukaryote and archaea

species. The pore-like structure of the proteasome appears to rely on numerous protein

interactions (Fig. 2-A-A, see also Lasker et al. 2012). No single study in any species

captures all interactions seen in any other study, though taken together, the interaction

results provide a nearly complete set of interactions as per the complex structure (Fig.

2-A-B). This combined interaction approach suggests that protein complexes and other

sets of protein interactions are best studied using multiple methods (or even, when

possible, using proteins from different species). Worryingly, these results also imply that

small biological differences may remain difficult to observe between species, especially

when results fail to capture expected interactions.

33

Fig. 2-A. Structure of the proteasome and interactions across five non-bacterial species. (A)
Structure of the 26S proteasome from Schizosaccharomyces pombe as determined by cryo-EM density
map (adapted from Lasker et al. 2012). The core particle is shown in red, the AAA-ATPase hexamer in
blue and the Rpn subunits in gold. (B) Interactions among proteasome subunits as determined by Y2H
and cross-linking assays (‘‘X-link’’). Four interactions between 19S proteins and beta subunit proteins are
omitted for clarity (α3-Rpt2, α4-Rpt2, α6-Rpt5, α7-Rpt5). Y2H results are derived from 3 independent
studies on the proteasomes of three different species (yeast, as per Cagney et al. (2001); C. elegans, as
per Davy et al. (2001); and human, as per Chen et al. (2008)), crosslinking has been carried out in two
yeast species (Saccharomyces cerevisiae and Schizosaccharomyces pombe) (Guerrero et al. (2006) and
Lasker et al. (2012)). Structural and modeling results are derived from cryo-EM mapping, X-ray
crystallography, and molecular modeling and used as ‘‘gold-standard’’ interactions, shown as grey bars
(Lasker et al. (2012); Wolf and Hilt (2004)). Figure originally published in Rajagopala et al. (2012).

34

In order to compare genomes and protein complexes across species, I coupled the

results of mass spectrometry-characterized protein complexes (Hu et al. 2009, Kühner

et al. 2009) with databases of gene orthology (Powell et al. 2012) and essentiality (Luo

et al. 2014) to characterize interaction conservation within protein complexes.

Furthermore, I use the perspective of genome reduction to evaluate patterns across

levels of protein conservation. Comparing sets of protein complexes from divergent

bacterial species (in this case, E. coli and M. pneumoniae) alleviates some of the bias

inherent in using a single species as a universal model. Rather, observing which protein

complexes and their components are present in two otherwise distinct species allows us

to draw conclusions about how crucial these components are to bacterial life.

2.3 Experimental methods

2.3.1 Scripts

I developed a software package for the analysis of clusters of orthologous groups

originally defined by version 3 of the eggNOG project (Powell et al. 2012). This software

package, spicednog, is available online at http :// github . com / caufieldjh / spicednog. See

Appendix I for a full guide to spicednog. Given a species name or taxonomic identifier,

the software performs two primary functions: it retrieves lists of genetic loci (as genes

and OGs) and the number of times they are found in each genome from a given set,

and determines average locus and OG conservation across the same set of species.

The software includes a module for converting Uniprot protein identifiers into three

35

http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog
http://github.com/caufieldjh/spicednog

different levels of OG identifiers used by eggNOG v.3 (a feature later rendered partially

redundant by updates to both Uniprot and eggNOG, though useful for batch ID

conversion) and a module for specifying which genomes and taxonomic IDs from a

given set contain an OG, a feature not explicitly provided by updates to eggNOG.

Spicednog includes helper functions for determining conservation of protein complex

components as well. See Appendix I and the Github repository mentioned above for

full code and details regarding the use of spicednog.

Data visualization was performed using R base packages and heatmap.2 from the

gplots package (Warnes et al. 2015). Statistical calculations, including distance and

principal component/coordinate analysis, were performed using R base packages and

the vegan package (Oksanen et al. 2013).

2.3.2 Genome and complex data sources

The full set of protein complexes from Escherichia coli K-12 W3110 as defined by Hu et

al. (Hu et al. 2009) was assigned membership in orthologous groups (OGs) from

version 3 of the eggNOG database (Powell et al. 2012) such that each protein in a

complex was assigned to a single OG. The remaining loci were referred to using their

original locus identifiers (in this case, their b-codes) and were retained for all further

analysis. The process was repeated for all protein complexes isolated by Kühner et al.

(Kühner et al. 2009) from Mycoplasma pneumoniae M129 and for E. coli protein

complexes defined by the EcoCyc database (Keseler et al. 2013). A representative set

36

of six other species (Table 2-A) for which whole-genome gene essentiality data was

available was selected for in-depth analysis. This species set is referred to as the

focused set. Lists of all protein-coding loci for each species were obtained using the

respective full proteome sets from UniProt (see Appendix Table III-A for taxonomy IDs

corresponding to all genomes used). Essentiality data was collected from the Database

of Essential Genes (Luo et al. 2014). Protein structures were obtained from the Protein

Data Bank (www . rcsb . org, Rose et al. 2013) and are referenced where used.

Table 2-A. Core set of bacterial species and strains with published essentiality screen results.

Species and Strain Name Citation for Essentiality Screen

Bacillus subtilis 168 Kobayashi et al. (2003)

Caulobacter crescentus Christen et al. (2011)

Escherichia coli MG1655 Baba et al. (2006)

Helicobacter pylori 26695 Salama et al. (2004)

Mycoplasma genitalium G37 Glass et al. (2006)

Pseudomonas aeruginosa UCBPP-PA14 Liberati et al. (2006)

Streptococcus sanguinis SK36 Xu et al. (2011)

A set of 894 genomes, referred to as the large set (Appendix Table III-A), was also

prepared using every bacterial species present in eggNOG v.3. The full set of bacterial

genomes used in this version of eggNOG includes 943 unique entries, though a subset

of these genomes (49 in total) were removed as they were not present in the NCBI

Taxonomy database (Federhen 2012) or were determined to differ by less than 1% in

sequence. The trees shown in the figures in this chapter are cladograms intended to

show the general relationship between species within context of consensus taxonomy.

2.3.3 Orthologous groups

37

http://www.rcsb.org/
http://www.rcsb.org/
http://www.rcsb.org/
http://www.rcsb.org/
http://www.rcsb.org/

Each locus in each genome was assigned to a single orthologous group (OG) as in

eggNOG v.3 (Powell et al. 2012), such that all loci were assigned to a COG, a NOG, or

a bactNOG, depending upon the most widely-conserved group assignment available.

See Powell et al. 2012 for details regarding OG levels; in short, COGs are the most

broadly-defined orthologous groups, based on a last universal common ancestor

(LUCA) of all species in the database. COGs are defined in a similar manner to

methods described by Tatusov et al. 1997 and Kristensen et al. 2010.

2.3.4 Comparative proteome and complexome analysis

The general scheme for data analysis was as follows:

1. A list of all orthologous groups (OGs) was produced for each of 894 bacterial

genomes found in the large set defined above in section 2.3.2.

2. Occurrence of each OG was counted in each genome, providing the locus count.

Averaging this count over the set of all genomes provided the locus conservation

fraction for each OG.

3. Presence or absence of each OG was counted in each genome, such that an OG

was counted only once if present in a genome. This provided the OG count.

Averaging this count over the set of all genomes provided the OG conservation

fraction for each OG.

4. The list from step 1 was used to map OGs to the components of three sets of protein

complexes. The complexes were compared to search for cross-data set complex

matches. Gene essentiality was also mapped to each OG in a species-dependent

38

basis. 5. A list of 8 taxonomically-divergent species was selected and used to define

fractional conservation and fractional essentiality of each protein complex.

The presence of each locus was determined across the entire set of bacterial species

using an automated approach. For each locus and each species, presence of a locus

was defined as presence of any instance of the OG containing the locus. Each locus

was assigned a fractional conservation value: e.g., a locus seen in half of all bacterial

species would be assigned a conservation value of 0.5 (see Fig. 2-B for an additional

conceptual example). This presence was averaged across all loci to generate a value

for average locus conservation for each genome. This value was adjusted based on

locus coverage in eggNOG (e.g., if only 70 percent of the loci in a genome mapped to

eggNOG OGs, the average value was reduced by 30 percent.) An identical set of

comparisons were performed for all loci with predicted paralogs (that is, loci with the

same OG assignment) removed prior to comparison. Subsets of selected species were

also prepared such that they included only loci with the same orthologous groups as

those seen in the Hu et al., EcoCyc, or Kühner et al. protein complex sets. Genome

sizes were retrieved from NCBI GenBank and KEGG GENOME (Kanehisa and Goto

2000).

39

Fig. 2-B. Example of fractional conservation value assignment. Each circle denotes a unique
bacterial genome. Loci are shown as filled boxes; boxes differing in outline color represent different OG
assignments while fill color denotes different genes (i.e., genes with the same OG assignment in a
genome are likely paralogous). Absence of a box from a genome in a location where one is present in
another genome indicates absence of the locus.

40

OGs were used as the basis of comparison for similarity between data sets. Complex

size was defined as the number of unique proteins isolated from a complex; e.g. a

complex may contain 3 unique OGs but 4 distinct protein components, yielding a

complex size of 4 (see Fig. 2-C for an example). For each complex, the presence of

each OG within the complex was assayed in the full proteome sets of the seven other

representative species. The resulting binary presence/absence values were combined

to produce a value for the percent complex conservation. This value intentionally

disregards any gene context similarity (that is, an OG may be present in two genomes

even if neighboring genes differ between the genomes) and simply expresses the

fraction of complex components which a specific genome may code for. When a target

proteome did contain a specified complex component, the number of paralogs of the

component-coding gene was determined as the number of proteins in the list mapping

to the same OG. While further verification may be necessary to define any of these

protein-coding genes as true paralogs, I simply used the OGs (including paralogs) as

determined by eggNOG.

41

Fig. 2-C. Example of protein complex size determination. The E. coli multidrug efflux pump MdtABC-
TolC, a transmembrane protein complex, is shown abstracted on the left (adapted from Nagakubo et al.
2002; Andersen et al. 2015). The complex is abstracted further as shown on the right, where each protein
is shown as a circle. This complex involves four distinct proteins and three OGs, as indicated by the color
of the outline around each circle, indicating that two of the proteins are very similar in sequence. The
complex size is determined by the number of proteins rather than the number of OGs. OM, outer
membrane; IM, inner membrane.

42

All protein complex components were also assigned binary essentiality values using

published assays specific to the species listed above. These values were used to define

the essentiality fraction of each potentially conserved complex, e.g. an E. coli complex

for which 80% of the components appear to be conserved in M. pneumoniae but only

60% of the components may be essential in the latter species.

A broader comparison was prepared using the list of 894 species as defined above.

Genome sizes for each species were retrieved from the KEGG GENOME Database

(http :// www . genome . jp / kegg / genome . html, Kanehisa and Goto 2000). For each species,

the total number of OG-mapped protein-coding loci was divided by the total number of

loci to produce a value for percentage mapped. Using the list of all OGs in the species,

each OG was compared with all other species to determine its conservation across

Eubacteria. Adjusted average locus conservation for a particular genome, CAAL(g), was

calculated as:

where CL is the number of genomes in which the locus is present, L(g) is the number of

loci in the genome, N is the total number of genomes, and m is the percentage of loci

mapped by eggNOG v.3. Values are adjusted using the fraction of loci actually mapped

so unmapped loci lower the effective conservation.

43

http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html
http://www.genome.jp/kegg/genome.html

An identical list of values, but with repeated OGs reduced to a single occurrence, was

averaged to produce average OG conservation. This modification removes the effect of

counting loci more than once when they share OGs, as may happen when two or more

loci are paralogous. Adjusted average OG conservation for a particular genome,

CAAO(g), was calculated as:

where CL is the number of genomes in which the locus is present, O(g) is the number of

unique OGs in the genome, N is the total number of genomes, and m is the percentage

of loci mapped by eggNOG v.3.

The large set of bacterial genomes, as defined above in section 2.3.2, was used.

Genomes were sorted by size in bases and compared to the average conservation

values. For a subset of species, the Average Locus and Average OG Conservation

values were calculated using only OGs found in published protein complex data sets.

Mapping of fractional complex conservation across species was performed as follows

for both the focused set (8 species) and the large set. A cladogram of all species in the

set was prepared using the Interactive Tree of Life (iTOL, Letunic and Bork 2011)

project as per NCBI taxonomy. All protein components were mapped to eggNOG v.3

44

OGs and complex size was determined as defined above. Conservation fraction of each

complex in each species was defined as the number of complex component OGs

shared between the model (an E. coli complex) and the target genome over the size of

the model complex. Heatmaps were prepared using the R heatmap.2 function in the

gplots package. Randomized models of the large set heatmaps retaining the same

species order but with a randomized distribution of conservation fractions were

prepared using the R function randomizeMatrix (in the picante package, Kembel et al.

2010) and the ‘richness’ null model to respect overall conservation levels.

Complex functions were assigned to each complex in the EcoCyc set manually, using a

combination of EcoCyc annotations and the GO terms associated with each complex

component. This was performed only for heteromer complexes (that is, complexes

containing proteins of at least two different sequences rather than multimers of single

proteins). These functional categories are intended to be sufficiently ambiguous to cover

the wide range of potential functions of a particular complex. The functional categories

are listed below in Table 2-B.

Table 2-B. List of general functional categories used to describe protein complex function.

Complex Functional Category Corresponding OG
Functional Categories

Cell Division D, M

Chaperone, Protein Assembly, or Modification O

Defense/Survival/Stress Response V

DNA Replication, Repair, or Modification L

Metabolism C, G, E, F, H, I, P, Q

Motility/Chemotaxis N

45

RNA Modification A

Transcription or Transcriptional Regulation K

Translation or Translational Regulation J

Transport T, U

Unknown R, S
Complex Functional Categories are those used in this study. Corresponding OG Functional Categories
are those defined by Tatusov et al. (2003) and later adapted by eggNOG (Powell et al. 2012). OG
Functional Categories not applicable to bacterial biology (e.g., nuclear structure) are not included.

2.3.5 Protein complex interaction network assembly

A graph of interactions among protein complexes was constructed using a set of

protein interactions specific to E. coli. Interactions were obtained from the IntAct

database of molecular interactions and are identical to those used in Chapter 3,

though filtered specifically to any strain of E. coli. For this reason, the interactions

extend beyond any single E. coli interactome (e.g., Rajagopala et al. 2014). Each

protein interactor was assigned a UniProt identifier and assigned to one or more

protein complexes as defined by the EcoCyc set described above. Individual proteins

were also assigned bacteria-level orthologous groups (bactNOGs) from eggNOG v.4

(Huerta-Cepas et al. 2015). Complexes were assigned general functional categories

as described above. The interaction graph was assembled in Cytoscape (Shannon et

al. 2003) 3.4.0 using only interactions between or within heteromer protein complexes.

Repeated interactions and self-interactions were removed from the final graph.

2.4 Results and discussion

2.4.1 Conservation of proteins across bacterial genomes

46

I begin with the broadest possible view of protein conservation across a representative

sample of all bacterial species (Figure 2-D, see also Appendix Table III-A). Here, the

genome of each bacterial species is a point on a plot of genome size vs. average

conservation of the genes in that genome, with predicted paralogs (average locus

conservation, in orange) and without (average OG conservation, in blue). Average gene

conservation is the average of the fractional gene conservation of all genes in the

genome (e.g., a very minimal genome of 100 genes in which 50 genes appear to have

orthologs in all other species – yielding a conservation value of 100% - and 50 genes

fully unique to that genome and those of 9 related species – yielding a conservation

value of 10 out of 894 or about 1.1% – would have an average gene conservation of

about 50.5%).

47

48 F
ig

. 2
-D

.
P

ro
te

in
 c

o
m

p
le

x
es

 a
re

 e
n

ri
ch

e
d

 f
o

r
h

ig
h

ly
 c

o
n

se
rv

e
d

 c
o

m
p

o
n

en
ts

.
E

a
ch

 p
o

in
t

in
di

ca
te

s
a

 s
in

g
le

 g
e

no
m

e
 a

n
d

th
e

 a
ve

ra
ge

 c
on

se
rv

at
io

n
 o

f i
ts

 lo
ci

 o
r

or
th

ol
og

ou
s

gr
ou

ps
 (

O
G

s)
 a

s
m

ea
su

re
d

 b
y

its
 p

re
se

n
ce

ac

ro
ss

 8
94

 b
a

ct
e

ri
al

 g
en

o
m

es
.

R
e

pr
es

e
nt

a
tiv

e
g

en
om

es
 o

f t
h

e
8

sp
ec

ie
s

fo
cu

se
d

 o
n

 in
 th

is
 s

tu
d

y
a

re
 in

d
ic

a
te

d
 w

ith
 v

e
rt

ic
a

l l
in

es
 a

nd
 th

e
fo

llo
w

in
g

 la
b

e
ls

: M
. g

.,
M

yc
o

pl
as

m
a

 g
e

n
ita

liu
m

; M
. p

.,
M

yc
o

pl
as

m
a

 p
n

e
um

o
n

ia
e

; H
. p

.,
 H

el
ic

ob
a

ct
e

r
p

yl
or

i;
S

. s
.,

 S
tr

ep
to

co
cc

us
 s

a
ng

ui
ni

s;

C
.

c.
,

C
a

ul
o

b
ac

te
r

cr
e

sc
en

tu
s;

 B
. s

.,
 B

a
ci

llu
s

su
bt

ili
s;

 E
. c

.,
 E

.
co

li;
 P

. a
.,

 P
se

u
do

m
o

na
s

ae
ru

gi
no

sa
. S

e
e

M
e

th
o

ds
 f

or
 s

p
e

ci
fic

 g
e

no
m

e

id
en

tit
ie

s.
 A

ve
ra

ge
 g

e
ne

 c
on

se
rv

at
io

n
 is

 s
p

ec
ifi

ed
 a

s
a

 p
er

ce
n

ta
g

e.
 A

ve
ra

ge
 g

e
ne

 c
on

se
rv

at
io

n
 v

a
lu

es
 a

re
 r

ed
uc

e
d

 b
y

th
e

 fr
a

ct
io

n
o

f t
he

ir

pr
ed

ic
te

d
 p

ro
te

in
-c

od
in

g
g

en
es

 n
ot

 p
re

se
n

t i
n

 e
g

gN
O

G
 v

.3
 to

 a
cc

o
un

t f
o

r
ge

n
es

 w
ith

ou
t p

re
di

ct
e

d
 o

rt
h

ol
o

g
y.

 T
o

p
ro

du
ce

 O
G

 c
o

ns
e

rv
a

tio
n

in
st

e
a

d
of

 lo
cu

s
co

ns
e

rv
a

tio
n

, a
ll

b
ut

 o
ne

 lo
cu

s
of

 a
 s

e
t o

f p
ot

e
nt

ia
l p

a
ra

lo
gs

 (
in

 t
hi

s
ca

se
, g

en
es

 s
h

ar
in

g
 t

he
 s

a
m

e
 O

G
)

w
as

 r
e

m
o

ve
d

 p
ri

or

to
 c

al
cu

la
tin

g
a

ve
ra

g
es

. A
 lo

g
ar

ith
m

ic
 r

eg
re

ss
io

n
is

 f
itt

ed
 to

 b
o

th
 s

et
s

of
 v

a
lu

e
s.

 A
ve

ra
g

e
O

G
 c

o
n

se
rv

at
io

n
va

lu
e

s
ar

e
a

ls
o

sh
ow

n
fo

r
su

b
se

ts
 o

f p
ro

te
in

-c
o

di
ng

 g
e

ne
s

pr
e

se
nt

 w
ith

in
 p

ro
te

in
 c

om
p

le
xe

s
fr

o
m

 E
. c

o
li

(H
u

et
 a

l.
2

00
9

)
an

d
M

. p
ne

um
on

ia
e

(K
ü

hn
er

 e
t

al
.

20
0

9)
.

F
or

 th
es

e
 t

w
o

sp
ec

ie
s,

 v
al

u
e

s
a

re
 r

e
pr

e
se

nt
a

tiv
e

of
 m

e
m

b
er

s
in

 f
ul

l c
om

pl
e

xo
m

es
 w

h
ile

 t
ho

se
 f

or
 o

th
e

r
sp

ec
ie

s
ar

e
p

re
di

ct
e

d
co

m
p

le
xo

m
e

s
us

in
g

 e
a

ch
 o

f t
he

 t
hr

e
e

 d
a

ta
 s

et
s

as
 m

o
d

el
s.

The distribution of gene conservation values appears to follow a logarithmic regression.

This trend is especially noticeable for two reasons, both of which may have been

missed in a survey of a smaller range of genome sizes. First, average gene

conservation of species with genomes smaller than 1 Mb can be as much as double

that of species with genomes of 3 to 4 Mb or greater. Additionally, there is a gradual but

consistent decrease in average gene conservation as genome size increases. The first

of these observations does not appear to be impacted by including potential paralogs;

this is not surprising as smaller bacterial genomes like Mycoplasma genitalium tend to

contain fewer paralogs. In some cases, these minimal genomes may contain

multifunctional predecessors or alternatives to otherwise paralogous genes, as per

Mushegian and Koonin 1996; Glass et al. 2006 found that M. genitalium in particular

has only 6% of its genes in paralogous gene families, vs. the average of 26% seen for

other bacterial species. For the second observation, omitting paralogs from the analysis

reduces average gene conservation values and renders them more consistent. This

result suggests that genes with numerous paralogs, and hence major contributions to

genome size, are also highly conserved across other bacterial species rather than

usually resulting from isolated instances of rapid gene duplication in small taxonomic

groups.

All average gene conservation values were proportionally adjusted to account for lack of

orthology assignments. If just half of a genome's genes have corresponding orthologous

49

groups, for example, its average gene conservation was reduced by half. This

adjustment is essentially equivalent to reducing the individual contribution in gene

conservation of each gene without orthology assignment to zero. This adjustment is the

best option to account for a lack of orthology assignment as a lack of OG membership

generally indicates a gene sequence with little to no similarity to any other sequence.

The sequence is therefore poorly-conserved by definition. In all but a few cases,

orthology assignment is above 80%, suggesting that the distributions presented here

are not simply the effect of differences in annotation or group assignment.

The extremes of the range of genomes presented in Fig. 2-D provide interesting

examples of bacterial diversity with respect to gene conservation. The smallest genome

shown here, that of Hodgkinia cicadicola Dsem, is just below 144 kb in size. Like other

bacterial species with very small genomes, H. cicadicola is a symbiote – specifically, an

α-proteobacterial species found only in cicadas (McCutcheon et al. 2009). Though likely

enriched for highly-conserved genes essential to basic life functions, H. cicadicola is

also a genetic outlier, with a much higher GC content than most sequenced symbiote

genomes – more than 50% vs. 30% or lower – and a tendency toward alternative

genetic codes (descibed by McCutcheon et al. 2009 in extensive detail). Within this

same range of genome sizes is Mycoplasma genitalium, also a bacterial species only

seen in a eukarote host, though in this case the host is Homo sapiens rather than

cicadas. It should be noted that, of all bacterial species in this data set with genomes

smaller than 1 Mb, all appear to be symbiotic or parasitic.

50

The other end of the bacterial genome size spectrum provides examples of species with

lower overall gene conservation. The largest genome in this set is that of Sorangium

cellulosum strain So ce56, a delta-proteobacterial isolate containing a genome of more

than 13 Mb (Schneiker et al. 2007). The genome of this primarily soil-dwelling species

contains numerous duplications, horizontally-transferred sequences, and complex

regulatory sequences, potentially as a result of extensive environmental adaptation

(Han et al. 2013). This and related species therefore provide an excellent example of

bacterial genomes enriched for unique sequences.

Though average gene conservation appears to be related to genome size, gene

conservation is generally more consistent across the orthologous components of protein

complexes. This is the expected result: most bacterial protein complexes are expected

to perform similar functions irrespective of species and many of these functions are

crucial to essential processes. Figure 2-D displays the average OG conservation of

protein complex components, using sets of complexes from Mycoplasma pneumoniae

and E. coli as models, among the components conserved in the given species. This

caveat is crucial: as discussed extensively here in subsequent sections, neither protein

complexes nor their individual components are perfectly conserved across all bacterial

species. The results shown here highlight the impact of genome reduction on protein

complexes: out of all M. pneumoniae protein complex components, those conserved in

other representative bacterial species are, on average, present in more than 80 percent

51

of other bacterial species. By comparison, E. coli complex components demonstrate

more variable conservation across species.

2.4.2 The protein complexomes of E. coli and Mycoplasma pneumoniae

In this study, I use the literature-curated set of EcoCyc E. coli protein complexes and

the protein complexes isolated by Hu et al. (Hu et al. 2009) as a set of experimentally-

determined complexes for E. coli (Figure 2-E-A). The set of experimentally-determined

Mycoplasma pneumoniae complexes identified by Kühner et al. (Kühner et al. 2009) is

also included in the comparison as a distantly-related, minimal set. Though these

datasets differ in content and approach, both E. coli data sets contain about 300

complexes. Most complexes in the EcoCyc set contain from 2 to 4 unique proteins while

the Hu set contains a comparatively higher number of complexes (more than 30)

containing 5 or more unique protein components (i.e, unique proteins mapping to

different orthologous groups). Note that some of the Hu et al. complexes appear to

represent subsets of full complexes (i.e., the full ribosome constitutes a single complex

in EcoCyc but is represented by several complexes in Hu et al.). Also, the EcoCyc set is

partially redundant (i.e., each RNA polymerase holoenzyme is represented as a

different protein complex, as are the F1 and FO subregions of ATP synthase).

The size of the complexes within the data set produced by Kühner et al appears to differ

in distribution from those characterized by Hu et al (Figure 2-E-A). Specifically, most M.

pneumoniae complexes with two or more unique members contain just those two

unique proteins. The cross-species discrepancy may also result from methodology,

52

though Kühner et al. suggest it is representative of authentic biological differences

between the two species. M. pneumoniae contains fewer unique proteins than E. coli

does and this difference limits the number of unique proteins seen in any single

complex.

53

Fig. 2-E. Protein complex data sets vary in composition. (A) Count of complexes in two E. coli
complex datasets (Hu et al. (2009); EcoCyc (Keseler et al. 2013)) and one M. pneumoniae dataset
(Kühner et al. 2009), by size (in number of unique protein components). Multimers of single proteins (i.e.,
homodimers) are not included. (B) Examples of complex matching across data sets. Once mapped to an
orthologous group (OG), the components of a complex are directly comparable to those in other complex
sets yet perfect matches are rare. In some instances, an OG in one complex may not be present in its
best matching complex but the OG may be present elsewhere in a different complex. In other cases, the
matched complex may contain components (OGs) not seen in the query complex (as is the case with
topoisomerase IV). (C) Summary of matching complex quality across data sets. EcoCyc complexes were
used as the set of query complexes while the two experimental data sets were used as the search space.
Here, a poor match requires just one matching component, while a good match requires at least half of
the components in the query complex to be present in the matching complex. The number of complexes
in each category is shown; complex size is as in part A.

54

The exact protein complexes defined by each data set differ. Pairwise comparision of

presence or absence of proteins in each complex is improved by mapping components

to orthologous groups but few complexes appear to be present in an identical form

across all three data sets. Figure 2-E-B provides four examples of the types of complex

matches seen across the data sets. For instance, the DNA polymerase III holoenzyme

(EcoCyc: CPLX0-3803) contains 9 unique proteins as per EcoCyc but its closest match

in the Hu set contains 7, including two proteins not found in any EcoCyc complex. The

“missing” proteins from the EcoCyc complex are found in other Hu complexes. The

Hsp70 chaperone complex (EcoCyc: HSP70-CPLX) provides another example: The M.

pneumoniae complexes provide a better match for the EcoCyc complex than the Hu set

does. Topoisomerase IV (EcoCyc: CPLX0-2424) has a good match in all three data sets

though the representative Hu complex contains an additional protein (this addition

appears to be the molybdenum cofactor biosynthesis protein MoaB, suggesting a

potential role for this protein in providing alternative cofactors for the magnesium cation

usually required by topoisomerase; see Sissi and Palumbo 2009). Lastly, RecBCD

serves as an example of a good E. coli-specific match with no components present

among the M. pneumoniae complexes.

In the aggregate, most EcoCyc complexes do not have reliable matches in the other

experimental sets (Figure 2-E-C). Using all 285 EcoCyc complexes as a guide, their

best matches in the other sets are classified as “good” if they contain at least half of the

55

same unique proteins (as members of orthologous groups) or “poor” if they contain a

match of less than half of the EcoCyc complex’s components. No complex of a size

greater than 4 unique proteins has a good match in both the Hu et al. and Kühner et al.

complex sets. 28 complexes (9.8%) out of those of size 4 or less have good matches in

both sets, and out of these, most matches are of complexes of size 2. The majority of

the complexes in this size class (153 out of 246) contained at least one matching

component in the Hu E. coli complexes but no match among the Kühner et al. M.

pneumoniae complexes.

The overall lack of apparent similarity between complex sets is likely a combination of

differences in experimental results and biological factors. It is likely that In some cases,

a protein complex defined by EcoCyc may have been found in other sets as fragments,

ensuring a poor match at best. This may be especially relevant to large complexes such

as the GspC-O type II secretion complex (EcoCyc: CPLX0-3382) which has no matches

in either of the two experimental complex sets. Hu et al. specifically mention they were

unable to detect 469 E. coli proteins, about a third of which are membrane-associated.

Kühner et al. also noted that membrane proteins were underrepresented in their

complex set. In some cases, as with the topoisomerase discussed above, the

complexes present in all three data sets may truly reflect high complex conservation

across species, especially as these complexes include those involved in crucial

functions (Figure 2-E-B).

56

2.4.3 Using protein complexomes to predict complexes conserved in other
species

The set of M. pneumoniae complexes serves as a rough model for the complexes most

commonly found across bacterial species. (See Appendix Table III-I for the full set of

M. pneumoniae complexes and their conservation.) It is an imperfect model: out of 116

complexes, only 28 are fully conserved (that is, each of their components are present as

orthologs) in the 7 other model species in this study (Fig. 2-F). On average, 54 M.

pneumoniae complexes appear to share at least 2/3 of their components with all the

other species and 81 complexes share at least half. As this value is an average, it does

not take into account the differences between individual species in terms of complex

conservation. For some complexes, such as complex 12 in this set (containing three

enzymes: an aldolase, a glyceraldehyde-3-phosphate dehydrogenase, and a pyruvate

kinase) all components appear to be present in all 7 other species with the exception of

H. pylori, which does not appear to code for an orthologous kinase. The missing

component in H. pylori may be replaced by a different protein or the entire complex may

be an artifact of how broadly-conserved its apparent components are (that is, what

seems like complex component conservation is simply broad conservation of individual

proteins). Other complexes clearly reflect differences in species: Out of the four

components of complex 33, all are conserved in M. genitalium but just three are

conserved in the 6 other species. The protein specific to the Mycoplasma in this

complex is Mpn642 (Uniprot: P75155), an uncharacterized lipoprotein.

57

Fig. 2-F. Histogram of Kühner et al. M. pneumoniae complexes and average conservation
fractions. Labels indicate number of complexes in each bin of average conservation fraction.

58

Just two complexes contain components entirely specific to M. pneumoniae: complex

81, composed of proteins Mpn100 and Mpn650 (Uniprot: P75592 and P75147), and

complex 87, composed of proteins Mpn036 and Mpn676 (UniProt: P75078 and

P75116). These two complexes and their components are uncharacterized. Due to the

small number of complexes conserved in other species, the Kühner et al. M.

pneumoniae set is not included in the majority of the subsequent analyses presented

here.

The variability between the EcoCyc and Hu datasets has a direct impact on the

usefulness of these complexomes as models for other bacterial species. In any case,

the EcoCyc and Hu complex sets provide the most comprehensive complex set

currently available for E. coli. The intersection of the two sets (Figure 2-G-A) is indeed

limited: among all 1,521 unique orthologous groups seen across the two sets, just 576

OGs are shared between them. Only 132 complexes appear to be “good” matches

between the sets; each set contains more complexes unique to itself than the total

number of complexes shared between both sets. Using these 132 complexes as a

model for those in P. aeruginosa shows that up to 120 of the complexes may be

conserved based on orthologous components present in the P. aeruginosa genome. If

the yet-uncharacterized P. aeruginosa complexome contains roughly the same number

of complexes as those for E. coli then this prediction method misses more than half

(that is, around 150) of the potential complexes unless I also use the unique

complexes of each set. I used these results as evidence that the data sets should be

59

used as independent models rather than as an intersecting set: losing more than half of

the potential model complexes simply due to inconsistencies across data sets may be

too limiting for a broad cross-species comparison.

60

Fig. 2-G. Protein complex sets vary in conservation across bacteria.
(A) Overlap between literature-curated (EcoCyc) and experimentally-observed (Hu et al.) E. coli complex
sets is limited. Each data set contains unique proteins, even when all are mapped to orthologous groups
(far left). Each complex in one of the two E. coli complex sets may or may not appear to be shared in the
other complex set (middle; a potentially shared complex must have at least half of its components in at
least one complex in both sets). Using just the set of complexes shared between the two E. coli sets as a
model for predicting complexomes in other species (far right; in this case, P. aeruginosa is used as an
example) may be limiting. 12 complexes from the shared set appear to be conserved in P. aeruginosa but
roughly an additional 150 complexes may be expected based on those seen in E. coli. (B) Each box plot
displays the range of conservation fractions of E. coli protein complexes from the literature curated
(EcoCyc) and experimental (Hu et al.) sets with respect to a species other than E. coli. The upper and
lower edges of each box correspond to the first and third quartile of conservation fraction values,
respectively. The upper whisker corresponds to the highest value within 1.5 times the inter-quartile range
(IQR) while the lower whisker corresponds to the lowest value within the same range. Data points outside
1.5 times IQR are represented by single data points. Marco Abreu assisted with this analysis.

61

Fig. 2-G-B displays distributions of protein complex conservation across four bacterial

species other than E. coli. (M. pneumoniae complexes are not included in this

comparison.) These plots provide the median and interquartile range of protein complex

conservation fractions in each species, using either EcoCyc or Hu et al. complexes as a

model of the complex set. A comprehensive set of protein complexes has not been

identified for any of these species as of yet. Following the results shown in Fig. 2-D,

however, I may predict that most bacterial protein complex component sets should

share at least half of their OGs with all other bacterial genomes, on average. Basic

biology also plays a role here: we generally expect a subset of crucial protein

complexes like polymerases to be well-conserved across all species. The set of all

EcoCyc complexes appears to be highly-conserved in P. aeruginosa (the entire

interquartile range lies between full and 75% complex conservation, showing the

average EcoCyc complex is well-represented in P. aeruginosa) but shows a greater

range of conservation across the three other species. This difference in conservation

patterns likely reflects differing levels of conservation between different protein

complexes, with some complexes demonstrating much higher conservation than others

across evolutionary distances. For studies of P. aeruginosa, specifically, using E. coli

protein complexes – and preferably litature-curated complexes – as a model the

bacterial complex set may be realistic.

62

The Hu complexes show lower complex conservation median values than EcoCyc for all

but H. pylori and lower variability for all but P. aeruginosa. Here, the median values are

not as useful as the conservation ranges: the distance between the highest and lowest

values includes every possibility from 0 to 100% conservation using either model of E.

coli complexes. The two species most closely related to E. coli in this set – P.

aeruginosa and C. crescentus – produce different median values and interquartile

ranges between the sets across all protein complexes. Components of complexes in the

two E. coli sets, used as models, are clearly conserved differently across bacterial

species. A higher-resolution comparison is necessary to determine which complexes are

highly conserved.

2.4.4 Protein complexes and their essentiality are poorly conserved in bacteria

Although the size distribution is different in E. coli and Mycoplasma, I hypothesized

that homologous complexes should be very similar, both in size and composition.

However, this is not true: few complexes share even half of their components across the

data sets (Fig. 2-E). The majority of complexes shows less than 50% overlap

between the two E. coli sets of EcoCyc and Hu et al. and between Hu et al. and the

Mycoplasma complex set. This suggests that there are both technical (E. coli vs. E. coli)

but also biological reasons (E. coli vs. Mycoplasma) for these differences.

To get a more global yet more detailed picture of protein complex conservation, we

compared conservation across 8 bacterial species, including the two species for which

63

full protein complex sets exist. The EcoCyc complex set was used as a standard to

which all other species were compared. Fig. 2-H provides three examples of the ways

protein complexes may or may not be conserved across species. Conservation of

protein complexes may be roughly grouped into three categories: well-conserved

complexes, complexes with a core set of proteins conserved, and those in which no

core set appears to be consistently conserved. As conservation and essentiality may be

related to paralogy, I also compare the components of these complexes on the

presence or absence of paralogs.

64

Fig. 2-H. Examples of protein complex conservation across bacteria.
Complexes are identified using a common name and an EcoCyc ID. Each complex subunit has been
assigned a COG ID. Grey areas indicate OG presence, white areas indicate OG absence, and blue areas
indicate essentiality in a species-specific screen (see Methods for references). Numerical values within
grids indicate the presence of potential paralogs in the corresponding species; proteins without specified
values have no clear paralogs. Complex structures are available in PDB: ATP synthase F1, 3OAA;
succinate dehydrogenase, 1NEN; Outer membrane protein assembly complex, (2KM7, 3TGO, 3TGO,
4K3C, 2YH3). Species are arranged by their taxonomy (see Methods for details) with E. coli and
Mycoplasma pneumoniae / Mycoplasma genitalium serving as the most distant taxons. Marco Abreu
assisted with these analyses.

65

It is commonly assumed that highly conserved proteins must be important and thus

should be essential in many cases. Interestingly, this is often not true (Figure 2-H). For

example, the well-conserved succinate dehydrogenase components are essential in

only 3 of the species shown. The four components of this complex (as defined by the

default structure in E. coli) are present only in Pseudomonas aeruginosa and

Caulobacter crescentus. Helicobacter pylori and Bacillus subtilis encode 3 out of 4

components and the other 3 species appear to have lost the entire complex. Similarly,

the Bam outer membrane protein assembly complex (EcoCyc: CPLX0-3933) shows

partial essentiality across the complex in 4 species though its components are well

conserved in only 3 species. This complex has a similarly patchy pattern of

conservation, with any number from zero to all 5 components conserved. In the case of

H. pylori Bam complex, what initially seems like a lack of conservation may be the result

of component replacement by functionally similar proteins (Keseler et al. 2013). By

contrast, F1 ATP synthase is conserved in all species examined. These examples show

that most complexes are less well conserved than their often important functions

indicate (as measured by the presence of essential proteins in these complexes).

Fig. 2-I-A displays all EcoCyc E. coli complexes with at least one component present in

M. pneumoniae. In this case, fraction of essentiality (the number of protein components

found to be essential out of all protein components present) is shown. Fig. 2-I-B

displays conservation fractions of all E. coli complexes with at least one protein

66

conserved in M. pneumoniae, though not necessarily present in a M. pneumoniae

complex. A complete survey of all EcoCyc complexes across these species in terms of

conservation and essentiality is provided in Figures 2-I-C and 2-I-D, respectively.

67

Fig. 2-I. Fractional essentiality and conservation of protein complexes across species.
(A) Each column represents one protein complex (as defined in EcoCyc for E. coli) and its fraction of
essentiality within the species shown at left. This subset of complexes are those in which at least one
component is predicted to be conserved in M. pneumoniae. Two example complexes not predicted to be
present in M. pneumoniae are also shown at the far right of the complex list. See Appendix Table III-D
for key to complexes. For species other than E. coli, complexes are predicted using orthologous groups
(OGs). Colors indicate the fraction of essentiality: blue—conserved components are essential at the
fraction specified at right, grey—no components are conserved or all conserved components are not
essential. (B) Conservation of complexes as shown in (A). Colors indicate the fraction of conservation
ranging from dark green (all proteins are present) to red (no protein is present). General functional group
assignments were manually assigned based on EcoCyc annotations. Columns in panels A and B
correspond to the same complexes. (C) As in part A, but for the full set of EcoCyc E. coli complexes; each
column is a single complex. An extended version of this heat map is provided in Fig. 2-J. (D) As in part B,
but for the full set of EcoCyc E. coli complexes; each column is a single complex. The order of complexes
is identical to that in (C). An extended version of this heat map is provided in Fig. 2-K. Columns in panels
C and D correspond to the same complexes.

68

69

Fig. 2-J. All EcoCyc complexes and their fractional conservation in selected bacterial species. An
extended version of Figure 2-I-D. Names in blue indicate example complexes shown in Figure 2-I.

70

71

Fig 2-K. All EcoCyc complexes and their fractional essentiality in selected bacterial species. An
extended version of Figure 2-I-C. Names in blue indicate example complexes shown in Figure 2-I.

72

Conservation fraction was established as the fraction of unique proteins in a defined

complex present in the target species. Notably, proteins of only 21 complete EcoCyc

complexes are fully conserved across all 8 species, or just 15 complexes when

subunits and alternate forms (e.g., RNA polymerase with different sigma factors) are

removed. An additional 19 complexes are fully conserved across all species but the two

Mycoplasma species, suggesting that the mycoplasmal ancestry eliminated these

complexes entirely. The remaining complexes vary extensively in their degree and

extent of conservation. A number of complexes are well conserved across E. coli, P.

aeruginosa, C, crescentus, H. pylori, and B. subtilis but not S. sanguinis or the

Mycoplasma (e.g. succinate dehydrogenase, EcoCyc: SUCC-DEHASE). Overall, of the

176 EcoCyc complexes of 3 or more unique proteins, 128 appear to have lost at least

one unique protein component in one or more species. This demonstrates that protein

complexes are far more flexible in evolutionary terms than previously

assumed.

E. coli complexes serve as a “gold standard” for protein complexes across bacteria only

in cases where most or all of the components of a complex are broadly conserved. This

property is true of just a small fraction of complexes. Figure 2-E-D displays

conservation fractions for all 285 E. coli complexes in the EcoCyc set, clustered by

similarity of their conservation patterns across the 7 other species used in this study.

Just 21 complexes appear to be fully conserved (that is, orthologs of each of their

components are present) in all other species. This is a broad taxonomic range, so a

73

more relaxed cutoff may be appropriate to predict a complex is conserved; even so,

only 28 complexes contain at least 2/3 of the E. coli components across all species.

Lowering the cutoff to conservation of at least half of the E. coli components in each

complex still yields only 34 complexes. The lack of broad conservation is not, however,

a matter of full complex presence or absence across species. Rather, many complex

components appear to be conserved independently from other members of their

complex. Similarly patchy conservation can be seen for essentiality (Fig. 2-K), as the

most broadly well-conserved complexes (far left) generally retain essentiality across

species but less consistently-conserved complexes do not, though they may retain

essentiality while appearing to lose complex components.

Protein complex function varies in a similar way as conservation (Fig. 2-J). As

expected, many of the most highly conserved complexes are directly involved in DNA

replication, transcription, or translation. Many protein complexes of varying conservation

fractions are transport complexes – as bacterial membrane structures vary across

species, some degree of transporter component evolution is also expected. At least six

distinct complexes involved in DNA modification or repair demonstrate less than perfect

conservation.

2.4.5 The E. coli protein complexome as a model for other species

E. coli is frequently used as a model organism for bacteria in general. Using the

literature-curated set of protein complexes from EcoCyc, I sought to determine how well

74

this protein complexome serves as a model for complexes in other bacterial species. A

comparison of the fractional conservation of each EcoCyc complex across

894 different bacterial genomes was the result (Fig. 2-L). The genomes in this

comparison were arranged as per NCBI taxonomy definitions, revealing patterns in

complex conservation closely corresponding to numerous taxonomic boundaries.

Hierarchical clustering of each E. coli model complex (specifically, UPGMA) on the

basis of its fractional conservation across all other species reveals groups of complexes

with similar patterns of predicted conservation.

75

Fig 2-L. E. coli complex conservation across Bacteria corresponds to taxonomic boundaries. The
heat map displays fractional conservation of EcoCyc protein complexes as in Fig. 2-E, though in this case
across all 285 complexes in the set and across 894 different bacterial genomes as indicated on the tree at
left. See Materials and Methods for taxonomic details. Tree follows NCBI taxonomy. Complexes
(columns) have been clustered on the basis of the distance between their average fractional
conservations (using average linkage).

76

The species with the most overall conservation of the E. coli complexes are,

unsurprisingly, those most closely related to E. coli. Roughly a third of the complex set

is conserved across all species with the minimal Rickettsia and Mycoplasma genomes,

among others, serving as notable exceptions. This is a crucial distinction between the

data shown in Fig. 2-L and that in Fig. 2-I: the small set of representative species fails

to highlight the full range of bacterial genome diversity and therefore does not capture

complex conservation in numerous species (e.g., all Clostridia and Actinobacteria). The

middle third shows the most difference in conservation between the Proteobacteria and

all other species. The Lactobacillales show the most difference in conservation among

these complexes, to the degree that they resemble Cyanobacteria more closely among

this subset. The last third (far right of Fig. 2-L) of the complexes demonstrate the most

variable conservation across all species.

Many of these complexes are missing or partially conserved among the Proteobacteria

yet are fully present in many Firmicutes species and even in extremophiles like

Thermus or Thermotoga species. Overall, out of 285 EcoCyc complexes, 12 (~4%)

have at least one component present in all 894 bacterial genomes in the set. None are

perfectly conserved across all genomes but 14 complexes appear to be conserved

across at least 95% of the genomes. This level of conservation is consistent with the

traditional view of some complexes (e.g., ribosomes) as static in composition and

function. If potential complex conservation is generously defined as conservation of at

least half of the complex components, 3 EcoCyc complexes are potentially conserved

77

across all 894 genomes, 25 are potentially conserved across 95% of the genomes, and

186 are potentially conserved across at least half of the genomes. Variance across the

full set of complex conservation fractions is 0.189. Because conservation of these

complexes follows the existing taxonomy well, some generally well-conserved

complexes like RNA polymerases may be missing from entire genera.

The experimentally-determined protein complexes identified by Hu et al. were also used

as a model of the E. coli complexome (Fig. 2-M). Few members of the Hu et al. set

appear to have clear matches in the EcoCyc set (see Table 2-C), potentially

demonstrating the variability inherent to experimental results, but also suggesting the

Hu et al. set may contain complexes not included in EcoCyc. Most complexes appear to

have partial conservation across nearly all species using this model. Distinctions are still

seen among the minimal genomes of the Rickettsiales as well as the Mycoplasma and

the genomes of related species. Out of 310 Hu et al. complexes, 16 (~5%) have at least

one component present in all 894 bacterial genomes in the set. As with the EcoCyc

complexes, none are perfectly conserved across all genomes but a single complex

(complex 271) appears to be conserved across at least 95% of the genomes. Using the

same 50% cutoff for potential complex conservation as used above, no Hu complexes

appear to be conserved in all 894 genomes, 10 are potentially conserved across 95% of

the genomes, and 182 are potentially conserved across at least half of the genomes.

Though these Hu et al. complex values appear similar to those for the Ecocyc

complexes, variance across the full set of Hu complex conservation fractions is 0.097,

78

indicating less variability among the values than that seen for the EcoCyc complexes.

This lesser variance can also be seen in the surprising consistency across taxonomic

lines (Fig. 2-M).

Table 2-C. Hu et al. (2009) E. coli protein complexes and the best matches among EcoCyc E. coli
protein complexes.
Hu et al. complex Best match complex in EcoCyc Coverage
2 RUVABC-CPLX 0.67
8 CPLX0-1923 0.67
10 RNAP54-CPLX, RNAPS-CPLX, RNAP32-CPLX, RNAP70-CPLX, APORNAP-CPLX 1
16 CPLX0-240, CPLX0-241 1
19 CPLX0-7852, PC00084 1
31 CPLX0-7986 1
38 3-ISOPROPYLMALISOM-CPLX 1
42 CPLX0-7910 1
43 NITRATREDUCTA-CPLXN, NITRATREDUCTZ-CPLX 0.67
44 ALPHA-SUBUNIT-CPLX,DIMESULFREDUCT-CPLX, FORMATEDEHYDROGO-CPLX 0.67
46 SUCCCOASYN 1
47 CPLX0-7935 0.8
48 CPLX0-3958 1
50 2OXOGLUTARATEDEH-CPLX 0.67
56 ALPHA-SUBUNIT-CPLX,DIMESULFREDUCT-CPLX, FORMATEDEHYDROGO-CPLX 0.67
58 CPLX0-3801 0.67
59 CPLX0-2121, CPLX0-2161 0.67
71 ACETYL-COA-CARBOXYLTRANSFER-CPLX 1
78 SULFITE-REDUCT-CPLX 1
92 CPLX0-3361 1
98 CPLX0-1668, FAO-CPLX 1
99 FORMHYDROGI-CPLX 0.67
122 CPLX0-7942 1
154 NRDACTMULTI-CPLX 0.67
191 ABC-12-CPLX 0.67
208 CPLX0-2424, CPLX0-2425 1
231 CPLX0-2502 1
241 RECBCD 1
289 GLUTAMATESYN-DIMER, GLUTAMATESYN-CPLX 1
299 ABC-6-CPLX 1
309 CPLX0-2982 0.67
Coverage is the fraction of components of the Hu et al. complex present in the EcoCyc complex. All
matches shown here are those with a coverage fraction of at least 2/3. Complexes may have more than
one match if the matching complexes share components (e.g., with RNA polymerase forms such as
RNAPE-CPLX).

79

Fig. 2-M. E. coli experimentally-observed complex conservation across bacteria corresponds to
taxonomic boundaries. Using the Hu et al. set of protein complexes as a model, each column is a single
complex from the set and each row is a distinct bacterial genome. 310 complexes and 894 genomes are
shown in total. See Methods for taxonomic details. Tree follows NCBI taxonomy. Complexes (columns)
have been clustered on the basis of the distance between their average fractional conservations (using
average linkage).

80

Both the literature-curated EcoCyc model and the Hu et al.-based experimental model

were evaluated by comparision to a randomized version of their respective components.

For the literature-curated model, Pearson correlation was 0.185, while for the

experimental model, Pearson correlation was 0.293. The higher correlation value for the

experimental model indicates it is closer to a random distribution of complex correlation

fractions across the species set. I do not expect complexes to be conserved in a

random pattern so this may indicate the Hu et al. complex set is less useful than the

EcoCyc complex set for prediction across this wide range of genomes.

2.4.6 Essentiality of proteins in complexes and the impact of paralogy

Mycoplasma species have highly reduced genomes and it is generally assumed that

they have retained mostly essential proteins. In fact, the fraction of conserved essential

proteins is much higher when comparing Mycoplasma pneumoniae to E. coli than vice-

versa (Fig. 2-N). In these comparisons, all complex components are searched for in full

genomes and essentiality is assigned based on the target species. Among the full set of

Hu et al. E. coli complexes, complexes have an average conservation fraction of

0.198±0.230 and an average essentiality fraction of 0.122±0.196 in M. pneumoniae.

High variability in conservation among complexes is expected as complex components,

like single proteins, are subject to a broad variety of evolutionary pressures. Among the

53% of complexes with at least one component present in M. pneumoniae, the average

fractions increase to 0.375±0.184 and 0.231±0.218, respectively. Among the full set of

Kühner et al. M. pneumoniae complexes, complexes have an average conservation

81

fraction of 0.716±0.292 and an average essentiality fraction of 0.32±0.332 in E. coli.

Among the 95% of complexes with at least one component present in E. coli, the

average fractions increase to 0.755±0.245 and 0.337±0.332, respectively. Overall,

Mycoplasma protein complex components are more likely to be present and essential in

E. coli than E. coli protein complex components are in Mycoplasma.

82

Fig. 2-N. Conserved complex components are enriched for essential proteins. This correlation is
more pronounced in Mycoplasma pneumoniae (blue). Protein complexes of E. coli (Hu et al. 2009) are
compared to complexes of M. pneumoniae (Kühner et al. 2009) and vice versa. Fraction of conservation
and fraction of essentiality are calculated as described in Methods. Each node represents a single protein
complex with relative size corresponding to the size of the complex in number of components. Kühner
complex 50 and its corresponding Hu complex 77 are indicated as an example complex match.

83

One possible explanation for the lower fraction of conserved essential proteins in E. coli

is the presence of paralogs that renders duplicate genes non-essential, given the

presence of an additional copy with a redundant function. I performed comparisons of

the fraction of conservation of each complex and its sum of paralogy (that is, the total

number of all copies of all genes coding for the complex components in the target

species, as determined by shared OG membership). As the number of paralogs for

each gene is broadly defined, these numbers are considered maximum possible values

rather than specific counts of known paralogous regions.

There is an inverse trend between E. coli complexes vs. M. pneumoniae (Fig. 2-O-A)

and vice versa (Fig. 2-O-B): the more paralogs they have in E. coli the less conserved

these proteins were in M. pneumoniae and vice versa. More specifically, E. coli

complexes with a conservation fraction greater than 0.6 in M. pneumoniae all had total

paralogy sums lower than 40 though more poorly-conserved complexes had paralogy

sums between 2 and about 100. M. pneumoniae complexes with a conservation fraction

greater than 0.6 in E. coli had a range of sums of paralogy between 2 and nearly 80.

The more poorly-conserved complexes all had paralogy sums of 60 or less. Pearson

anti-correlation for E. coli complexes vs. M. pneumoniae (Fig. 2-O-A) was -0.04 and

Pearson correlation for M. pneumoniae complexes as a model for E. coli (Fig. 2-O-B)

was 0.05, indicating limited to no overall correlation in either full comparison. As is the

case with conservation of complexes across all species (Fig. 2-L), correlation is likely

case-specific. The simplest explanation for this observation may be that complexes with

84

extensive paralogy (that is, their components have sequences with similarity to other

proteins encoded elsewhere in the genome) represent evolutionary flexibility. A complex

may be more tolerant of the loss of an individual component if a similar, redundant

protein may take its place. Such redundancy does not appear to be present in the M.

pneumoniae genome.

85

Fig. 2-O. Cross-species conservation of experimentally-observed protein complexes and the sums
of the counts of potential paralogs of their components. (A) Proteins in E. coli complexes (Hu et al.
2009) tend to have more paralogs if the complexes are less conserved. (B) By contrast, in M.
pneumoniae complexes (Kühner et al. 2009) more conserved complexes tend to have more paralogous
proteins. Fraction of conservation and sum of paralogy are calculated as described in Methods. Each
node represents a single protein complex with relative size corresponding to the size of the complex in
number of components. E. coli complexes as defined by Hu et al. were compared to the full M.
pneumoniae proteome while M. pneumoniae complexes were compared to the full E. coli proteome; all
cross-species comparison are done using predicted orthologs as described in Methods.

86

The fraction of essential components in protein complexes is non-random and may be

greater than expected, depending upon the complexes compared (Fig. 2-L). When

compared to random assortment (that is, a condition with no enrichment), Hu et al. E.

coli complexes have more essential proteins than expected (Fig. 2-P-A). A Spearman

anti-correlation of -0.25 was found for this set. E. coli complexes from EcoCyc (Fig. 2-P-

B) demonstrate similar trends, with a Spearman anti-correlation of -0.22. M.

pneumoniae complexes from Kühner et al. (Fig. 2-P-C) show a trend of declining

essentiality compared to randomized essentiality fractions of 0.6–08. A Spearman anti-

correlation of -0.03 was found for this M. pneumoniae complex set. Both E. coli anti-

correlations show a weak relationship.

87

Fig. 2-P. Essentiality of proteins in
complexes. Distribution of essential
genes among those from (A) E. coli
(Hu et al. 2009) and (B) E. coli
(EcoCyc), and (C) M. pneumoniae.
The fraction of essential genes within
protein complexes was determined
for each complex set. In E. coli,
essential protein complexes are
enriched for essential proteins. By
contrast, complexes with non-
essential proteins are over-
represented in the genome-reduced
Mycoplasma pneumoniae. Each
distribution is expressed as binned
log2 ratios of observed over
expected frequency. Values indicate
observed frequency above or below
random results (= 1), respectively.
Marco Abreu assisted with these
analyses.

88

2.4.7 Proteins of unknown function

Protein complexes are attractive targets for functional analysis, given that proteins are

embedded in a functional context. This is especially true for proteins of unknown

function that are part of a complex (Fig. 2-Q-A, B). Here, conservation is defined as

greater than 0.5 conservation fraction and essential complexes are those with at least

one essential component in the target species. Among the highly conserved

components, many are essential in 4 or more of the 8 species. Using more than one

species reduces the effect of noise and inconsistency across essentiality screens.

Starting with 39 EcoCyc-defined complexes containing unknown proteins, at least 15

appear to be conserved in five other species shown here other than the Mycoplasma

representatives.

89

Fig. 2-Q. Protein complexes are rich in highly-conserved proteins of unknown function. (A) The list
of EcoCyc E. coli protein complexes was compared on the basis of component presence vs. absence
across seven other species in this study. Conserved complexes, in this figure, are those in which at least
one orthologous component is present in the target species. Similarly, essential complexes include at
least one component found to be essential in both E. coli and in the target species. (B) As in (A), but
within the subset of EcoCyc complexes containing at least one protein of unknown or unclear function. In
these instances, the complex itself may have a known function though the roles of its components may
remain unclear. (C) Examples of experimentally-observed protein complexes containing proteins of
unknown function. E. coli complex examples from Hu et al. are shown at left, M. pneumoniae complexes
from Kühner et al. are shown at right. Complexes are labeled with the identifier used in their
corresponding study.

90

Fig. 2-Q-C displays example complexes for the Hu (E. coli) and Kühner (Mycoplasma

pneumoniae) complexes, respectively. Each complex contains at least one component

of unknown or unclear function, whether in the context of the protein complex or broader

cellular function. For instance, complex 66 from Hu et al. (Fig. 2-Q-C) consists of 6

unique proteins of which 3 are of unknown function (or remain without annotation). Of

the 6 proteins, 3 are highly conserved and 1 of those three is frequently essential. The

E. coli protein MraZ, present in Hu complex 149, is shown here as a protein of unknown

function but was recently found to be a transcriptional regulator involved in multiple

pathways (Liechti et al. 2012; Eraso et al. 2014). More than 149 Hu et al. E. coli

complexes and 34 Kühner et al. Mycoplasma pneumoniae (183 in total) complexes

contain at least one component of unknown function. Of these, 109 Hu et al. E. coli

complexes and 19 Kühner et al. M. pneumoniae complexes contain components highly

conserved as essential proteins.

2.4.7 The E. coli protein complex interactome

Interactors in this network are protein complexes from the EcoCyc set, filtered to

remove all homomer complexes (that is, complexes only involving multiple copies of the

same protein). The full set of complexes, with homomers, is 781 complexes; selecting

only heteromers reduces the list to 285 complexes, as seen in the previous sections.

These complexes were placed into one of eleven general functional categories (see

Methods for details) based on their EcoCyc annotation.

91

With protein complexes serving as nodes of a network, we may then define interactions

between complexes using the interactions between protein components of the

complexes. Doing so yields a network of 217 nodes and 1,709 interactions. 68

complexes have not been observed to participate in cross-complex interactions as per

available data and are not present in the network. The 801 interactions in the resulting

network are filtered further by removing 908 self-interactions and 323 duplicate

interactions (here, a duplicate indicates that two different protein pairs interact between

the complexes), yielding a network of 210 complexes and 478 cross-complex

interactions (Fig. 2-R, see also Appendix Table III-L for all interactions).

92

Fig. 2-R. Interaction network of E. coli protein complexes. Each node in this network is a single
protein complex from E. coli as defined by EcoCyc. Interactions between complexes, denoted by edges,
indicate that at least one protein component of the source complex has been observed in a protein-
protein interaction with at least one protein component of the target complex, as per IntAct. Node color
indicates general complex function. Edges have been bundled for clarity. Dotted line edges indicate
orthology-based predicted interactions; all other interactions are based off direct interactions. Self-
interactions are not shown.

93

The network contains one primary component with 206 of the 210 complexes and two

separate components of one interacting complex pair each (including, specifically, the

cytochrome bd-I and bd-II terminal oxidases). The network contains both direct

interactions between E. coli proteins and those predicted from orthology (i.e., if two

proteins are found to interact then all other proteins in their respective orthologous

groups are predicted to participate in similar interactions). The overall network has a

clustering coefficient of 0.172, a diameter of 7, and a density of 0.022. Each node has

an average of 4.552 neighbors and the highest degree node (complex CPLX0-3934, the

GroEL-GroES chaperonin complex) has a degree of 88, followed by the core RNA

polymerase enzyme (complex APORNAP-CPLX) with a degree of 30.

2.4.8 Flexibility of protein complexes

The essential “core” components of protein complexes may be conserved across

taxonomic levels while “accessory” components may not (Ryan et al. 2012). Given their

multiple interactions, proteins within protein complexes should not only be more highly

conserved than “un-complexed” ones, but should retain their essential roles if their

fellow complex members are present (Hart et al. 2007; Wang and Marcotte 2010).

Components of protein complexes are, on average, more likely to be present in other

bacterial species than proteins not in complexes (Ryan et al. 2012). This is a result of

high conservation among sets of large, essential complexes. 128 out of 285 literature-

verified E. coli protein complexes appear to have all components conserved in B.

subtilis, 30 of which also appear to be present in the M. genitalium genome. For

94

instance, all components of the ATP synthase complex (EcoCyc: ATPSYN-CPLX) are

present in all species examined, though they do vary in essentiality. B. subtilis

essentiality screens found no essential genes in ATP synthase, while those for M.

pneumoniae found all but one component to be essential. Other complexes –

predominantly those with transmembrane domains and/or transporter functions – are

more variable in both conservation and essentiality, though they provide examples of

how dispensable accessory proteins may be.

Some protein complexes with essential functions in E. coli may not be present in other

species. The lipopolysaccharide transport complex (EcoCyc: CPLX0-7992) serves as

an excellent example: all seven of the Lpt proteins in this complex have been found to

be essential in E. coli though their conservation is limited to other Gram-negative

species including C. crescentus and P. aeruginosa. I found that most transmembrane

protein complexes follow this pattern, likely reflecting the link between speciation and

environmental conditions as transmembrane transport complexes are necessary for

obtaining resources from the environment. Interestingly, species with partial complex

component conservation vs. E. coli may highlight situations in which core elements of a

complex are conserved but have been modified to carry out other functions or adapted

to special physiological circumstances. For example, 3 out of 4 of the succinate

dehydrogenase complex (EcoCyc: SUCC-DEHASE) components in E. coli are also

present in B. subtilis but not at all in S. sanguinis. This is an especially interesting

95

example as two of the components, SdhC and SdhD, are inner membrane proteins,

though only SdhC is present in the three-component B. subtilis succinate

dehydrogenase. I conclude that membrane proteins and their complexes are

particularly malleable, given their role in signaling and transport which reflects

adaptations to specific environments and the nutrients present in them.

Surprisingly, many essential proteins are poorly conserved and essentiality itself is often

not conserved across species (Fig. 2-I). This suggests that many functions

can be replaced by non-homologous displacement (Kelkar and Ochman 2013) and that

genomes are more malleable in evolutionary terms than previously expected. Clearly,

this evolutionary flexibility has contributed much to the success of microbes to populate

all possible environments on the planet. Variability in complex conservation highlights a

limitation with this study: I am unavoidably limited by the availability of sequenced

bacterial genomes. Newly-characterized genomes may reveal additional variation or

consistency among protein complexes even if they are highly reduced in other respects.

As with their protein components, individual complexes reveal underlying evolutionary

processes (Fig. 2-L). The most highly-conserved complexes are those with functions

critical to microbial life, including transcription, translation, and transcript degradation.

Though different RNA polymerase (RNAP) holoenzymes (that is, RNA polymerases with

different sigma factors) were considered as distinct complexes in this study, all bacterial

species unsurprisingly retained at least one type of RNAP. The ribosome (EcoCyc:

96

CPLX0-3964) is also well-conserved though its size and high level of conservation may

obscure cross-species differences.

Variable conservation of some complexes is visible even among the Escherichia

genomes (Fig. 2-S). CPLX0-7909 (the RnlA-RnlB toxin-antitoxin complex) only appears

to be present in K-12 E. coli but also in single species of Shewanella and

Photobacterium. This toxin-antitoxin system has a role in bacteriophage resistance in E.

coli (Koonin et al. 1996) but it is unclear if this function may be retained in distantly

related bacteria. CPLX0-2001 (the ferric dicitrate transport system) provides an example

of more gradual change. This complex spans the membrane, suggesting its

conservation should be membrane-dependent. This appears to be the case as it is well

conserved across most Proteobacteria (except the Rickettsiales and Buchnera species)

yet is poorly-conserved across most of the species traditionally considered Gram

positive. A subset of complexes, including CPLX0-1163 (HslVU protease) and ABC-56-

CPLX (aliphaticsulfonate ABC transporter), fit a strict co-conservation model: these

complexes are almost always present in their full form rather than as a fraction of the E.

coli model complex. These complexes are exceptions rather than the rule. Using E. coli

as a model, few complexes are conserved perfectly across a wide range of species; in

fact, most complexes are fractionally conserved.

97

Fig 2-S. All EcoCyc complexes and their fractional
conservation in selected strains of E. coli and
Shigella. Figure continues on next page.

98

99

A complex-centric approach to cross-species gene and protein conservation need not

be restricted to E. coli. Rather, such an approach would benefit from expansion into

other bacterial species as it may reveal novel evolutionary patterns and avoid the bias

inherent in focusing on well-studied model bacterial species. The approach also offers a

way to type potential bacterial pathogens: by comparing pathogenic strains with each

other or those of other species, researchers may quickly identify not only the protein

complexes implicated in pathogenesis (that is, those already suspected to be

pathogenicity factors) but also unexpected gain or loss of other protein complexes or

their components. Predicted protein complexes of H. pylori provide examples of

conserved and missing protein complexes (Fig. 2-T). More than two thirds of the 1,180

distinct H. pylori orthologous groups encoded by its genome are present in E. coli as

well (Fig. 2-T-A) suggesting that complex conservation should be similar (M.

pneumoniae is included for comparison with a species distantly related to both H. pylori

and E. coli). Reflecting both the evolutionary distance and difference in membrane

structure between the two species, some E. coli protein complexes appear to be fully or

mostly conserved (e.g., the OppBCDFMppA and DdpABCDF complexes) while others,

such as the Bam outer membrane protein complex, are poorly conserved (Fig. 2-T-B).

Unlike individual proteins, most protein complexes appear to be poorly-conserved from

E. coli to H. pylori (Fig. 2-T-C).

100

Fig 2-T. Predicted protein complexes in H. pylori. (A) Similary of the proteomes of E. coli, H. pylori,
and M. pneumoniae in terms of homologous proteins. (B) Selected protein complexes showing the variety
of complex conservation. Dotted circles indicate proteins present in the model E. coli complex but
predicted to be missing in H. pylori. Stoichiometry of complex subunits is noted where more than 1 protein
component or multimer is present. (C) Similarity of predicted complexes when compared to E. coli and M.
pneumoniae, the two other proteomes for which comprehensive protein complex information is available.
Only complexes of 20 or fewer unique components are shown.

101

2.4.9 Further discussion

The substantial variation among protein complexes across species supports the notion

that these complexes are much more malleable than previously thought. A possible

explanation of this is that the function of a complex is more important than its content.

Complexes can serve the same role yet contain different proteins and when one

function is lost, others can fill in the gap. Other studies have found that functional

redundancy can lead to variation and that there is little overlap in terms of protein

interaction among species (Dixon et al. 2009; Ryan et al. 2013). While mutational

change in a protein complex may have catastrophic potential, complexes are not

immutable. In fact, several complexes that are essential in some species have varying

composition in other species. For instance, 5 out of 9 components of the E. coli Sec

translocation complex (EcoCyc: SEC-SECRETION-CPLX) are well-conserved across

species from P. aeruginosa to M. genitalium. One of these components, SecA, has been

found to be essential in all species focused on in this work with the exception of S.

sanguinis; orthologs of this protein are present in all 894 bacterial genomes examined.

The remaining 4 E. coli components are more variable in conservation across species.

For instance, YajC is present in 727 out of the same 894 genomes. Strong selection

pressure seems to avoid mutations that render the entire complex ineffectual. This may

explain why I have observed a higher level of conservation for protein complex

components than for proteins in general (Fig. 2-D).

102

Components of protein complexes are, on average, more likely to be present in other

bacterial species than proteins not in complexes. The essential “core” components of

protein complexes may be conserved across taxonomic levels while “accessory”

components may not (Ryan et al. 2012). Given their multiple interactions, proteins within

protein complexes should not only be more highly conserved than “un-complexed”

ones, but should retain their essential roles if their fellow complex members are present

(Hart et al. 2007; Wang et al. 2010). The amount of conservation is a result of high

conservation among sets of large, essential complexes. 128 out of 285 literature-verified

E. coli protein complexes are fully present in B. subtilis, 30 of which are also completely

present in M. genitalium. For instance, all components of the ATP synthase complex

(EcoCyc: ATPSYN-CPLX) are present in all species examined, though they do vary in

essentiality. B. subtilis essentiality screens found no essential genes in ATP synthase,

while those for M. pneumoniae found all but one component to be essential. Other

complexes—predominantly those with transmembrane domains and/or transporter

functions—are more variable in both conservation and essentiality, though they provide

examples of how dispensable accessory proteins may be.

Some protein complexes with essential functions in E. coli may not be present in other

species. The lipopolysaccharide transport complex (EcoCyc: CPLX0–7992) serves as

an excellent example: all seven of the Lpt proteins in this complex have been found to

be essential in E. coli though their conservation is limited to other Gram-negative

species including C. crescentus and P. aeruginosa. I find that most transmembrane

103

protein complexes follow this pattern. Interestingly, species with partial complex

component conservation vs. E. coli may highlight situations in which core elements of a

complex are conserved but have been modified to carry out other functions or adapted

to special physiological circumstances. For example, 3 out of 4 of the succinate

dehydrogenase complex (EcoCyc: SUCC-DEHASE) components in E. coli are also

present in B. subtilis but not at all in S. sanguinis. This is an especially interesting

example as two of the components, SdhC and SdhD, are inner membrane proteins,

though only SdhC is present in the three-component B. subtilis succinate

dehydrogenase. I conclude that membrane proteins and their complexes are particularly

malleable, given their role in signaling and transport which reflects adaptations to

specific environments and the nutrients present in them.

Smaller and more reduced bacterial genomes (that is, relative to E. coli) appear to code

for a greater fraction of highly-conserved protein complexes. This conservation is

evident in comparisons of the Mycoplasma pneumoniae protein complexes. In an

examination of these protein complex components across more than 800 bacterial

genomes, I find that species such as M. pneumoniae offer a better model of the protein

complexes most critical to bacterial life, though they lack the predictive power of protein

complexes from E. coli. Protein complexes observed in M. pneumoniae may not only

have retained a core set of functions but may also reflect a higher degree of

multifunctionality among metabolic enzymes (Yus et al. 2009; Kelkar and Ochman

2013). In short, they may distribute more functions among fewer complexes. A truly all-

104

encompassing comparison of protein complexes should therefore incorporate multiple

complex functions. In the absence of this data, however, model protein complex sets

provide useful context for the relationships between diverse bacterial species.

105

Chapter 3 - Conservation of Protein-Protein Interactions among Bacteria

Significant portions of this chapter have been published or are in preparation for

submission:

Caufield, J.H., Sakhawalkar, N., Uetz, P. (2012). A comparison and optimization of yeast

two-hybrid systems. Methods, 58(4), 317–324. doi:10.1016/j.ymeth.2012.12.001.

Caufield, J.H., Wimble, C., Abreu, M., Shary, S., Wuchty, S., Uetz, P. (2016). Bacterial

protein meta-interaction networks reveal consistencies among interactomes.

Manuscript submitted.

3.1 Abstract

Proteome-wide interactomes can offer compelling evidence for protein function. The

protein interactomes of several bacterial species have been completed, including

several from prominent human pathogens. In this study, I use more than 52,000 unique

protein-protein interactions (PPIs) across 349 different bacterial species to determine

their conservation across data sets and taxonomic groups. When proteins are collapsed

into orthologous groups (OGs) the resulting meta-interactome still includes more than

43,000 interactions, about 14,000 of which involve proteins of unknown function. While

conserved interactions provide support for protein function in their respective species

data, I found only 429 PPIs conserved in two or more species. The meta-interactome

serves as a model for predicting interactions, protein functions, and even full

interactome sizes for species with limited to no experimentally observed PPI, including

Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and

106

31,000 PPIs, respectively. Such conserved interactions should provide evidence for

important but yet-uncharacterized aspects of bacterial physiology and may provide

targets for anti-microbial therapies.

3.2 Introduction

Our understanding of a protein's role in a biological system strongly depends on its

placement in a network of protein-protein interactions, or interactome. Recently,

interactome data sets involving proteins from various microbial species have been

constructed using experimental and inferred data (Table 3-A) while numerous

databases have been created to store and disseminate this information (Kerrien et al.

2012, Chatr-Aryamontri et al. 2015, Szklarczyk et al. 2015). Bacterial proteomes are

particularly attractive subjects for interactome analysis due to their manageable size.

The proteomes of many bacterial species include only a few thousand proteins,

suggesting that they are about an order of magnitude smaller than their counterparts in

many animals and plants. Therefore, most bacterial species provide more tractable

interactomes compared to the human genome that has more than 20,000 protein coding

genes (ENCODE Project Consortium 2012) and more than 650,000 predicted protein

interactions (Stumpf et al. 2008).

Table 3-A. Experimental microbial interactome sizes.

Species Name

Experimental
interactome
size (PPIs)

Proteins (and
unique OGs) in

proteome

Proteins in
published

interactome
Interactome ref.

Campylobacter jejuni 11,687 1,623 (1,523) 1,321 (Parrish et al. 2007)
Escherichia coli 2,234 4,306 (2,563) 1,269 (Rajagopala et al. 2014)
Helicobacter pylori 3,004 1,553 (1,280) 739 (Häuser et al. 2014)

107

Mesorhizobium loti 3,121 7,272 (2,981) 1,804 (Shimoda et al. 2008)
Synechocystis sp. PCC
6803 3,236 3,575 (2,246) 1,920

(Sato et al. 2007)

Treponema pallidum 3,649 1,036 (736) 726 (Titz et al. 2008)

Saccharomyces
cerevisiae 957 - 37,600* 6,721 (4,794) ~1,004 - 3,000

(Uetz et al. 2000; Ito et al. 2001;
Yu et al. 2008; Sambourg and
Thierry-Mieg 2010)

Yeast (Saccharomyces cerevisiae) interactome sizes provided for comparison.
* Sambourg and Thierry-Mieg (2010) estimated the yeast interactome size to be ~37,000 PPIs, based on 3,042 PPIs
among well-studied proteins curated from the literature.

Nearly all published bacterial interactomes have been created using either the yeast two

hybrid (Y2H) system or affinity purification followed by mass spectrometry analysis

(AP/MS). Although E. coli is the only bacterial species with a comprehensive

interactome that has been studied by both Y2H (Rajagopala et al. 2014) and AP/MS (Hu

et al. 2009) methodologies a comparison of both methods surprisingly showed largely

non-overlapping interaction data sets. In the Y2H data set of 2,234 E. coli protein-

protein interactions, 1,800 were found outside of known protein complexes (Rajagopala

et al. 2014). Similarly, only a third of ~1,500 interactions that are thought to occur in

protein complexes were detected by the Y2H approach, indicating that existing

methodologies in isolation produce incomplete datasets (Rajagopala et al. 2014).

A way to overcome such problems is to combine not only different datasets from the

same species but also data from different species. Although cross-species interactome

approaches have been recently presented for human and yeast protein sets (Zhong et

al. 2016) no comprehensive comparison of bacterial interactomes currently exists. While

108

the majority of reports focus on one interactome (Fig. 3-A), far fewer include data from

more than one set of interactions, and just two recent reports have investigated more

than 5 out of 11 available large-scale bacterial interactome studies. One of these

studies provides an analysis of bacterial genomes in terms of their predicted functional

complexity rather than the exact interactions in their interactomes (Kelkar and Ochman

2013). Other studies dealt with four or five published interactomes (see a complete list

in Appendix Table IV-A), presenting only a general discussion of the evolution of

protein networks (Ratmann et al. 2009) or a review of ways to to mine high-throughput

experimental data to link gene and function (Blaby-Haas and de Crecy-Lagard 2011).

109

Fig. 3-A. Analysis of citations of bacterial protein interactome literature. Publications are any
individual scholarly works indexed in PubMed Central with a reference to at least one of eleven large-
scale bacterial interactome studies. Publications count is on a log scale. See Methods for details of

citation analysis. Christopher Wimble assisted with this analysis.

110

One of the most promising applications of interactomics is in the analysis of protein

function. In a “guilt by association” approach (Schauer and Stingl 2009), protein

interactions provide context to proteins by considering functional roles of their known

interaction partners. For example, a protein that interacts predominantly with proteins

that participate in metabolic activities putatively has such functions as well. This method

has been applied as part of the analysis of interactomics data (Titz et al. 2008, Hu et al.

2009, Song and Singh 2009) and is a major focus of interaction databases such as

STRING (Szklarczyk et al. 2015) and BioGRID (Chatr-Aryamontri et al. 2015).

As part of a guilt-by-association approach, proteins within interaction networks may be

compared by defining them as members of orthologous groups (OGs). The concept of

OGs began with clusters of orthologous groups as defined by Tatusov et al. (1997) for

the explicit purpose of allowing functional information about one member of a COG to

apply to all other members of the cluster. Assembling these groups on the basis of

sequence alone permits them to be used to infer functional contexts for gene and

protein sequences without experimental characterization. The basic concepts defined

by Tatusov et al. (1997) and other work by the Koonin group (Tatusov et al. 2003;

Kristensen et al. 2010) have since been improved upon by databases such as eggNOG

(Huerta-Cepas et al. 2016). The OGs in eggNOG (also referred to as NOGs, or Non-

supervised orthologous groups) are defined through non-supervised, taxonomy-limited

methods and (as of v.4.5, the most recent release) incorporate sequences from more

than 1,600 prokaryote genomes. In this work, I use eggNOG OGs to reduce the

111

complexity of interaction networks by joining proteins of similar sequence and likely

similar function.

An orthology-based approach may be species-independent and can allow interaction

networks of different species to be used to predict uncharacterized, conserved

interactions. Conserved, cross-species interactions may be referred to as “interologs”

(Matthews et al. 2001). Comparing interactions derived from multiple screens and

species can also provide an evolutionary basis for the reasons an interaction may or

may not be present. Analyses of conserved networks have been performed (Matthews

et al. 2001; Sharan et al. 2005; Liang et al. 2006; Wiles et al. 2010; Ryan et al. 2012), in

some cases alongside interactome studies (Wang et al. 2010). Several studies have

also attempted to assemble comprehensive interaction networks using orthology-based

predictions (Brown and Jurisca 2005; Lee et al. 2008; Gu et al. 2011) or predictions

based on physical protein properties (Zhang et al. 2012; Kotlyar et al. 2014). Few of

these studies – with the exceptions of Sharan et al. (2005) Zhang et al. (2012) – have

incorporated interaction data from bacteria and none have incorporated data from as

many species as those used in this work. Most of this previous work has also been

limited by low proteome coverage in the underlying interactomes or relies upon gene

essentiality data which, as shown in Chapter 2, is frequently inconsistent across

different species.

112

Here, I combine experimentally-derived, previously published protein-protein

interactions from 349 bacterial species to form a consensus meta-interactome. This

approach uses orthologous groups (OG) of proteins to combine all known interactions

into a single network. Notably, I observe that such a network shares characteristics of

single species interactomes. Furthermore, the augmentation of single species

interaction networks with a bacterial meta-interactome boosts its ability to predict

functions of the underlying proteins, given its dramatically increased information

content. Finally, I use such a bacterial meta-interactome to predict interactome sizes of

species for which only incomplete interaction data is available.

3.3 Experimental methods

3.3.1 PPI detection assay comparisons

Prior to much of the work presented in this chapter, I compared the results from several

variations on protein-protein interaction screens to determine the extent to which

methodological differences impacted interaction detection. These analyses are available

in Caufield et al. (2012); the comparison methods are as follows.

I used three primary datasets for analysis. The interactions among human proteins used

by Braun et al. (2009) were originally selected from detailed small-scale studies and

subsequently systematically retested (Chen et al. 2010). Here, I reanalyzed the raw

data from the Chen dataset, finding slightly different numbers than were originally

reported (here, I counted all yeast colonies that grew to above background levels in at

113

least two of four colonies per plate and on at least one of the two plates used). The

interactions of both Varicella Zoster Virus (Stellberger et al. 2010) and phage lambda

(Rajagopala et al. 2011) proteins were also included in this analysis as published.

Unlike many other sets of published protein–protein interactions, these datasets have

been systematically generated by use of four different Y2H vectors, as detailed by

Stellberger et al. (2010).

The aggregate results from each method used by Braun et al. and Chen et al. were

compared by clustering to determine how similar the detected subsets of the reference

set are. The results of all assays from both studies were treated as an array of 92

weighted values. Each result for a specific PPI within the positive reference set (PRS)

and random reference set (RRS), both as defined by Braun et al. (2009), was treated as

a single value with positive results holding a maximum value of 1 and negative results

holding a value of 0. All PPIs reported by Braun et al. were assigned a value of 1, as the

exact number of replicates performed in these assays is unclear. All PPIs observed in

the Chen et al. dataset were assigned a weighted value as follows: if a PPI was

observed for all replicates at a 3-AT concentration of 0, 3, or 10 mM, they were assigned

a value of 0.1, 0.4, or 0.5, respectively. PPI observed in only 1 of 2 replicates at the

same 3-AT concentrations were assigned half of the full values, for 0.05, 0.2, or 0.25,

respectively. The weighted values for all three 3-AT concentrations were added for each

PPI in the PRS and RRS, such that the results for each vector combination could be

114

treated as an aggregate of stringency and replication, with greater values for PPI

observed at multiple stringency levels and in multiple replicates.

All results arrays were aligned and clustered using the PermutMatrix graphical data

analysis package (Caraux and Pinloche 2005). Hierarchical clustering was performed

by unweighted pair group method with arithmetic mean (UPGMA) and Euclidean

distance to reflect similarities within the assay data.

3.3.2 Literature mining for citation analysis

The initial stages of this project required assessment of whether comparisons of

bacterial protein-protein interactomes were common in the interactome literature. A list

of 11 publications, each describing a single bacterial protein-protein interactome, was

assembled as a representative set of the bacterial protein-protein interactome literature.

The publications and their corresponding foci are listed in Table 3-B.

Table 3-B. Set of comprehensive bacterial protein interactome studies used for citation analysis.

Reference Species of Focus

Cherkasov et al. (2011) Staphylococcus aureus

Häuser et al. (2014) Helicobacter pylori

Hu et al. (2009) Escherichia coli

Kühner et al. (2009) Mycoplasma pneumoniae

Parrish et al. (2007) Campylobacter jejuni

Rain et al. (2001) Helicobacter pylori

Rajagopala et al. (2014) Escherichia coli

Sato et al. (2007) Synechocystis sp. PCC6803

Shimoda et al. (2008) Mesorhizobium loti

115

Titz et al. (2008) Treponema pallidum

Wang et al. (2010) Mycobacterium tuberculosis

The full list of citations from each paper was retrieved from PubMed Central in XML

format in August 2015. All citation lists were combined to determine citations shared by

multiple publications in the set. Publications citing multiple representative interactome

publications are those with potential for cross-interactome comparisons. See Appendix

Table IV-A for full citations for each publication in the set.

3.3.3 Protein interaction data sets

Protein interaction sets were obtained and filtered using an in-house Python program,

Network_umbra (available at http://github.com/caufieldjh/network-umbra). This program

parses interaction data files in PSI-MI TAB 2.7 format (MITAB27; a format used by

protein-protein interaction databases; developed by the HUPO Proteomics Standards

Initiative and described in detail at

https://code.google.com/p/psimi/wiki/PsimiTab27Format) and facilitates all further

methods described in this study.

The full set of interactions was obtained from the IntAct database (Kerrien et al., 2011;

http://www.ebi.ac.uk/intact/) on September 25, 2015. To produce the data set used in

this study, the full set of IntAct interactions was filtered by Uniprot taxonomy to include

only protein-protein interactions (PPI) from bacterial sources (species:"taxid:2"). Prior to

further filtering, this interaction set includes 63,421 interactions across all interaction

116

types. All interactions without Uniprot identifiers (i.e., interactions involving ChEBI

chemicals) were removed, as were interactions with erroneous annotation (i.e.,

interactions involving bacterial proteins vs. eukaryote proteins). The set of IntAct

interactions was appended with the protein interactome of Mesorhizobium loti (Shimoda

et al. 2008). Where possible, proteins were assigned membership in orthologous groups

(OGs) using eggNOG v.4 NOGs (Powell et al., 2014, Huerta-Cepas et al. 2015);

proteins without OG annotation are treated as single-member OGs and referred to using

their UniprotAC identifiers. All protein-protein interactions are retained in the data set

regardless of experimental observation method; interactions derived from spoke-

expansion models are treated identically to those defined as “direct” interactions.

3.3.4 Construction of meta-interactome networks

The full set of protein interactions sourced from IntAct as described above constitutes

the starting data set for meta-interactome construction. In this study, I define a meta-

interactome as a set of protein-protein interactions where similar proteins and the

interactions among those proteins are merged into single interactor groups and

interactions (Fig. 3-B). Interactions among proteins of the same group are considered a

self-interaction, though all interactions retain properties of the source interaction

network, including the count of protein interactions and count of unique source species

contributing to the interaction. Meta-interactome groups are defined by eggNOG v.4

NOGs as noted above. Because annotations for interactions involving similar proteins

from closely-related species may differ, the species and strains corresponding to each

117

interaction were labeled using NCBI Taxonomy identifiers and identifiers sharing a

parent or a child were merged. All interactions were compressed using OG-annotated

proteins such that each OG-OG interaction appears in each data set only once per

species, though a protein may belong to multiple OGs (in these cases, the resulting OG

name includes both identifiers separated by a comma, e.g. "COG1100,COG4886").

118

Fig. 3-B. Concept and construction of the meta-interactome. The set of interactions between proteins
in different bacteria is defined by a meta-interactome. The meta-interactome is constructed by joining
interactions between proteins from multiple species such that single proteins in shared orthologous

groups (OGs) are treated as single nodes in the meta-interactome network. The meta-interactome is
compressed further into a consensus meta-interactome by treating all proteins as OGs, even when

multiple proteins from the same species share an OG. As shown in this figure by edge thickness between
nodes, interactions seen in multiple species provide a weighted value to interactions in the meta-

interactome networks.

119

The full meta-interactome is provided in Appendix Table IV-B in PSI-MI TAB 2.7 format,

with the addition of orthologous groups in the final two columns (corresponding to

interactors A and B, respectively). This interactome contains 52,734 interactions among

12,706 unique proteins, 1,805 (3.4%) of which fail to map to an orthologous group.

Treated as a network of OGs, this network contains 8,521 unique interactors.

A further subset of the meta-interactome was prepared such that this set merged all

interactions on the basis of shared interactors (see Appendix Table IV-C). For

example, two different interactions between proteins in OG1 and proteins in OG2 are

considered a single interaction. Furthermore, each OG-OG interaction is counted as a

single interaction across any number of species. I refer to this set as the consensus

meta-interactome. This network contains 8,475 unique interactors and 43,545

interactions.

Network construction, visualization, and analysis was performed using Cytoscape

(Shannon et al., 2003) v.3.

3.3.5 Interactome size prediction

The program Network-umbra is a set of Python scripts that uses the consensus meta-

interactome of OG-OG interactions to generate predicted interactomes for a given

bacterial species. See Appendix II for a full guide to this software. Given a list of

120

UniprotAC identifiers, Network-umbra assigns each to an OG and constructs a set of

interactions among those OGs based on their presence in the consensus network. In

most cases, predictions are general and unverified: if a pair of OGs is present in the

consensus network they are predicted to interact in any context. Reference proteomes

used for interactome size prediction were retrieved from Uniprot on July 20, 2016 and

are listed in Table 3-C.

Table 3-C. Reference proteomes used for interactome size prediction.

Species and Strain NCBI Taxonomy ID

Bacillus subtilis str. 168 224308

Caulobacter crescentus CB15 190650

Escherichia coli K-12 83333

Helicobacter pylori 26695 85962

Mesorhizobium loti MAFF303099 266835

Mycoplasma genitalium G37 243273

Pseudomonas aeruginosa PAO1 208964

Salmonella enterica subsp. enterica serovar Typhi 90370

Staphylococcus aureus subsp. aureus NCTC 8325 93061

Synechocystis sp. PCC 6803 substr. Kazusa 1111708

Treponema pallidum subsp. pallidum str. Nichols 243276

3.3.6 Functional annotation

Interactors in the meta-interactome are annotated using the functional categories

originally used by Tatusov et al. (1997) for the COG project and by eggNOG (Huerta-

Cepas et al. 2015). They are listed in Table 3-D.

Table 3-D. Functional categories used to describe orthologous groups of bacterial proteins.

Category Letter Category

A RNA processing and modification

C Energy production and conversion

D Cell cycle control, cell division, chromosome partitioning

121

E Amino acid transport and metabolism

F Nucleotide transport and metabolism

G Carbohydrate transport and metabolism

H Coenzyme transport and metabolism

I Lipid transport and metabolism

J Translation, ribosomal structure and biogenesis

K Transcription

L Replication, recombination and repair

M Cell wall/membrane/envelope biogenesis

N Cell motility

O Posttranslational modification, protein turnover, chaperones

P Inorganic ion transport and metabolism

Q Secondary metabolites biosynthesis, transport and catabolism

T Signal transduction mechanisms

U Intracellular trafficking, secretion, and vesicular transport

V Defense mechanisms

W Extracellular structures

S Function unknown

3.4 Results and discussion

3.4.1 The bacterial meta-interactome resembles individual interactomes in
structure

A direct comparison of interologous protein-protein interactions benefits from increasing

the amount of data used. Though complete interactome sets are ideal for this purpose,

even a comprehensive, proteome-wide interactome does not contain every biologically-

relevant PPI. In the case that the missing PPIs are not present for methodological or

sequence-related reasons (i.e., if two proteins conserved across multiple species

produce a detectable interaction in just one species) data sets produced using different

122

methods and/or proteomes will complement each other. I constructed a meta-

interactome of individual bacterial protein interactomes to address these concerns and

to determine how useful such a data aggregate could be.

To compare interactions across multiple species, I first mapped proteins to orthologous

groups (OGs; for details see Materials and Methods). As a source of information about

OGs, I used the EggNOG database (Huerta-Cepas et al. 2016), expanding the idea of

clusters of orthologous groups (Tatusov et al. 2000) constructed from numerous

organisms. As a source of protein interactions in bacteria I used the IntAct database

(Kerrien et al. 2012). Furthermore, I included the protein interactome of Mesorhizobium

loti (Shimoda et al. 2008), a protein interaction data set not available in the IntAct

database at the time. Accounting for all experimental sources of protein interactions, I

found that the majority of interactions (> 60%) have been found in E. coli and C. jejuni

(Fig. 3-C). Based on the total set of roughly 52,000 interactions between proteins in the

underlying organisms, I connected interactors sharing OGs and used the number of

species found to share an interaction as weighting value for each interaction.

In total, I obtained a consensus meta-interactome of 8,475 orthologous groups

embedded in web of 43,545 weighted links, covering 349 distinct bacterial species (Fig.

3-D-A, B; see Appendix Table IV-B for details). Such a network consists of 205

connected components and includes 1,352 self-connected nodes. Moreover, the largest

component pooled 88.9% of all nodes. I observe that the majority of OGs in the meta-

123

interactome correspond to a single protein interactor while the majority of links is

composed of one interaction. As the average weight of links is 1.0 ± 0.1, I can consider

the network to be largely unweighted. As a consequence, I find that the average path

length in the unweighted network is 3.7 ± 0.9 while the diameter of the network is

roughly 15, indicating small world network characteristics (Gallos et al. 2012). The

average number of neighbors is 10.2 ± 23.9; this average is likely influenced by the

presence of several broadly-defined OGs. (I interpret interactors with a shared OG to be

potential paralogs due to their sequence similarity, so true paralogs participating in

similar interactions will likely be present in the same group). Demonstrating the scale-

free tendency of many similar networks (Reed 2008), I found that the distribution of the

number of neighbors decays as a power-law (Fig. 3-E).

124

Fig. 3-C. Composition of the meta-interactome. A breakdown of source species of the meta-
interactome. Protein interactions in E. coli and C. jejuni contributed to more than half of the total set of

interactions in the meta-interactome.

125

Fig. 3-D. Overall structure of the main component of the consensus meta-interactome. A) All interactions of the main component of the consensus
meta-interactome are shown. This segment of the network includes 7,373 nodes and 42,098 edges, or 86.9% of all interactors and 96.7% of interactions
in the network. Interactions with more than two PPIs contributing to their interaction in this network are highlighted in green; these include 986 nodes and
1,186 edges. In this component, each node has an average of 11.138 neighbors. The average count of of interactions contributing to each edge shown

here is 1.18 +/- 0.922. B) The network subset of interactions highlighted in part A. The main component of this subset, including 499 nodes and 784
edges, is shown, with all other interactions omitted for clarity. This subset is composed of edges derived from the most frequently observed types of
interactions in the meta-interactome. In the full subset, including interactions not shown here, each node has an average of 2.004 neighbors and the

average count of interactions contributing to each edge is 4.77 +/- 3.80.

126

Fig. 3-E. Properties of the consensus meta-interactome. The number of neighboring OGs decays
according to a power law (R2 = 0.907) in the consensus meta-interactome.

127

At this point, OGs serve as nodes and any interaction between proteins of one OG and

those of another provides an edge between nodes. The network contains 8,475 nodes

and 43,545 edges, with 349 distinct bacterial taxids contributing interactions. There are

168 unconnected nodes as well as 1,352 self-connected nodes. The average path

length is 3.828 and the average number of neighbors is 9.957. This number is

significantly larger that the average of ~3.8 interactions per protein across the six

experimental bacterial interactomes (Table 3-A). Even the two networks with arguably

the highest number of false positives, C. jejuni and T. pallidum, have average degrees

of 8.8 and 5.0, respectively, much less than those with the lowest value, about 1.7, in

Synechocystis, Mesorhizobium, and E. coli (Table 3-A).

The meta-interactome has a network diameter of 15 which indicates that it is a small

world network (Gallos et al. 2012). The majority (~88.9%) of the nodes in this network

form a single, interconnected component (Fig. 3-D) though most nodes are connected

by just a single interaction. Though, as mentioned above, the degree distribution follows

a power law – demonstrating the scale-free tendency of many similar networks (Reed

2008) – in this case the distribution may be the result of nodes representing just a single

protein. In biological terms, this signals a limited potential for interaction compared to

those OGs containing many proteins.

128

The majority of the interactions in the consensus meta-interactome are contributed by a

small set of species. More than half of the interactions are found in either Escherichia

coli or Campylobacter jejuni (16,276 interactions and 11,308 interactions, respectively,

or more than 63% of the interactome in total, though some interactions are seen in both

species). An additional five species (Treponema pallidum, Synechocystis sp. PCC 6803,

Mesorhizobium loti, Helicobacter pylori, and Bacillus subtilis) each contribute more than

a thousand additional interactions. Each of these species, with the exception of B.

subtilis, has been the subject of a comprehensive protein-protein interactome study.

While all of these species are also well-studied, their contributions to the meta-

interactome are a combination of data from single interactomes and those from smaller,

more focused studies.

3.4.2 Functional annotation of orthologous groups and their conservation

Single interactomes are known to have many gaps, i.e. interactions that went

undetected in experimental studies (Friedel and Zimmer 2006, Guimera and Sales-

Pardo 2009). Since a missed interaction in one study may be found in an independent

study through evolutionary conservation of the corresponding proteins, a meta-

interactome network potentially reveals such gaps. As such, I assume that links

between orthologous groups in the consensus meta-interactome may be indicative of

undetermined interactions between orthologs in the corresponding organisms. Counting

the number of bacteria a given interaction was observed in, I found that relatively few

interactions appear in multiple bacterial species (Fig. 3-F). In particular, I found 43,116

129

interactions occurred only in a single species, 361 appeared in two species while only

68 interactions occurred in three or more species.

130

Fig. 3-F. Conserved interactions in the consensus meta-interactome. Counts of interactions in the
consensus meta-interactome network. Nspecies indicates the number of distinct bacterial species

contributing the interaction; a value of 1 denotes an interaction observed for a single species only. For
each count, subsets denote how many interactions involve two, one, or zero interactors of known function

(as both, one, and none, respectively).

131

Any single bacterial proteome may contain hundreds or even thousands of proteins of

unknown or unclear function. Out of more than 43,000 interactions, fewer than 10,000

involve two interactors of unknown or unclear function (Fig. 3-F). Due to limited cross-

species overlap, just a small subset of fewer than 100 interactions is observed in more

than one species and involves one or more interactors of unknown function. The limited

extent of cross-species overlap between interactions appears to signal lack of

observation rather than truly missing protein-protein interactions, suggesting that OGs

should retain interactions across species even if their interactions have been observed

in just one species.

Certain functional groups contribute more extensively to the meta-interactome than

others, potentially reflecting the occurrence of more common types of protein-protein

interactions across bacteria in general. In Fig. 3-G, I determined the overrepresentation

of functional crosstalk between orthologous groups based on the underlying interactions

between different proteins in the consensus meta-interactome. Unsurprisingly, the

dominant category of interactor functions is “poorly characterized” (category S). Proteins

with roles in translation or translational regulation (category J) also figure prominently,

especially in interactions with poorly characterized groups.

132

Fig. 3-G. Cross-functional interactions in the consensus meta-interactome. Here, raw counts of
interactions within the consensus meta-interactome are categorized based on the functional category of

each interactor, highlighting the incidence of cross-functional activity. See Methods for full key to
functional categories. While most interactions appear between the same functional classes, I also
observe that most functional cross-talk originates from OGs with translational or translation-related

functions (category J) and with poorly characterized proteins (category S).

133

3.4.3 The meta-interactome predicts interactomes and their size

The construction of a meta-interactome as described above can be used to predict the

interactome of any species with or without interaction data. I used the consensus meta-

interactome as a model to predict any potential interactions in a given proteome

independently of the availability of protein interactions in the underlying organism. In

particular, I considered all interactions between OGs of a given proteome of an

underlying organism. As such, I consider all proteins of the given proteome as

interactors if I find their corresponding OGs interacting. As such, the interactome of a

well-studied species such as E. coli can be improved by predicting yet undetected PPIs

using data from a related but distinct species.

This simple prediction method was used with all protein-coding genes from each of

several representative bacterial species of varied genome and proteome size (Table 3-

E). Out of all eleven bacterial species shown, six have had comprehensive protein

interactomes published, and the data is reflected in the total number of proteins

participating in PPI with experimental evidence. To obtain a starting point for predictions,

I used the interactome size estimation methods developed by Stumpf et al. (2008).

These methods primarily depend upon the number of interactors and interactions in an

experimental interactome to predict the true interactome size and therefore account for

interactions not detected in the interactome (see Fig 1-A for the conceptual example).

Here, I used the Stumpf et al. methods with three different counts of interactors and

interactions: those from each of the six published interactomes, the larger counts found

134

in the meta-interactome, and the fraction of the interactome derived from experimental

data. In cases where a given species has been the subject of just one comprehensive

interactome study (e.g., with Synechocystis), the counts provided by the first option are

very similar to the third.

Table 3-E. Predicted bacterial interactome sizes.

Species and
Strain Name

Predicted
interactome
size in PPIs
(this study)

Predicted
interactome* size,

from published
interactome, in

PPIs1

Predicted
interactome size,

from meta-
interactome, in

PPIs1

Predicted
interactome size,

from meta-
interactome

(experimental PPI
only), in PPIs1

Proteins in
proteome (vs.

proteins in
meta-

interactome)

Bacillus subtilis
str. 168 17146 N/A 117229 67921 4175 (1597)
Caulobacter
crescentus
CB15 25792 N/A 177318 1580788 3885 (1482)
Escherichia coli
K-12 43702

25736
62770 30087 4306 (3593)

Helicobacter
pylori 26695 10576 13275 14271 5455 1553 (1337)
Mesorhizobium
loti
MAFF303099 57905 50735 256414 50838 7272 (3456)
Mycoplasma
genitalium G37 718 N/A 7331 N/A 475 (149)
Pseudomonas
aeruginosa
PAO1 47815 N/A 88143 7073281 5892 (2488)
Salmonella
enterica subsp.
enterica
serovar Typhi 30788 N/A 268219 554147 4607 (2723)
Staphylococcus
aureus NCTC
8325 9339 N/A 59233 650299 2767 (1099)
Synechocystis
sp. PCC 6803 27816 11221 66575 11811 3575 (2311)
Treponema
pallidum str.
Nichols 6722 7433 10350 7762 1036 (835)

1 As per method of Stumpf et al. (2008).
* Published interactomes are those specified in Table 3-C.
The interactome size prediction methods in this study are the results of predicting that two different
orthologous group members will interact as long as members of the two groups have been observed
interacting in any bacterial species. The resulting totals are shown in the second column (Predicted
interactome size from meta-interactome (this study)). Results from the interactome size prediction method

135

used by Stumpf et al. (2008) are shown here for comparison: where possible, these are used with
interaction and interactor totals from published interactomes (third column). Two hybrid approaches are
also presented, with the input for the Stumpf method provided by the total counts of interactors and
interactions predicted by the interactome (fourth column) or by the experimentally-observed interactions in
the meta-interactome only (fifth column). The final column provides the count of proteins in each
respective proteome along with the fraction of those proteins present in the meta-interactome, including
all proteins involved in functional predictions.

Considering a set of reference proteomes (Table 3-C), I found that interactome sizes

thus obtained appear to increase linearly with the proteome size of the underlying

bacterial species (Fig. 3-H). For example, the E. coli genome codes for more than

4,000 unique proteins, and more than 3,000 of which have been found to participate in

at least one PPI in one or more studies. The B. subtilis genome codes for roughly the

same number of unique proteins but fewer than 1,000 of these proteins have been

found to participate in PPIs. However, B. subtilis has also been studied much less

extensively, hence these numbers do not reflect the true number of interactions in a cell.

136

Fig. 3-H. Predictions of maximal interactome size. Based on the consensus meta-interactome, I show
the upper bounds of predicted interactome size (in number of protein-protein interactions, or PPI) as a
function of proteome size. Each point corresponds to the Uniprot reference proteome of a single species
and strain. The Saccharomyces cerevisiae interactome size predicted by Sambourg and Thierry-Mieg
(2010) is provided for comparison and shown in red.

137

The more interactions are detected, the fewer are left to be predicted. As a result,

unstudied or incomplete interactomes have the largest potential for prediction. For

instance, there are very few PPIs known from Streptococcus pneumoniae: just 63 of the

2,030 proteins coded for in the S. pneumoniae R6 genome have experimental

interactions in IntAct. My predicted interactome for this protein set increases that total to

850 proteins. Similar results are seen for B. subtilis and for Mycobacterium tuberculosis.

3.4.4 Biological differences vs. technical differences in interactomes

Published interactomes vary in size and composition across different studies and

species, rendering them difficult to compare. In the case of Campylobacter jejuni, a

genome of 1,654 ORFs yielded an interactome of more than 11,000 distinct PPIs from

yeast two hybrid (Y2H) screens using ~90% of the ORFs, or 1,477 in total (Parrish et

al. 2007). By contrast, the interactome of M. loti as reported by Shimoda et al. (2008)

includes just over 3,100 PPI though its proteome contains 7,281 predicted proteins.

These discrepancies are clearly determined by different coverage: in the case of the M.

loti interactome, the full genome was used as yeast two hybrid preys but only 1,542 of

7,281 genes were used as baits. This subset was selected as per the goals of the study

and therefore represents a conscious technical difference between interactomes.

The comparison of interactomes also reveals unavoidable methodological

discrepancies. More than half of the PPIs contributing to the meta-interactome were

observed using two hybrid methods, offering some methodological consistency, yet

these methods may vary in technical implementation details such as protein expression

138

conditions, growth conditions, or even the exact yeast or bacterial strains used. As I

have shown previously, even when exactly the same protein pairs are tested by Y2H

assays, small differences in the experimental protocol can yield dramatically different

results (Chen et al. 2010; Caufield et al. 2012). Inclusion of affinity purification and mass

spectrometry (AP/MS) approaches introduces another concern: AP/MS methods

typically infer interactions from co-purification through a spoke model approach (that is,

that a single bait is assumed to interact with all of its co-purified proteins) (Abu-Farha et

al. 2008) while two hybrid methods generally screen for binary interactions only.

Previous work has estimated that the spoke-model approach over-estimates the

number of PPIs by about 3-fold (Rajagopala et al. 2014).

In this study, I have attempted to reduce the impact of technical differences between

interaction studies by focusing on the subset of interactions observed in multiple

species. This approach is especially effective for minimizing the influence of potentially

erroneous spoke model interactions, as the bulk of these interactions in the meta-

interactome are from just two species (E. coli and M. pneumoniae, both of which have

been subjects of full protein complex surveys). Even after interaction screens are

completed, however, filtering conditions determine the line between raw and final data

and hence the data deposited in databases such as IntAct. With less frequently studied

bacterial species like Synechocystis (Sato et al. 2007), researchers may observe too

many PPIs among proteins of unknown function to accurately determine false positive

interactions. It is crucial that all experimental details are documented with as much

detail as possible, not only to ensure reproducibility, but to improve our ability to

139

understand differences between species. In the meantime, I believe a cross-species

approach is helpful for identifying expected PPI in interactomes.

The cross-species approach employed here takes advantage of similarities in protein

interactor sequence and similarities in interaction data to account for the impact of

technical differences. As seen in Fig. 3-F, fewer than one thousand OG vs. OG

interactions in the meta-interactome have been observed in more than one bacterial

species, yet more interactions should be conserved across any two pairs of bacterial

species.

Finally, some differences among interactomes may be due to real distinctions in

genetics and physiology. Many processes show considerable genetic variation in

bacteria, even when they are traditionally considered to be highly conserved. For

instance, ribosomes are surprisingly malleable (Shoji et al. 2011, Wilson and Nierhaus

2005) as are flagella (Titz et al. 2008), cell division proteins (Margolin 2009) or protein

complexes in general (Caufield et al 2015, see also Chapter 2 of this work). A more

complete meta-interactome should therefore shed light on the biological differences

between species.

3.4.5 Meta-interactomes reveal broadly-conserved interactions involving proteins
of unknown function

Of all OG-OG interactions involving OGs of unknown or unclear function (UF OGs),

fewer than 10 are seen in more than 2 different species (Fig. 3-F). Highly conserved

PPIs are thought to serve more fundamental processes in a cell (e.g. Häuser et al.

140

2012, Rajagopala et al. 2014), hence I identified well-conserved interactions for function

prediction. Some of the most frequently observed PPIs (specifically, OG-OG

interactions) across species are interactions among enzyme subunits, e.g. the alpha

and beta subunits of tryptophan synthase (Table 3-F).

Table 3-F. Conserved interactions involving selected OGs of unclear function.

Interactor A Interactor B Functional
Category and
Function (A)

Functional
Category and
Function (B)

Species

ENOG4105W16 ENOG4105W16 S - Blue light
sensor protein

S - Blue light
sensor protein

Synechocystis sp. PCC
6803,
Thermosynechococcus
elongatus

ENOG4105CXV ENOG4108XPN S - Gliding
motility protein

S - Roadblock
lc7 family protein

Thermus thermophilus,
Myxococcus xanthus

ENOG4108WXF ENOG4108WXF S - KaiA ,
Component of
the KaiABC
clock protein
complex

S - KaiA ,
Component of
the KaiABC
clock protein
complex

Thermosynechococcus
elongatus,
Synechococcus
elongatus

ENOG4105K7D ENOG4108UKE S - Ribosome
maturation factor
RimP

J - 30S
ribosomal
protein S12

Campylobacter jejuni,
Helicobacter pylori

ENOG4105ZRE ENOG4108YZA S - Protein of
unknown
function
(DUF3539)

E - GlnB,
Nitrogen
regulatory
protein P-II

Nostoc sp. PCC 7120,
Synechococcus
elongatus

ENOG4105QDU ENOG4108V9G S -
Uncharacterized
protein

S -
Uncharacterized
protein

Campylobacter jejuni,
Helicobacter pylori

ENOG4108SDW ENOG4107QMP S -
recombination
protein RecO

L - DNA
polymerase III
gamma and tau
subunits

Campylobacter jejuni,
Helicobacter pylori

All interactions in this table have been observed in at least 4 PPI across bacterial species of at least two
different genera, with species identified in the Species column. The full list of interactions in this set is
provided in Appendix Table IV-D.

This list omits broadly-conserved self-interactions, such as those among histidine

kinases (ENOG4105BZU). An orthology-based approach is more informative when used

141

with interactions among proteins in different groups (in this case, different OGs) than

with interactions among proteins of the same OG as individual protein identities are

ignored in the consensus meta-interactome. I have made the assumption that cross-OG

interactions are more likely to indicate cross-function interactions and are therefore of

great relevance to functional context.

MdaB (ENOG4105NF4) proteins figure prominently in the meta-interactome. MdaB was

first identified as modulator of drug activity (Chatterjee et al. 1995) and is still annotated

as such in most databases. Later, Wang et al. (2004) characterized it as a novel

antioxidant protein similar to NADPH nitroreductases which play an important role in

managing oxidative stress essential for successful colonization of H. pylori in its host

(Wang et al. 2004). Its mutants are unable to colonize human host cells (Wang et al.

2004). However, the MdaB interaction network indicates another unrelated function as it

interacts with three motility related proteins in three different species: a chemotaxis

protein (UniprotKB: O25152) from H. pylori, flagellin C (UniprotKB: P96747) from C.

jejuni, and chemotaxis protein CheW (UniprotKB: P0A964) from E. coli K-12. The

colonization phenotype may be related to motility rather than oxidative stress. In fact,

motility is critical for initial colonization of H. pylori in its host cells (Ottemann and

Lowenthal 2002). FlaC in particular is well characterized as an important factor for host

cell invasion in C. jejuni (Song et al. 2004).

142

Interactions between components of a protein complex can be reconstructed from the

meta-interactome interactions. The cyanobacterial NDH-1 membrane protein complexes

provide a good example: these proteins belong to widely-conserved family of energy

converting NAD(P)H: Quinone oxidoreductases which are unique to organisms capable

of photosynthesis. Many distinct NDH-1 complexes may coexist in cyanobacteria to

carry out different functions like respiration, cyclic electron transfer and CO2 uptake

(Zhang et al. 2005, Battchikova et al. 2011, Korste et al. 2015). At least four NDH-1

complexes are predicted in cyanobacteria in Synechocystis 6803 (L, L’, MS, MS’). Each

complex is composed of a basal complex (NdhA-C, NdhE,G-K, NdhL-O) associated

with variable subcomplexes of Ndh and Cup subunits (Fig. 3-I-A, B). Each complex has

a different function: for example, NDH-1L and L’ are responsible for respiration and

cyclic electron flow and NDH-1MS/MS’ for CO2 uptake. The multitude of functionality of

cyanobacteria is possible due to the presence of a great diversity of ndhD (D1-D6) and

ndhF (F1, F3 and F4) gene families. It is possible that with sudden changes in

CO2 levels, cyanobacteria can flexibly use the NDH-1M basal subcomplex and change

contents of its variable subcomplex to form MS and L complexes (Korste et al. 2015).

143

 A

 B

Fig. 3-I. The NDH-1 complex as an example of conserved interactions. (A) A NDH component
interaction network from multiple species. Each node in this network corresponds to a single orthologous
group and is labeled with its eggNOG identifier and most common protein name(s). Groups colored in
orange are known components of the E. coli NDH-1 complex, the CupA protein group is shown in gray,
and likely accessory proteins are colored in blue. Interactions between any proteins in two groups are
shown as edges; edge width corresponds to the total count of protein interactions in the meta-
interactome. Except where noted, all interactions in this network were experimentally observed with
proteins from Synechocystis sp. PCC6803 and from Thermosynechococcus elongatus. (B) A model of the
NDH-1MS complex in cyanobacteria. Each box corresponds to a protein or group of proteins; those
labeled with a single letter are Ndh proteins. Figure adapted from He et al. (2016).

144

An example of the NDH-1MS (NDH-1M, NdhD/F/CupA/CupS) network in Synechocystis

6803 and T. elongatus BP-1 is shown in Fig. 3-I-A. Only one similar interaction (NuoD

and NuoB) is observed in E. coli. CupA (ENOG4107YAI) has been found to interact with

NdhF (ENOG4106TXZ), NdhD1-D4 (ENOG4105C8S), and an unknown protein

(ENOG410906A) to form the NDH-IS (NdhD/F/CupA/CupS) sub-complex.

ENOG410906A, though a protein of unknown function, has sequence similarity to

Fasciclin superfamily proteins associated with cell adhesion in plants amd algae

species. This protein is 133 amino acids with a predicted molecular weight of 13 kDa.

Korste et al (2015) found a similar protein (UniprotKB: P73392) in Synechocystis 6803

and Q8DMA1 in T. elongatus BP-1 and designated it as CupS, a small subunit of the

NDH-1MS complex. The NMR studies, showed that though the protein was structurally

similar to Fasciclin superfamily, but was not associated with adhesion, contrary to

Fasciclin superfamily proteins due to its intracellular location. Though, CupS has been

shown to interact with NdhD/NdhF/CupA, its function is still unknown. This network data

not only provides clarity about the interaction of NDH-1 complex proteins but also

predicts a probable function of this unknown protein ENOG410906A in respiration.

Cyanobacterial meta-interactome networks (Fig. 3-I-A) clearly show that the NdhH

subunit interacts directly with all associated subunits, a point which had been in missing

in all predicted structures of NDH-I.

3.4.6 Interactomes are impacted by high-throughput experimental methods

145

The data in the meta-interactome is the result of a variety of methods and therefore is

directly influenced by variations in the methods. As shown in Fig. 3-J, the majority of the

PPI contributing to this data set are the result of two hybrid screens. It is therefore

valuable to ascertain how much of the meta-interactome content is potentially the result

of methodological variation.

146

Fig. 3-J. Composition of the meta-interactome by interaction detection method. Each box
represents 1,000 protein-protein interactions (PPI). Counts in parentheses are total PPI. Two hybrid

includes interactions annotated as either “two hybrid” or “two hybrid array”.

147

Here, I use a clustering approach to compare all methods that have been applied to the

Braun et al. (2009) gold-standard dataset (Fig. 3-K). Two methods may detect similar

interactions yet these methods detect different subsets of the total set of all possible

interactions. Clustering provides the benefit of going beyond sums of interaction results

in that it compares the patterns of results, revealing further differences between

experimental methods. There is one distinct caveat regarding these methods: the Braun

et al. positive reference set includes only human proteins rather than bacterial proteins.

Some methods presented here, such as MAPPIT (Tavernier et al. 2002), are designed

specifically to detect mammalian PPIs. It is possible that distinctions between bacterial

proteins may create even more complications with regard to methodological differences

as their expression conditions may differ more from nature (e.g., with bacterial proteins

expressed in yeast vs. human proteins expressed under the same conditions).

148

Fig. 3-K. A comparison of high-throughput yeast two hybrid screens. The assays used to detect each protein pair in the (A) positive reference set
(PRS) and (B) random reference set (RRS), as defined by Braun et al. (2009), are clustered by the number and similarity of the interactions detected
across the respective reference set. For Braun et al. assays (indicated by red labels at left), columns denote whether a specific protein interaction was

reported. For all other assays, values are weighted values as described in the Methods, with increasing brightness indicating greater value. Black spaces
indicate that no interaction was detected. Reference set numbers and exact methods have been omitted for clarity; see Caufield et al. (2012) for further

details. Figure adapted from Caufield et al. (2012).

149

When the available positive reference set data is reduced to binary decisions regarding

whether an interaction is visible (i.e. without considering 3-AT concentrations), the

results are striking: the Y2H results and the Braun results each cluster together very

consistently except for the pDEST vectors (which were also used by Braun et al.). Not

surprisingly, the Braun Y2H assays with the same vectors – but different reporters –

clustered together, with the two-reporter assays simply producing fewer interactions

(Braun et al. 2009). The Y2H assays were notable as bait/prey swaps (that is, switching

the vectors used to express bait and prey protein fusions) typically clustered together

too, e.g. in the pDEST, pGBGT7–pGADT7, and pGBGT7–pGADC assays, but not in the

pGBKC–pGADC/pGADT7 cases (Fig. 3-K). This is surprising, as even bait/prey swaps

usually result in distinctly different interaction patterns, and this result is not immediately

obvious when examining the raw data. Overall, these results indicate that each method

may detect different subsets of interactions within the same set of protein pairs,

especially when multiple sets of Y2H results are compared.

These comparisons hold implications for the total number of interactions in the meta-

interactome. Out of the 23,740 PPIs in the set identified using yeast two hybrid methods

in particular, if I assume that at least 10% of biologically-relevant PPIs are not captured

by these methods in some way (as indicated by the inability of even the least stringent

of some yeast two hybrid methods to detect members of the PRS; Fig. 3-K-A), then the

total number of PPIs in the meta-interactome could increase by more than 2,000

interactions. If, out of a set of 100 potential PPI, some methods may only detect 25 to

30 interactions, then there are likely numerous additional PPIs existing in nature but not

covered by the meta-interactome. Starting with about 13,000 PPIs not identified through

yeast two hybrid or pull down methods, these missing counts may include as many as

9,750 additional PPI among all bacterial interactors.

3.4.7 Further discussion

If I assume that the average degree of a protein remains the same, independent of the

proteome, then interactomes should grow linearly with proteome size and thus with

genome size (Fig. 3-H). However, bias in the available data is likely creating distorted

predictions: the E. coli data point (at the top of the figure) does not fit the trend and most

of the PPI predictions I can make originate with E. coli data. Additionally, predicted

interactome sizes are limited by the number of unannotated or highly unusual genes in

a genome. In the case of the largest genomes in this set (P. aeruginosa and M. loti have

genomes larger than 6 Mb), both contain at least 300 genes without orthology

predictions (P. aeruginosa contains ~310 while M. loti contains 737). Further annotation

of these genes or interactions among their products may allow for interaction predictions

more like those for other species.

Proteome size is likely just one trait contributing to the overall complexity of a species

(Schad, Tompa, and Hegyi 2009) and the interactome of that species may represent just

one facet of its complexity. Some methods used to estimate interactome size were

intended for use with human or yeast proteins (Venkatesan et al. 2009, Sambourg and

Thierry-Mieg 2010) and should likely work for bacteria but may abstract or even ignore

bacteria-specific physiological phenomena in the process. The methods employed by

Venkatesan et al., for example, rely upon estimates of the false positive rate when

screening human proteins for interactions; this rate is inconsistent between methods,

species, and even subsets of proteins from a given species. Another confounding factor

is that false positives are likely to grow exponentially with increasing proteome size, e.g.

because a fraction of proteins interact non-specifically with hydrophobic surfaces.

In the cases of some interactions with proteins of unknown function, the lack of

functional characterization may be a lack of understanding both proteins' role in a larger

complex. In these cases, better functional characterization may require an

understanding of the complex's biological role. From the reverse perspective, however,

if these protein components are involved in PPI outside of their usual complex, the

additional interactions may reveal properties shared by other complex components.

Some commonly observed interactions involve poorly-understood groups of proteins:

proteins in NOG12793 are known to be calcium ion binding (56,354 proteins in 1,123

species map to this OG) but no other property can be defined for the entire group

though it consistently includes hyalin domains (these domains are generally associated

with cellular adhesion, as per Callebaut et al. 2000, though they may have a variety of

roles).

The meta-interactome approach is an intentional abstraction. It is intended to

underscore the bacterial cross-species commonality and conservation of protein

interactions among currently available interaction data. As a result, this approach is

limited by at least three main factors: limitations of protein-protein interaction screens,

limitations of publicly-available data, and constraints on orthology prediction. All

experimental interactomes are inherently incomplete and may include numerous false

positives and otherwise erroneous results. The authors of these studies employ different

filtering approaches and likely interpret their results based on expectations (e.g., some

interactome studies eliminate frequently-interacting proteins like chaperones from their

screens). Most of the available interaction data for bacterial proteins has focused on just

a handful of species. Additional screens of proteins from more diverse sources across

the bacterial tree of life will reveal a universe of yet unknown functions, just as gene

sequences did for genetic diversity.

Chapter 4 – Assessing Bacterial Protein Function using Bacteriophage Proteins

Portions of this chapter have been published as:

Mehla, J., Dedrick, R.M., Caufield, J.H., Siefring, R., Mair, M., Johnson, A., Hatfull, G. F.,

Uetz, P. (2015). The protein interactome of mycobacteriophage Giles predicts

functions for unknown proteins. J Bacteriol, 197(15), 2508–2516.

doi:10.1128/JB.00164-15.

4.1 Abstract

Bacteriophage infections are likely the most common type of biological interaction on

Earth. Any comprehensive study of microbial evolution must therefore consider

interactions between bacteriophages and their bacterial hosts. Here, I have assembled

and curated a set of experimentally-verified interactions between proteins from 10

bacterial species and 29 bacteriophages, sourced from 48 different studies. Unlike

previous studies of phage vs. host interactions, I have specifically focused on direct

protein-protein interactions rather than indirect mutational comparisons or predicted

impacts on phage infectivity. I have used this new resource to further analyze the most

frequently observed types of protein interactions between bacteria and their viruses.

These resources will ideally serve as a basis for further study into bacteria vs.

bacteriophage interactions, bacterial protein function, and potential targets for

antibacterial or bacteriostatic phage therapy.

155

4.2 Introduction

4.2.1 Microbiology in the context of bacteriophage interactions

The bacterial occupants of a microbiome exist alongside those of a viriome, or the set of

all viruses in the biological niche. The viruses infecting bacteria in particular are

collectively referred to as bacteriophages. Considered at a global scale, the number of

bacteriophages present on Earth is staggering: starting with a rough population estimate

of 1030 bacterial cells on the planet – mostly in the oceans – various estimates have

suggested as much as a 100-fold greater population of bacteriophages (Wommack and

Colwell 2000, Rowher 2003, Clokie et al. 2011).

These viruses serve as a massive and constant source of new genetic variation, both as

the result of phage-mediated genetic transfer (that is, transduction) and through the

perpetual battle between the viruses and their hosts. Bacteriophage must constantly

develop new methods to infect, control, and eventually lyse bacteria, while bacteria

must defend against these lethal results through systems like CRISPR (Barrangou et al.

2007) or quorum-sensing dependent defenses (Høyland-Kroghsbo et al. 2013).

Bacteriophages have served as ideal models for much of the history of molecular

biology, but unfortunately this favored status has not smoothly translated into the

genomic age. For decades, researchers studying phages used mutational analysis-

based techniques they knew would get results. They lacked easy methods to observe

direct, protein vs. protein interactions and focused on more easily observable

156

interactions at the membrane surface (i.e., the interactions most crucial to a phage's

infection of its host). Many current studies of phage biology continue to use similar

methods: work by Washizaki et al. (2016) on bacteriophage T4 tail fibers primarily

employed phage mutants and plaque assays, for example. The consistent use of

reductionist methods focused on easily observable phenomena (i.e., numbers of

infected bacteria and of replicating phages) lends noticeable consistency to the field but

fails to address the potential secondary effects of mutations. In a potentially counter-

intuitive way, in order for the field of phage-host interactions to adapt to a systems

biology perspective, it must focus more closely on the interactions between individual

proteins rather than disruption of entire systems at a time.

4.2.2 Extending interaction analysis to viral proteins

Protein-protein interactions between phage and their hosts are, with a few exceptions

(Roucourt and Lavigne 2009, Blasche et al. 2013), largely unexplored. Some

researchers have developed databases specifically for the curation of virus vs. host

protein interactions: VirHostNet (Guirimand et al. 2014) and VirusMentha (Calderone et

al. 2015). Of these two databases, VirHostNet contains just two phage vs. host

interactions (involving Myoviridae, specifically) Due to the intimate relationships

between bacteria and viruses, I chose to use these interactions as a novel venue for

exploring bacterial genes of unknown function.

157

I elected to explore the current state of the field of phage-host protein interactions for

two primary reasons. First, while phage biology remains an active area of research, its

findings are not always clear in the broader context of microbiology. This is potentially

the result of researchers not wishing to overstate their findings. Each interaction

identified between a host and viral protein may offer new insights into this common type

of biological relationship, especially when considering the vast assemblage of gene

sequences observed only in bacteriophage genomes. This variety is my second

motivation for focusing on previously-studied phage-host interactions: even the

genomes of well-studied bacteriophages contain sequences without known functions. I

therefore hypothesized that an integrative approach to phage-host interaction data

could reveal overall patterns relevant to phage-host relations.

4.3 Experimental methods

4.3.1 Data curation and data set assembly

Sets of interactions between proteins derived from bacteriophages (that is, having a

sequence identical to that of a translated bacteriophage gene) and those from bacteria

were curated from the literature over a period between March 2015 and September

2016. Literature was first selected from papers cited by Häuser et al. (2012) in their

review of bacteriophage protein interactions and supplemented with works associated

with interactions present in the IntAct (Kerrien et al. 2012), DIP (Xenarios et al. 2002),

MINT (Licata et al. 2011) and BIND (Alfarano et al. 2005) databases. (The majority of

the interactions in these databases is now available through IntAct.) The VirusMentha

158

project (Calderone et al. 2015) was also used to identify publications with a virus vs.

host focus. Interactions were extracted from databases, supplementary materials, or

directly from text. An interaction was narrowly defined as a direct interaction between

two proteins, though this interaction may have been observed through an indirect

phenotype change (e.g., two hybrid methods), affinity purification-based methods, or co-

crystallization. This definition distinguishes the records in this data set from indirect

interactions, e.g. those inferred from mutational analysis or phage plaque screens.

See Table IV-A in the Appendix for the full data set. The data set contains the following

values, with each line referring to a single interaction reported by a single study (for this

reason, an interaction may appear multiple times in the set if it has been observed in

multiple studies).

Phage_Interactor The protein name of the phage interactor.

Phage The name of the bacteriophage source of the phage interactor.

Phage_UPID The Uniprot entry ID of the phage interactor.

Phage_Alt_ID An alternate ID for the phage interactor if a Uniprot ID is not

available. Otherwise, this is identical to Phage_UPID.

Phage_OG An eggNOG v.4.5 orthologous group assignment for the phage

interactor, if available. Otherwise, this is identical to Phage_Alt_ID.

Host_Interactor The protein name of the host interactor.

Host The species name of the bacterial host and source of the host

interactor. Different strain identities are ignored in this data set.

159

Host_UPID The Uniprot entry ID of the host interactor.

Host_Alt_ID An alternate ID for the host interactor if a Uniprot ID is not available.

Otherwise, this is identical to Host_UPID.

Host_OG An eggNOG v.4.5 orthologous group assignment for the host

interactor, if available. Otherwise, this is identical to Host_Alt_ID.

ExpMethod The experimental method used to observe the interaction, as one of

the methods defined by the PSI MI 2.5 methods ontology; see also

Hermjakob et al. (2004).

ExpMethodID The ontology ID for the experimental method. Details about all

ontologies may be found through

http://www.ebi.ac.uk/ols/ontologies/mi.

InfMethod "Spoke" if the reported interaction is the product of a spoke

expansion model. "-" if otherwise.

Source The first author and publication year of the source of the reported

interaction.

SourceID An NCBI PubMed ID for the source.

Database The source database, if present in a database of protein

interactions, or a review article including a collection of interactions.

Incidence_Phage_OG Total count of times the OG corresponding to the phage

protein interactor is present in this table.

Incidence_Host_OG Total count of times the OG corresponding to the host

protein interactor is present in this table.

160

http://www.ebi.ac.uk/ols/ontologies/mi

4.3.2 Mycobacteriophage Giles protein-protein interactome

Methods in this section refer to those performed by Mehla et al. (2015). Briefly, 74 of 77

ORFs in the genome of Mycobacteriophage Giles were cloned into each of four vectors

and screened in high throughput using the yeast two hybrid method. Each bait (DBD-X)

was mated with each prey (AD-Y) on rich medium (YPD plus adenine) in a 384-colony

format for 36 to 48 h at 30°C. Diploid cells were selected for by pinning cultures from

mating plates onto selective agar plates (−Leu −Trp) and growing them for 2 to 3 days.

The diploids were then screened for interacting pairs by pinning them onto selective

screening medium (−Leu −Trp −His) and incubating at 30°C for another 4 to 7 days. All

baits (including self-activating baits) were screened on −Leu −Trp −His plates containing

3-AT to suppress nonspecific background; at least two different 3-AT concentrations

between 1 and 100 mM were used for each screen to avoid elimination of true positives.

The plates were monitored each day and positive colonies were evaluated with respect

to the background growth on each plate.

I filtered out nonspecific raw Y2H data on the basis of prey count, with a few exceptions.

Prey count is defined as the number of times a defined prey protein is found to be an

interacting partner for any other bait in the tested set. The preys found to interact with

12 or more baits (an arbitrarily defined value specific to the raw data set only) were

predicted to be the result of nonspecific interactions and were, with some exceptions,

not included in the retest Y2H data set. A sticky prey was included in the retest data set

161

if it was found to interact specifically and strongly at a 3-AT concentration with no

background growth visible on the same plate.

I used the filtered set of raw protein-protein interactions to form a retest set. These

interactions were tested as described above in a 384-colony format in quadruplicate

(each colony was plated four times on each plate) for each bait-and-prey combination in

all different vector configurations. Fresh bait-and-prey arrays were prepared specifically

for these retests. All protein-protein interactions were quantitatively titrated against

background using a series of different concentrations of 3-AT between 0 and 50 mM.

A score, % 3-ATS, was calculated for each interacting bait-prey pair using the formula %

3-ATS = (CPPI − CB/CPPI) × 100, where % 3-ATS is the % 3-AT score calculated for each

PPI, CPPI is the highest concentration of 3-AT at which a PPI was scored, and CB is the

concentration of 3-AT at which background was observed. Thus, each interacting pair

was assessed quantitatively and assigned a % 3-ATS which was used to calculate an

overall interaction score (% IScore). Once all PPIs had been retested, the % IScore was

used to select high-confidence PPIs. The % IScore was calculated as IScore = 3-ATS+

∑wk, where 3-ATS is the 3-AT score assigned to each PPI as described above and ∑wk

= w1 + w2 + w3, where w1 is the weight value for PPIs detected in multiple vectors,

directly proportional to the IScore (w1 = 0 if a PPI was detected by only a single vector

or 33 if detected by at least 2 vectors), w2 is the weight value for reciprocal interactions,

also directly proportional to the IScore (w2 = 0 if not found in a reciprocal set of

162

interactions [e.g., A-B and B-A] or 50 if it is a reciprocal interaction), and w3 is the weight

value for the prey count, inversely proportional to the IScore (w3 = 0, −5, −10, −15, −20,

−25, or −30 for prey counts of 1, 2 to 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, or 26 to 30,

respectively). Then, % IScore = (actual IScore for a given interacting pair/highest IScore

observed for any interacting pair) × 100.

Giles protein properties were investigated further by R. Dedrick. Each Giles protein was

assigned an essentiality value based on that determined by Dedrick et al. (2013). All

proteins determined to be likely essential for the phage lytic cycle, whether by

experimental observation or by their role as phage structural components, were

designated “essential.” All other gene products were designated “nonessential.” For

mass spectrometry (MS) analysis, wild-type Mycobacterium smegmatis mc2155 was

infected with mycobacteriophage Giles at a multiplicity of infection (MOI) of 3. At 30 min

and 2.5 h postinfection, a 1-ml aliquot was centrifuged, the supernatant removed, and

the cell pellet immediately frozen. A high-titer lysate of the bacteriophage cultured in M.

smegmatis was cesium chloride band purified twice and then submitted for mass

spectrometry (MS) analysis along with the samples from the 30-min and 2.5-h

postinfection time points. The mass spectrometry was performed by the University of

California at Davis Proteomics Core on an LC-MS/MS Q-Exactive as described by Pope

et al. (2014). This study refers to three MS fractions: an early fraction (30 min

postinfection), a late fraction (2.5 h postinfection), and the phage particle (whole virion

only). Individual proteins may be present in more than one MS fraction.

163

4.3.3 Data analysis

Protein interactors were annotated in a semi-automated way with eggNOG v.4.5

orthologous groups. This version of the eggNOG database incorporates a partial list of

virus-based OGs (Huerta-Cepas et al. 2015). In cases of unclear or unannotated

orthology, the online sequence mapping tool and hidden Markov models provided by

eggNOG were used to search the eggNOG Bacteria sequence database to find the best

match for the protein sequence across all bacteria-level NOGs. In cases where proteins

remained without a clear NOG match – primarily for bacteriophage proteins – individual

BLAST (Altschul et al. 1997) tblastn searches (with default parameters, with the

exception of a word size of 3 instead of 6) were performed for a subset of protein

sequences to identify potential domain-level matches.

Network analysis was performed using Cytoscape v.3.4 (Shannon et al. 2003). Sets of

protein complexes are identical to those used in Chapter 2 but filtered to include only

protein components found to interact with bacteriophage proteins. Sequence alignments

were prepared using Clustal Omega (Sievers et al. 2011) and visualized using Jalview

(Waterhouse et al. 2009).

4.4 Results and discussion

4.4.1 An example of phage protein interactions from Mycobacteriophage Giles

164

As viruses, bacteriophages have life cycles which are inherently dependent upon

interactions with their potential hosts. The same is true of the functions of the proteins

involved in this process. Not every phage protein is directly involved in host interactions,

however, as phages must also encode the components of their structure and perhaps

even those providing functions we remain unaware of. From this perspective, it is

therefore helpful to incorporate the interactions among bacteriophage proteins into the

analysis of interactions between phage and host proteins.

Mycobacteriophage Giles provides a model for phage protein interactions and the

potential for novel protein functions. Originally investigated by the Hatfull lab at the

University of Pittsburgh, Giles is a phage known to infect Mycobacterium smegmatis,

contains a genome of about 53 Kb and 77 predicted protein-coding genes, and is a

genetic oddity among mycobacteriophages: more than half of the genes in the Giles

genome appear to have little sequence similarity to any other mycobacteriophage genes

(Morris et al. 2008). At least 35 of its genes are necessary for lytic growth (Dedrick et

al. 2013). Giles therefore presented an excellent opportunity to discover functional roles

of novel proteins necessary to a particular phage's life cycle. Using yeast two hybrid

screening methods and mass spectrometry analysis, my lab defined a protein-protein

interactome for this bacteriophage (Mehla et al. 2015; Fig. 4-A). As expected, some of

the strongest reactions were those between the phage's structural components. Some

proteins of unknown function, including Gp56, Gp57, and Gp60, strongly and

consistently interacted with the predicted DNA methylase Gp62.

165

Fig. 4-A. The mycobacteriophage Giles interactome. A) Each node in this network refers to a specific
gene product (Gp) coded for by the mycobacteriophage Giles genome. Interactions, shown as edges, are
those identified by yeast two hybrid screens. Interaction Iscore is a measurement of interaction strength
and is described in the Methods. Essential refers to essentiality of the protein-coding gene to the Giles

lytic cycle as determined by Dedrick et al. (2013). MS, mass spectrometry; same fraction refers to
observation of the protein in one of three fractions as described in the Methods. Figure adapted from

Mehla et al. (2015). B) Interactions involving Giles Gp61 (DnaQ) and proteins observed in the same MS
fraction.

166

One interactor in particular, Gp61 (Uniprot: A8WA49), is a protein with sequence

similarity to the E. coli DNA polymerase III epsilon subunit (DnaQ; Uniprot: P03007).

Among all mycobacterial genomes, the Giles Gp61 sequence appears to be most

similar to a sequence found in M. canariasense, though only a draft sequence of this

species' genome has been published thus far (Katahira et al. 2016). It is therefore

difficult to determine if the bacterial sequence is a host protein or a phage-derived

sequence. In any context, the overall sequence similarities indicate the protein likely has

an exonuclease functionality. Gp61 was found to strongly and consistently interact with

several other Giles proteins (Figure 4-A-B), three of which have structural/assembly

roles. These associations suggest several possibilities: Gp61 may also have a role in

phage structure or assembly, the similarity to a bacterial protein may cause Gp61

interactors to interact with host proteins as well, and/or this protein interferes with host

functions to mediate the phage life cycle.

At this point, I was left with two questions: what can a phage interactome like that of

Giles tell us about phage vs. host interactions, and what can the other phage vs. host

interactions in the curated set provide context for on their own? Out of all Giles proteins,

we may expect those most likely to interact with host proteins are those with similarity to

previously observed phage vs. host interactors and proteins not participating in strong

phage vs. phage PPI. We would, however, expect potential phage vs. host interactors to

be present in MS fractions isolated from an in vivo phage infection. As per the

167

interactome, the proteins fitting this criteria include Gp40, Gp53, Gp55, all proteins of

unknown function, as well as the predicted head assembly protein Gp9.

Similarity between Giles protein sequences and that of other phages is surprisingly

minimal. A sequence identical to that of Giles Gp40 appears in the related

mycobacteriophages Evanesce, OBUPride, Kinbote, and HH92, but nowhere else

apparent. There is some similarity between lambda NinD (p65) and the Giles gp9

capsid though overall sequence alignment is poor. Despite containing just 57 amino

acids, lambda NinD was found by Blasche et al. (2013) to participate in at least 19

different PPI with E. coli proteins. This domain could be a promiscuous interactor, at

least. Similarly, a region of phage T4 gp56, a 171 amino acid dCTPase, shares some

sequence similarity with the Giles gp25 virion protein.

Structural phage proteins appear frequently among the set of phage-host interactions.

Capsid proteins, including Gp62 of Pseudomonas phage LUZ24, GP32 of

Pseudomonas phage LUZ19, G8P of Pseudomonas phage Pf3, Gp10 of Enterobacteria

phage T7, and Gp5 of Enterobacteria phage T7 have all been experimentally observed

to interact with chaperones (e.g., GroEL), membrane-bound proteins (e.g., YidC), or

DNA-binding proteins (e.g., Pseudomonas MvaT; or the DNA polymerase beta subunit,

DnaN). Though these interactions do not involve orthologs of the same one or two

proteins, all of these host proteins have crucial roles in protein folding and transport,

DNA replication, or transcriptional regulation (in the case of MvaT, this protein is a global

168

repressor associating with about 110 different chromosomal regions, as per Castang et

al. (2008)).

As a general (yet, due to its involvement with a species beyond E. coli or P. aeruginosa,

some what exotic) example, I have Corynephage BFK20 Gp41 helicase. Solteszova et

al. (2015) found interactions between this protein and host proteins DnaZX, DnaN,

Dnaδ, DnaG and SSB using bacterial two hybrid. The replication proteins are conserved

in a variety of other species but this particular interaction may or not be preserved;

Bacillus phage SPP1 G40P helicase was also found to interact with Bacillus DnaG by

Wang et al. (2008) and by Ayora et al. (1998). This interaction holds importance for our

understanding of the varied mechanisms of DNA replication. In phage terms, it

establishes the types of host proteins most frequently involved in type 2 phage

replication (that is, those encoding DNA polymerase components; this concept is

reviewed in great detail by Weigel and Seitz (2006)). Phages are frequently used as

models of DNA replication as far back as the establishment of the function of DNA and

the proteins involved in this process have been well-studied but vary across phages. It

is therefore crucial to have a baseline of exact protein-protein interactions to work with

for consistency.

An integrative approach to interactomes of phage vs. phage and phage vs. host PPI is

methodologically limited in certain critical ways. In some cases, such as with the Giles

interactome, the protein sequences involved are simply too different from most known

169

sequences for more than speculative functional inference to be made about them. Giles

was the first mycobacteriophage to be subject to full interactome screening, however,

and it remains possible, that similar interaction patterns may emerge should even

distantly related phages receive the same treatment. Perhaps more importantly, despite

more than 50 years of excellent phage research, the field is only recently devoting focus

to direct PPI between virus and host beyond those interactions most essential to

infection. The vast genetic diversity within phage genomes will surely offer novel

possibilities for informative interactions.

4.4.2 A curated set of phage-host PPI

The set of curated bacteriophage vs. bacterial protein-protein interactions (see

Appendix Table V-A) offers three immediate benefits. It provides a single compilation of

the published, experimental observations of a specific class of common protein

interactions. Though at least one review has pursued a similar goal (Häuser et al.

2012), it offers a smaller set of direct, binary interactions and does not include the

results of several large-scale phage vs. host interaction screens performed in the last

several years. This specific qualifier of “binary” interactions is in contrast to the more

generalized observations determined using mutational studies. While such studies

continue to offer compelling data for biological phenomena, they leave open the

possibility of secondary effects. Finally, application of orthology-driven methods for

protein and interaction comparison (as seen in Chapters 2 and 3; see the Methods of

each respective section for further details) allows the database to serve as a method for

170

comparing interactions. Rather than existing as isolated sets of protein interactions,

relationships may be expressed as interactions between orthologous groups.

General properties of the set of phage-host interactions are provided in Table 4-A. The

set contains 254 proteins of unique sequence in total, corresponding to representatives

from 29 different phages and 10 different bacterial species (Table 4-A). In total, results

from 48 publications (Appendix Table V-B) are included in the set, or just over 6

interactions for each study (though some studies contribute many more interactions

than others, e.g. work by Van den Bossche et al. (2014) contributes 80 PPI and a study

by Blasche et al. (2013) contributes 103 PPI). Some phage proteins (e.g., lambda G

protein) also contribute many more interactions than others (in this case, 12 PPI involve

lambda G), potentially due to their inclusion in large-scale studies with more

opportunities to observe novel PPI.

Table 4-A. Descriptive statistics of the phage-host protein interaction data set.

Property Value

Unique proteins 254

Unique proteins, from phage 121

Unique proteins, from bacteria 133

Interactions 294

Unique phages 29

Unique bacterial species 10

Publications 48

Unique OGs, from phage* 120 (106)

Unique OGs, from bacteria* 126 (2)

Average interactions per phage 5.73 +/- 5.51

171

protein

Average interactions per
bacterial protein

6.00 +/- 6.84

* Number in parenthesis is proteins without OG annotation; these are counted as single-member OGs.

As with any set of combined biological data from experimental sources, the set of phage

vs. host interactions is primarily defined by the most commonly studied subjects. Fig. 4-

B provides a breakdown of the data by bacterial species and by virus serving as a

source of proteins found participating in interactions. Interactions with proteins from E.

coli phages contribute ~47% of the interactions, particularly those from phage lambda

(105 interactions, or ~36% of the interactions) (Fig. 4-B-A). The phages T4 and T7

contribute another 13 and 11 PPI, respectively. Interestingly, the Pseudomonas phage

YuA contributes 38 PPI, as many as Streptococcus phage Dp-1, though the

Pseudomonas phage was screened with a much smaller set of host proteins than in the

whole-host-genome screen performed by Mariano et al. (2016) with phage Dp-1. As

expected, the host bacterial species contributing the most PPI is dominated by the hosts

of the phages mentioned above: E. coli, Pseudomonas aeruginosa, and Streptococcus

pneumoniae (Fig. 4-B-B). Just 18 PPI in the set involve proteins from other bacterial

species.

172

Fig. 4-B. Composition of the observed phage vs. host protein-protein interactions by phage or
host. Each box represents a single protein-protein interaction. Counts in parentheses are protein-protein
interactions. A) Contributions of interactors from specific phages. B) Contributions of interactors from
specific bacterial species.

173

4.4.3 A network and meta-network analysis of phage-host PPI

Fig. 4-C provides the full set of phage-host PPI as a network. This visualization reveals

differences in structure between subsets of the data. The cluster of E. coli interactions

seen at the left corresponds to phage lambda interactions. Phage lambda proteins have

been observed (largely through the high-throughput yeast two hybrid screens by

Blasche et al. (2013)) interacting with numerous host proteins. The Pseudomonas

phage-host interactions in the neighboring cluster demonstrate a different pattern: here,

a set of nine host proteins interacts with many more phage proteins, primarily reflecting

the experimental design employed by Van den Bossche et al. (2014). Unlike the lambda

vs. host screens, the Van den Bossche et al. Pseudomonas phage screens involved no

host proteins beyond the nine screened.

Much of this network is fragmented. In most cases, bacteriophage proteins have not

been observed interacting with host proteins from multiple bacterial species, though this

is likely because the screens have not been performed. A single exception to the rule is

shown with a phage protein interacting with proteins from both E. coli and

Pseudomonas. This interaction is that of phage T4 AsiA; Dove and Hochschild (2001)

found this protein to interact with RNA polymerase Sigma-70 from both bacterial

species. Otherwise, most phage proteins have been found to interact with either one or

two host proteins, though in some cases the same host protein has been found to

interact with multiple phage proteins.

174

Fig. 4-C. The network of phage vs. host protein-protein interactions. Here, all nodes are unique
proteins and all edges indicate an interaction observed between two proteins; multiple edges between
nodes indicate observation of an interaction by multiple methods and/or studies. Nodes representing

bacterial proteins are colored by species of origin.

175

Figure 4-D provides the same set of interactions as shown in Fig. 4-C, though in this

case the protein interactors have been compressed into orthologous groups (OGs)

wherever possible. As noted above in Table 4-A, this has the most effect on bacterial

interactors, as just 14 of 120 phage interactors can be mapped to OGs. To maximize the

impact of orthology-based comparisons, the construction of this network also filters out

all interactors participating in only single interactions. This compression has the greatest

impact on bacterial proteins as the viral protein interactors demonstrate much less

sequence similarity and, as a general result, either do not map to OGs or do not share

OG membership. Even so, this presentation of the network reveals novel consistencies

among phage-host interactions. In all, this network contains 268 interactions among

194 interactors. Many interactions are compressed as a similar type of interaction was

observed multiple times in the same data set. The cluster of interactions formerly

dominated by Pseudomonas interactions is revealed to involve similar types of

interactions in Brevibacterium flavum and E. coli. Similarly, many of the formerly single

phage protein vs. single host protein interactions have now either been filtered out (as

noted above, due to their participation in just one interaction and hence little value for

interaction pattern prediction) or have been compressed into larger, more

interconnected clusters, especially in the case of E. coli interactions.

176

Fig. 4-D. The meta-network of multiple-incidence phage vs. host protein-protein interactions. Here,
all nodes are unique OGs (here, this indicates either an eggNOG OG or treatment of a unique protein as

a single-member OG, as is the case with most phage proteins) and all edges indicate an interaction
observed between two OGs; multiple edges between nodes indicate observation of an interaction by

multiple methods and/or studies. Edges are colored by bacterial species of origin of protein interactors. In
this network, all interactions involve OGs participating in more than one interaction.

177

Some of the benefit of an OG-focused approach to PPI networks can be seen with

individual data sets. Among the 102 PPI identified by Blasche et al. (2013) between

lambda and E. coli proteins, for example, the 133 host proteins involved in these PPI

can be compressed into 47 OGs. Some groups, such as ENOG4105FKG (an OG

containing genes for phage-like Noh terminases and DNA packaging proteins) appear to

be almost completely restricted to E. coli genomes. Other groups, such as

ENOG4105CF7 (in E. coli, the uncharacterized transcriptional regulator YqhC) appear

to be conserved across hundreds of other bacterial genomes (though in this case,

primarily in the Proteobacteria). Converting the lambda proteins in these PPI to OGs

does not reduce the total number of interactors – it remains 15 in both cases – but does

allow for cross-phage comparisons with proteins not seen in the network, as with host

proteins. The lambda protein NinD maps to ENOG411EP1E, for instance, an member of

which is also present in the genome of fellow enterobacteria phage P22. Phage-host

interaction screens have not been performed using phage P22, though interestingly,

comparisons between lambda and P22 have revealed distinctive differences in phage

genome construction (Gough and Levine 1968) yet enough similarity to allow the two

viruses to hybridize with each other (albeit under carefully engineered conditions, see

Botstein and Herskowitz 1974).

4.4.4 Phage-host PPI involve broadly-conserved protein complex components

178

Perhaps the most striking consistency among the PPI in the set of phage-host

interactions is the prevalence of interactions with protein complex components. As

shown previously in Chapter 2, though E. coli protein complexes are a rough model for

bacterial protein complexes as a whole, they provide a general concept of the potential

secondary impacts of a PPI involving a protein complex component. Out of all 294

phage-host interactions, 55 involve a host protein either present in an E. coli protein

complex or with an ortholog in one. As these complexes do not fully capture the full

extent of orthology, I may also include proteins of more distant sequence similarity in the

set of protein complex components (e.g., Pseudomonas DNA polymerase components

are not fully orthologous to those of E. coli but likely provide identical functions). With

this adjustment, the number of phage-host PPI involving a protein complex component

increases to 93.

Fig. 4-E provides a network of interactions predicted to occur between phages and

protein complexes. Each interaction in this network is derived from at least one PPI

between a phage protein and a host protein component in at least one pair of virus and

host. Here, the protein complexes are defined by those in the EcoCyc set of literature-

curated E. coli complexes (see Chapter 3 Methods). As 24 of the 67 interactions shown

in this network involve bacterial species other than E. coli, membership in the same OG

or a homologous protein complex is considered sufficient for protein complex

membership. For example, P. aeruginosa RpoD is a member of ENOG4105DG1, as is

E. coli RpoD. All interactions involving ENOG4105DG1 are therefore considered to be

179

interactions with RNA polymerase (though, in this network, RNA polymerase is

specifically the holoenzyme containing RpoD, while the holoenzyme containing the

stationary phase sigma38 factor RpoS is defined separately).

180

Fig. 4-E. The meta-network of phage protein vs. host complex interactions. Here, all bacteriophage
nodes are unique OGs (here, this indicates either an eggNOG OG or treatment of a unique protein as a

single-member OG, as is the case with most phage proteins), all host nodes are unique protein
complexes as defined by EcoCyc, and all edges indicate any interaction observed between two OGs in
which one interactor is a protein complex component. Edges denote origin of bacteriophage interactor

and are predicted interactions in those involving phages with hosts other than E. coli. Bacteriophage node
labels partially omitted for clarity; see Appendix Table V-A for full set of interactions.

181

At least 10 different phage proteins have been found to interact components of

polymerases. In Pseudomonas phages, the interactors include 17 different proteins

from phage YuA, two from phage φKZ, and one from phage PEV interacting with DNA

polymerase components specifically. E. coli phage T4 AsiA has also been observed in

interactions with polymerase subunits, though its role has been more closely studied:

AsiA is a transcriptional inhibitor, actively weakens the interaction between host

sigma70 and RNA polymerase (Lambert et al. 2004), and is necessary for T4

transcription (Ouhammouch et al. 1994). Lambda N protein has also been found to

interact with RpoD along with a variety of other proteins, including RpoS (Blasche et al.

2013). These interactions may be biased with respect to other proteins as DnaX was

specifically identified by Van den Bossche et al. (2014) as a likely interactor with

Pseudomonas phage proteins, though the interaction likely holds biological relevance

as DNA replication is a likely target during the phage life cycle, other host DNA

replication proteins are implicated in PPI, and bacteriophages lacking their own

polymerases are known to use the host proteins for their own replication (reviewed for

phage lambda by Skalka 1977).

Perhaps the most noticeable result of a network analysis is the potential for cross-

functional interactions. Lambda NinD, in particular, appears to interact with different sets

of host proteins, including the formate hydrogenlyase complex and the outer membrane

protein assembly complex BamABCDE, and an uncharacterized amino acid transporter,

YhdWXYZ. Lambda replication protein P appears to interact with yet a different set of

182

complexes, including part of ATP synthase, ethanolamine ammonia-lyase, and the

primosome.

183

4.4.5 Additional discussion and future work

The concept of the interactome is compelling as it implies activity. Whereas a genome

or a proteome is essentially a list or census of a cell's prospective parts, an interactome

maps the potential for interplay between those parts. In this sense, an interactome

attempts to comprehensively model biomolecular activity (or, at least, assumes protein-

protein interactions play a role) within a cell. A bacterial cell's existence is rarely static,

however. It must respond to stressors and threats in its environment, or in the case of

bacteriophage infection, threats within the confines of its own membranes. In this stage

of my research, I have attempted to define the state of human knowledge of this type of

relationship within the framework of interactomics.

Through careful curation and application of orthology comparisons, I assembled a set of

more than 290 phage vs. host protein-protein interactions (PPI) and determined

commonalties among these PPI. Nearly a third of these interactions involve protein

complex components, often of complexes crucial to bacterial life and replication (e.g.,

RNA and DNA polymerases or ribosomal proteins). As a resource, this data set may be

most useful when interpreted along with binary phage vs. phage protein interactions or

even those from full bacterial interactomes.

The data set provided here should ideally serve as a starting point for further study into

phage-host protein interactions. As a resource, it not only provides a set of binary

interactions specific to the field of phage vs. host interactions, but serves as a guide for

184

the interactions found in future interaction screens. These interactions are

complementary to and improved by recently released bacteriophage protein orthology

databases (Kristensen et al. 2013; Grazziotin et al. 2016). Researchers may use

interactors and orthology-mapped interactions to rapidly determine whether they have

duplicated previous findings in new interaction screens. Furthermore, such a resource

allows for consistency in interpreting future interactomics studies, even those involving

no viral proteins. Researchers studying bacterial PPIs and interactomes may consult

this resource to gauge the likelihood that bacteriophage proteins may compete with host

proteins in interactions.

Future studies into phage vs. host interactions may offer some of the few chances to

discover novel antibacterial treatments. The most effective strategies for controlling

bacterial infections may already exist within a phage's genome. In order for a treatment

to be truly effective against the assortment of pathogens present in an infection,

however, such a treatment must be designed to target multiple species and should

involve a cocktail of phage subtypes (Levin and Bull 2004, Chan et al. 2013, Mattila et

al. 2015). The full set of potential protein interactions should be kept in mind. An

orthology-based, cross-species approach to phage-host PPIs should therefore become

standard in all investigations of phage therapy.

185

Chapter 5 – Conclusions

5.1 Protein complexes are irregularly conserved across divergent bacterial
species

As part of the work presented here, I first coupled the results of mass spectrometry-

characterized protein complexes (Hu et al. 2009, Kühner et al. 2009) with databases of

gene orthology (Powell et al. 2012) and essentiality (Luo et al. 2014) to characterize

interaction conservation within protein complexes. Furthermore, I used the perspective

of genome reduction to evaluate patterns across levels of protein conservation.

Comparing sets of protein complexes from divergent bacterial species (in this case, E.

coli and M. pneumoniae) alleviates some of the bias inherent in using a single species

as a universal model. Rather, observing which protein complexes and their components

are present in two otherwise distinct species allows us to draw conclusions about how

crucial these components are to bacterial life.

5.2 A protein-protein meta-interactome provides context for conserved
interactions

Next, I combined experimentally-derived, previously published protein-protein

interactions from 349 bacterial species to form a consensus meta-interactome. This

approach uses orthologous groups (OG) of proteins to combine all known interactions

into a single network. Notably, I observed that such a network shares characteristics of

single species interactomes. Furthermore, the augmentation of single species

interaction networks with a bacterial meta-interactome improves its efficacy in predicting

186

functions of the underlying proteins, given its dramatically increased information

content. Finally, I used such a bacterial meta-interactome to predict interactome sizes of

species for which incomplete interaction data is available.

5.3 A curated set of phage-host protein interactions provides a starting point for
phage-host interactome screens

Finally, I assembled and curated a set of experimentally-verified interactions between

proteins from 10 bacterial species and 29 bacteriophages, sourced from 48 different

studies. Unlike previous studies of phage vs. host interactions, I have specifically

focused on direct protein-protein interactions rather than indirect mutational

comparisons or predicted impacts on phage infectivity. I have used this new resource to

further analyze the most frequently observed types of protein interactions between

bacteria and their viruses. These resources will ideally serve as a basis for further study

into bacteria vs. bacteriophage interactions, bacterial protein function, and potential

targets for antibacterial or bacteriostatic phage therapy.

5.3 Future work

The work done for this project will be improved by making it more biologically relevant

and by making it more researcher-relevant. The three foci of this work rely heavily upon

orthology predictions and as a result are unavoidably biased by how orthologous groups

are assembled. Currently, group definitions are based on full protein sequences,

potentially creating false-positive group membership when sequences are similar but

functions diverge. A domain-based approach in which groups are composed of proteins

187

with shared domains and sequence motifs may better reveal interaction patterns. Such

an approach may avoid the problem of assigning proteins with very common sequences

(e.g., DNA binding domains) to the same groups but may still be subject to bias if some

domains simply receive preference in annotation (Schnoes et al. 2013). It also remains

difficult (but feasible, as shown by Oates et al. 2013) to ascertain when a domain will

retain its structure, especially if the physiochemical context of its expression is not

conducive to maintaining the domain's stability (Yegambaram et al. 2013).

In the longer term, more rigorous methods may noticeably improve the work presented

here. A machine learning approach to assigning orthology or gene cluster membership

may be the best option to avoid the preferential annotation bias discussed above; such

methods have been attempted, though generally with genes from no more than four

bacterial species at a time (Tetko et al. 2007, Plaimas et al. 2010, Škunca et al. 2013). A

perfect adherence to biological relevance will be pointless, however, if its results are

inaccessible. This and similar projects would benefit noticeably from installation and

maintenance on a publicly-available web server. At this time, all code and data tables

produced as part of this project will be made available online, though I hope future

researchers may be able to improve their accessiblity to others in the field of

microbiology, interactomics, and beyond.

Approaching the large data sets now common among microbiology studies from a

systems biology perspective may seem obvious. When faced with more genomes,

188

protein sequences, and protein interactions than one human could possibly interpret in

a lifetime, the natural assumption is that combining data from disparate sources will

naturally yield otherwise unclear correlations. As exemplified from this work, such

ventures go beyond providing immediate insights: they provide conceptual paradigms

and usable data for future analyses. Our understanding of the protein interactions

crucial to bacterial live will undoubtedly be essential to understanding the ongoing

relationship between humans and the many microbial inhabitants of our world.

189

REFERENCES

 Abt, M. C., McKenney, P. T. & Pamer, E. G. Clostridium difficile colitis: pathogenesis and host defence.

Nat. Rev. Microbiol. 14, 609–620 (2016).

 Abu-Farha, M., Elisma, F. & Figeys, D. Identification of protein-protein interactions by mass spectrometry

coupled techniques. Advances in Biochemical Engineering/Biotechnology 110, 67–80 (2008).

 Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97

(2002).

 Alfarano, C. et al. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic

Acids Res. 33, D418-24 (2005).

 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search

programs. Nucleic Acids Res. 25, 3389–3402 (1997).

 Andersen, J. et al. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus

aureus Bacterial Food Pathogens. Int. J. Environ. Res. Public Health 12, 1487–1547 (2015).

 Arifuzzaman, M. et al. Large-scale identification of protein-protein interaction of Escherichia coli K-12.

Genome Res. 16, 686–691 (2006).

 Ayora, S., Langer, U. & Alonso, J. C. Bacillus subtilis DnaG primase stabilises the bacteriophage SPP1

G40P helicase-ssDNA complex. FEBS Lett. 439, 59–62 (1998).

 Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio

collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

 Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science (80-.). 286, 11 (1999).

 Battchikova, N., Eisenhut, M. & Aro, E.-M. Cyanobacterial NDH-1 complexes: Novel insights and

remaining puzzles. Biochim. Biophys. Acta - Bioenerg. 1807, 935–944 (2011).

 Botstein, D. & Herskowitz, I. Properties of hybrids between Salmonella phage P22 and coliphage λ.

Nature 251, 584–589 (1974).

 Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nat.

Methods 6, 91–97 (2009).

190

 Brown, K. R. & Jurisica, I. Online Predicted Human Interaction Database. Bioinformatics 21, 2076–2082

(2005).

 Calderone, A., Licata, L. & Cesareni, G. VirusMentha: a new resource for virus-host protein interactions.

Nucleic Acids Res. 43, D588–D592 (2015).

 Callebaut, I., Mornon, J.-P., Gilgès, D. & Vigon, I. HYR, an extracellular module involved in cellular

adhesion and related to the immunoglobulin-like fold. Protein Sci. 9, 1382–1390 (2000).

 Caraux, G. & Pinloche, S. PermutMatrix: a graphical environment to arrange gene expression profiles in

optimal linear order. Bioinformatics 21, 1280–1281 (2005).

 Castang, S., McManus, H. R., Turner, K. H. & Dove, S. L. H-NS family members function coordinately in

an opportunistic pathogen. Proc. Natl. Acad. Sci. 105, 18947–18952 (2008).

 Caufield, J. H., Sakhawalkar, N. & Uetz, P. A comparison and optimization of yeast two-hybrid systems.

Methods 58, 317–324 (2012).

 Caufield, J. H., Abreu, M., Wimble, C. & Uetz, P. Protein Complexes in Bacteria. PLOS Comput. Biol. 11,

e1004107 (2015).

 Centers for Disease Contol and Prevention. Antibiotic resistance threats in the United States. Centers for

Disease Control and Prevention (2013).

 Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future

Microbiol. 8, 769–783 (2013).

 Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43,

D470–D478 (2015).

 Chatterjee, P. K. & Sternberg, N. L. A general genetic approach in Escherichia coli for determining the

mechanism(s) of action of tumoricidal agents: application to DMP 840, a tumoricidal agent. Proc.

Natl. Acad. Sci. U. S. A. 92, 8950–4 (1995).

 Chen, C. et al. Subunit–subunit interactions in the human 26S proteasome. Proteomics 8, 508–520

(2008).

191

 Chen, Y.-C., Rajagopala, S. V., Stellberger, T. & Uetz, P. Exhaustive benchmarking of the yeast two-

hybrid system. Nat. Methods 7, 667–668 (2010).

 Cherkasov, A. et al. Mapping the Protein Interaction Network in Methicillin-Resistant Staphylococcus

aureus. J. Proteome Res. 10, 1139–1150 (2011).

 Cherkasov, A. et al. Mapping the Protein Interaction Network in Methicillin-Resistant Staphylococcus

aureus. J. Proteome Res. 10, 1139–1150 (2011).

 Christen, B. et al. The essential genome of a bacterium. Mol. Syst. Biol. 7, 528–528 (2014).

 Cohen, O., Ashkenazy, H., Levy Karin, E., Burstein, D. & Pupko, T. CoPAP: Coevolution of presence-

absence patterns. Nucleic Acids Res. 41, W232-7 (2013).

 Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO

Rep. 2, 821–828 (2001).

 de Matos Simoes, R., Dehmer, M. & Emmert-Streib, F. Interfacing cellular networks of S. cerevisiae and

E. coli: connecting dynamic and genetic information. BMC Genomics 14, 324 (2013).

 Dedrick, R. M. et al. Functional requirements for bacteriophage growth: gene essentiality and expression

in mycobacteriophage Giles. Mol. Microbiol. 88, 577–589 (2013).

 Dixon, S. J., Costanzo, M., Baryshnikova, A., Andrews, B. & Boone, C. Systematic mapping of genetic

interaction networks. Annu. Rev. Genet. 43, 601–625 (2009).

 Dove, S. L. & Hochschild, A. Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the 70

Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia coli and

AlgQ from Pseudomonas aeruginosa. J. Bacteriol. 183, 6413–6421 (2001).

 Eraso, J. M. et al. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J.

Bacteriol. 196, 2053–2066 (2014).

 Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, D136-43 (2012).

 Friedel, C. C. & Zimmer, R. Inferring topology from clustering coefficients in protein-protein interaction

networks. BMC Bioinformatics 7, 519 (2006).

192

 Gallos, L. K., Makse, H. A. & Sigman, M. A small world of weak ties provides optimal global integration of

self-similar modules in functional brain networks. Proc. Natl. Acad. Sci. 109, 2825–2830 (2012).

 Gandhi, T. K. B. et al. Analysis of the human protein interactome and comparison with yeast, worm and

fly interaction datasets. Nat. Genet. 38, 285–293 (2006).

 Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. 103, 425–430 (2006).

 Gough, M. & Levine, M. The circularity of the phage P22 linkage map. Genetics 58, 161–9 (1968).

 Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): a

resource for comparative genomics and protein family annotation. Nucleic Acids Res. gkw975

(2016). doi:10.1093/nar/gkw975

 Gu, H., Zhu, P., Jiao, Y., Meng, Y. & Chen, M. PRIN: a predicted rice interactome network. BMC

Bioinformatics 12, 161 (2011).

 Guerrero, C., Tagwerker, C., Kaiser, P. & Huang, L. An integrated mass spectrometry-based proteomic

approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes

(QTAX) to decipher the 26 S proteasome-interacting network. Mol. Cell. Proteomics 5, 366–78

(2006).

 Guimera, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex

networks. Proc. Natl. Acad. Sci. 106, 22073–22078 (2009).

 Guirimand, T., Delmotte, S. & Navratil, V. VirHostNet 2.0: surfing on the web of virus/host molecular

interactions data. Nucleic Acids Res. 43, D583–D587 (2014).

 Han, K. et al. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci.

Rep. 3, (2013).

 Hart, G. T., Lee, I. & Marcotte, E. R. A high-accuracy consensus map of yeast protein complexes reveals

modular nature of gene essentiality. BMC Bioinformatics 8, 236 (2007).

 Häuser, R. et al. Bacteriophage Protein-Protein Interactions. Adv. Virus Res. 83, 219–298 (2012).

 Häuser, R. et al. A second-generation protein-protein interaction network of Helicobacter pylori. Mol. Cell.

Proteomics 13, 1318–29 (2014).

193

 Haynes, C. et al. Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic

Interactomes. PLoS Comput. Biol. 2, e100 (2006).

 He, Z. & Mi, H. Functional characterization of the subunits N, H, J, and O of the NAD(P)H

dehydrogenase complexes in Synechocystis sp. strain PCC 6803. Plant Physiol. pp.00458.2016

(2016). doi:10.1104/pp.16.00458

 Helke, K. L. et al. Effects of antimicrobial use in agricultural animals on drug-resistant foodborne

salmonellosis in humans: A systematic literature review. Crit. Rev. Food Sci. Nutr. 57, 472–488

(2016).

 Helms, M., Simonsen, J. & Mølbak, K. Quinolone Resistance Is Associated with Increased Risk of

Invasive Illness or Death during Infection with Salmonella Serotype Typhimurium. J. Infect. Dis.

190, 1652–1654 (2004).

 Hermjakob, H. et al. The HUPO PSI’s Molecular Interaction format—a community standard for the

representation of protein interaction data. Nat. Biotechnol. 22, 177–183 (2004).

 Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial

resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. 112,

E3574–E3581 (2015).

 Hu, P. et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized

proteins. PLoS Biol. 7, 0929–0947 (2009).

 Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional

annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. (2015).

doi:10.1093/nar/gkv1248

 Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl.

Acad. Sci. U. S. A. 98, 4569–4574 (2001).

 Kamran, M., Sinha, S., Dubey, P., Lynn, A. M. & Dhar, S. K. Identification of putative Z-ring-associated

proteins, involved in cell division in human pathogenic bacteria Helicobacter pylori. FEBS Lett.

590, 2158–2171 (2016).

194

Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–

30 (2000).

 Katahira, K., Ogura, Y., Gotoh, Y. & Hayashi, T. Draft Genome Sequences of Five Rapidly Growing

Mycobacterium Species, M. thermoresistibile , M. fortuitum subsp. acetamidolyticum , M.

canariasense , M. brisbanense , and M. novocastrense : TABLE 1. Genome Announc. 4, e00322-

16 (2016).

 Kelkar, Y. D. & Ochman, H. Genome reduction promotes increase in protein functional complexity in

bacteria. Genetics 193, 303–307 (2013).

 Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–

1464 (2010).

 Kerrien, S. et al. IntAct--open source resource for molecular interaction data. Nucleic Acids Res. 35,

D561–D565 (2007).

 Kerrien, S. et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841-6

(2012).

 Keseler, I. M. et al. EcoCyc: Fusing model organism databases with systems biology. Nucleic Acids Res.

41, D605-12 (2013).

 Kim, M.-S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

 Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. 100, 4678–4683 (2003).

 Koonin, E. V, Mushegian, a R. & Bork, P. Non-orthologous gene displacement. Trends Genet. 12, 334–

336 (1996).

 Korste, A., Wulfhorst, H., Ikegami, T., Nowaczyk, M. M. & Stoll, R. Solution structure of the NDH-1

complex subunit CupS from Thermosynechococcus elongatus. Biochim. Biophys. Acta - Bioenerg.

1847, 1212–1219 (2015).

 Kotlyar, M. et al. In silico prediction of physical protein interactions and characterization of interactome

orphans. Nat. Methods 12, 79–84 (2014).

195

 Kristensen, D. M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from

intergenomic symmetric best matches. Bioinformatics 26, 1481–7 (2010).

 Kristensen, D. M. et al. Orthologous gene clusters and taxon signature genes for viruses of prokaryotes.

J. Bacteriol. 195, 941–950 (2013).

 Kühner, S. et al. Proteome organization in a genome-reduced bacterium. Science 326, 1235–1240

(2009).

 Land, M. et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–

61 (2015).

 Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative

approach. Proc. Natl. Acad. Sci. U. S. A. 109, 1380–7 (2012).

 Lee, S.-A. et al. Ortholog-based protein-protein interaction prediction and its application to inter-species

interactions. BMC Bioinformatics 9, S11 (2008).

 Letunic, I. & Bork, P. Interactive Tree of Life v2: Online annotation and display of phylogenetic trees made

easy. Nucleic Acids Res. 39, W475-8 (2011).

 Levin, B. R. & Bull, J. J. Opinion : Population and evolutionary dynamics of phage therapy. Nat. Rev.

Microbiol. 2, 166–173 (2004).

 Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–3 (2004).

 Liang, Z., Xu, M., Teng, M. & Niu, L. Comparison of protein interaction networks reveals species

conservation and divergence. BMC Bioinformatics 7, 457 (2006).

 Liberati, N. T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14

transposon insertion mutants. Proc. Natl. Acad. Sci. 103, 2833–2838 (2006).

 Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–

D861 (2012).

 Liechti, G. & Goldberg, J. B. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and

Helicobacter pylori: paradigm deviations in H. pylori. Frontiers in Cellular and Infection

Microbiology 2, 29 (2012).

196

 Luo, H., Lin, Y., Gao, F., Zhang, C. T. & Zhang, R. DEG 10, an update of the database of essential genes

that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 42,

D574-80 (2014).

 Margolin, W. Sculpting the Bacterial Cell. Curr. Biol. 19, R812–R822 (2009).

 Matthews, L. R. et al. Identification of potential interaction networks using sequence-based searches for

conserved protein-protein interactions or ‘interologs’. Genome Res. 11, 2120–6 (2001).

 Mattila, S., Ruotsalainen, P. & Jalasvuori, M. On-Demand Isolation of Bacteriophages Against Drug-

Resistant Bacteria for Personalized Phage Therapy. Front. Microbiol. 6, (2015).

 McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an Alternative Genetic Code in the

Extremely Small and GC–Rich Genome of a Bacterial Symbiont. PLoS Genet. 5, e1000565

(2009).

 Mehla, J. et al. The protein interactome of mycobacteriophage Giles predicts functions for unknown

proteins. J. Bacteriol. JB.00164-15 (2015). doi:10.1128/JB.00164-15

 Morris, P., Marinelli, L. J., Jacobs-Sera, D., Hendrix, R. W. & Hatfull, G. F. Genomic characterization of

mycobacteriophage giles: Evidence for phage acquisition of host DNA by illegitimate

recombination. J. Bacteriol. 190, 2172–2182 (2008).

 Morrison, R. B. The effect of temperature and chloramphenicol on the development of flagella and

motility in a strain of Escherichia coli. J. Pathol. Bacteriol. 82, 189–92 (1961).

 Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete

bacterial genomes. Proc. Natl. Acad. Sci. U. S. A. 93, 10268–73 (1996).

 Nagakubo, S., Nishino, K., Hirata, T. & Yamaguchi, A. The putative response regulator BaeR stimulates

multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J.

Bacteriol. 184, 4161–7 (2002).

 Oates, M. E. et al. D2P2: database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516

(2013).

 Oksanen, J. vegan: Community Ecology Package. (2013).

197

 Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction

databases. Nucleic Acids Res. 42, D358–D363 (2014).

 Osterman, A. et al. The Hepatitis E virus intraviral interactome. Sci. Rep. 5, 13872 (2015).

 Ottemann, K. M. & Lowenthal, A. C. Helicobacter pylori Uses Motility for Initial Colonization and To Attain

Robust Infection. Infect. Immun. 70, 1984–1990 (2002).

 Ouhammouch, M., Orsini, G. & Brody, E. N. The asiA gene product of bacteriophage T4 is required for

middle mode RNA synthesis. J. Bacteriol. 176, 3956–65 (1994).

 Parrish, J. R. et al. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8,

R130 (2007).

 Plaimas, K., Eils, R. & König, R. Identifying essential genes in bacterial metabolic networks with machine

learning methods. BMC Syst. Biol. 4, 56 (2010).

 Pope, W. H. et al. Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the

Mycobacterium Neighborhood. MBio 5, e02145-14 (2014).

 Powell, S. et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res.

42, D231-9 (2014).

 Powell, S. et al. eggNOG v3.0: Orthologous groups covering 1133 organisms at 41 different taxonomic

ranges. Nucleic Acids Res. 40, D284-9 (2012).

 Rain, J.-C. et al. The protein–protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

 Rajagopala, S. V, Casjens, S. & Uetz, P. The protein interaction map of bacteriophage lambda. BMC

Microbiol. 11, 213 (2011).

 Rajagopala, S. V. et al. The binary protein-protein interaction landscape of Escherichia coli. Nat.

Biotechnol. 32, 285–290 (2014).

 Reed, W. J. A Brief Introduction to Scale-Free Networks. Nat. Resour. Model. 19, 3–14 (2008).

 Rose, P. W. et al. The RCSB Protein Data Bank: New resources for research and education. Nucleic

Acids Res. 41, D475-82 (2013).

198

 Ryan, C. J., Krogan, N. J., Cunningham, P. & Cagney, G. All or nothing: Protein complexes flip

essentiality between distantly related eukaryotes. Genome Biol. Evol. 5, 1049–1059 (2013).

 Ryan, C. J. et al. Hierarchical Modularity and the Evolution of Genetic Interactomes across Species. Mol.

Cell 46, 691–704 (2012).

 Salama, N. R., Shepherd, B. & Falkow, S. Global Transposon Mutagenesis and Essential Gene Analysis

of Helicobacter pylori. J. Bacteriol. 186, 7926–7935 (2004).

 Sambourg, L. & Thierry-Mieg, N. New insights into protein-protein interaction data lead to increased

estimates of the S. cerevisiae interactome size. BMC Bioinformatics 11, 605 (2010).

 Sato, S. et al. A large-scale protein-protein interaction analysis in synechocystis sp. PCC6803. DNA Res.

14, 207–216 (2007).

 Schad, E., Tompa, P. & Hegyi, H. The relationship between proteome size, structural disorder and

organism complexity. Genome Biol. 12, R120 (2011).

 Schauer, K. & Stingl, K. ‘Guilty by association’ - Protein-protein interactions (PPIs) in bacterial pathogens.

Genome Dynamics 6, 48–61 (2009).

 Schnoes, A. M., Ream, D. C., Thorman, A. W., Babbitt, P. C. & Friedberg, I. Biases in the Experimental

Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space.

PLoS Comput. Biol. 9, e1003063 (2013).

 Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction

networks. Genome Res. 13, 2498–2504 (2003).

 Shanson, D. C. Antibiotic-resistant Staphylococcus aureus. J. Hosp. Infect. 2, 11–36 (1981).

 Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. 102,

1974–1979 (2005).

 Sharan, R., Ideker, T., Kelley, B., Shamir, R. & Karp, R. M. Identification of Protein Complexes by

Comparative Analysis of Yeast and Bacterial Protein Interaction Data. J. Comput. Biol. 12, 835–

846 (2005).

199

 Shimoda, Y. et al. A large scale analysis of protein-protein interactions in the nitrogen-fixing bacterium

Mesorhizobium loti. DNA Res. 15, 3–11 (2008).

 Shoji, S., Dambacher, C. M., Shajani, Z., Williamson, J. R. & Schultz, P. G. Systematic Chromosomal

Deletion of Bacterial Ribosomal Protein Genes. J. Mol. Biol. 413, 751–761 (2011).

 Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using

Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2011).

 Sissi, C. & Palumbo, M. Effects of magnesium and related divalent metal ions in topoisomerase structure

and function. Nucleic Acids Res. 37, 702–711 (2009).

 Skalka, A. M. in Current Topics in Microbiology and Immunology 201–237 (1977). doi:10.1007/978-3-642-

66800-5_7

 Škunca, N. et al. Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy

Relationships. PLoS Comput. Biol. 9, e1002852 (2013).

 Song, J. & Singh, M. How and when should interactome-derived clusters be used to predict functional

modules and protein function? Bioinformatics 25, 3143–3150 (2009).

 Song, Y. C. et al. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the

flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53, 541–53

(2004).

 Stellberger, T. et al. Improving the yeast two-hybrid system with permutated fusions proteins: the

Varicella Zoster Virus interactome. Proteome Sci. 8, 8 (2010).

 Stumpf, M. P. H. et al. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. 105, 6959–

6964 (2008).

 Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life.

Nucleic Acids Res. 43, D447–D452 (2014).

 Tatusov, R. L., Koonin, E. V & Lipman, D. J. A genomic perspective on protein families. Science 278,

631–7 (1997).

200

 Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4,

41 (2003).

 Tavernier, J. et al. MAPPIT: a cytokine receptor-based two-hybrid method in mammalian cells. Clin. Exp.

Allergy 32, 1397–1404 (2002).

 Tetko, I. V., Rodchenkov, I. V., Walter, M. C., Rattei, T. & Mewes, H.-W. Beyond the ‘best’ match: machine

learning annotation of protein sequences by integration of different sources of information.

Bioinformatics 24, 621–628 (2008).

 Titz, B. et al. The binary protein interactome of Treponema pallidum - The syphilis spirochete. PLoS One

3, e2292 (2008).

 Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

Nature 403, 623–627 (2000).

 Van den Bossche, A. et al. Systematic Identification of Hypothetical Bacteriophage Proteins Targeting

Key Protein Complexes of Pseudomonas aeruginosa. J. Proteome Res. 13, 4446–4456 (2014).

 van Hal, S. J. et al. Predictors of Mortality in Staphylococcus aureus Bacteremia. Clin. Microbiol. Rev. 25,

362–386 (2012).

 Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90

(2009).

 Vo, T. V. et al. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from

Yeasts to Human. Cell 164, 310–323 (2016).

 Wang, F. et al. Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the

antitubercular activity of isoniazid. Antimicrob. Agents Chemother. 54, 3776–82 (2010).

 Wang, G. & Maier, R. J. An NADPH quinone reductase of Helicobacter pylori plays an important role in

oxidative stress resistance and host colonization. Infect. Immun. 72, 1391–6 (2004).

 Wang, J., Gao, Y. & Zhao, F. Phage-bacteria interaction network in human oral microbiome. Environ.

Microbiol. (2015). doi:10.1111/1462-2920.12923

201

 Wang, M. et al. PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life.

Mol. Cell. Proteomics 11, 492–500 (2012).

 Wang, P. I. & Marcotte, E. M. It’s the machine that matters: Predicting gene function and phenotype from

protein networks. J. Proteomics 73, 2277–2289 (2010).

 Wang, Y. et al. Global protein-protein interaction network in the human pathogen mycobacterium

tuberculosis H37Rv. J. Proteome Res. 9, 6665–6677 (2010).

 Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, L. T. gplots: Various R Programming

Tools for Plotting Data. (2015).

 Washizaki, A., Yonesaki, T. & Otsuka, Y. Characterization of the interactions between Escherichia coli

receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen (2016).

doi:10.1002/mbo3.384

 Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2--a

multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

 Weigel, C. & Seitz, H. Bacteriophage replication modules. FEMS Microbiol. Rev. 30, (2006).

 Wiles, A. M. et al. Building and analyzing protein interactome networks by cross-species comparisons.

BMC Syst. Biol. 4, 36 (2010).

 Wilson, D. N. & Nierhaus, K. H. Ribosomal Proteins in the Spotlight. Crit. Rev. Biochem. Mol. Biol. 40,

243–267 (2005).

 Wolf, D. H. & Hilt, W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal.

Biochim. Biophys. Acta - Mol. Cell Res. 1695, 19–31 (2004).

 Wu, X. et al. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays

a Role in Virulence. PLoS One 11, e0160977 (2016).

 Wuchty, S., Oltvai, Z. N. & Barabási, A.-L. Evolutionary conservation of motif constituents in the yeast

protein interaction network. Nat. Genet. 35, 176–179 (2003).

 Wuchty, S. & Uetz, P. Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar. Sci.

Rep. 4, 7187 (2014).

202

 Xu, P. et al. Genome-wide essential gene identification in Streptococcus sanguinis. Sci. Rep. (2011).

doi:10.1038/srep00125

 Yegambaram, K., Bulloch, E. M. M. & Kingston, R. L. Protein domain definition should allow for

conditional disorder. Protein Sci. 22, 1502–1518 (2013).

 Young, K. H. Yeast two-hybrid: so many interactions, (in) so little time... Biol. Reprod. 58, 302–311

(1998).

 Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322,

104–110 (2008).

 Yus, E. et al. Impact of genome reduction on bacterial metabolism and its regulation. Science 326, 1263–

1268 (2009).

 Zhang, M., Su, S., Bhatnagar, R. K., Hassett, D. J. & Lu, L. J. Prediction and Analysis of the Protein

Interactome in Pseudomonas aeruginosa to Enable Network-Based Drug Target Selection. PLoS

One 7, e41202 (2012).

 Zhang, P. et al. Isolation, subunit composition and interaction of the NDH-1 complexes from

Thermosynechococcus elongatus BP-1. Biochem. J. 390, 513–520 (2005).

 Zhong, Q. et al. An inter-species protein-protein interaction network across vast evolutionary distance.

Mol. Syst. Biol. 12, 865–865 (2016).

 Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature

535, 511–516 (2016).

203

VITA

John Harry Caufield was born on March 23, 1986 in Chester County, Pennsylvania. He

graduated from Downingtown East High School, Lionville, Pennsylvania in 2004 and

received a Bachelor of Science degree in Biological Sciences from the University of

Delaware in 2008. He received a Master of Science degree in Bioinformatics from

Virginia Commonwealth University in 2012.

204

APPENDIX I

Guide to spicednog

I.I. User’s guide to spicednog

Spicednog (SPecIfic Conservation for Every DamN Orthologous Group) is a set of
Python scripts intended for parsing and retrieving orthology assignments for a given set
of genes or genomes. All scripts are intended to be run from the Linux command line.
Orthology data is provided by the eggNOG project v.3
(http://eggnog.embl.de/version_3.0/). These scripts will not work properly with newer
versions of eggNOG as the data file structure has changed. Spicednog is intended for
use with bacterial genomes and bacterial gene orthology.

These scripts have been written for Python 2.7 and have not been fully tested with
Python 3. They require an Internet connection.

There are three main components:

● spicednog.py takes a species or strain name and provides lists of genes,
orthologous groups, and basic counts of locus types.

● spicednog-convert.py takes lists of Uniprot IDs and converts them into OG, NOG,
and bactNOG IDs if available.

● spicednog-marshmallow.py takes an OG ID and finds genomes which contain it.

The accessory module ConToComplexCon.py is also provided to assist with calculating
conservation fractions for protein complexes.

I.I.I Setup

All spicednog should be extracted to the same folder. This folder must also contain the
eggNOG v.3 species flat file (species.v3.txt) as well as the contents of the compressed
eggNOG members file (all.members.tar.gz; this file will decompress to a single folder,
all.members) and the contents of the compressed eggNOG protein aliases file
(protein.aliases.v3.txt.gz; this file decompresses to a single 3 Gb text file). Both files are
available at http://eggnog.embl.de/version_3.0/downloads.html.

205

http://eggnog.embl.de/version_3.0/

I.I.II Running spicednog

The main script can then be run by navigating to its location and running as shown in
Figure A1. Here, python2 is specified to ensure the correct version is running, but may
depend on the Python version installed on the system.

Fig. A1. The initial spicednog prompt.

Providing a species name causes spicednog to search the reference proteome
database within Uniprot for entries matching the search query. Results will resemble
those shown in Figure A2. In the event of no match, the search should be repeated.

Fig. A2. The results of a spicednog search.

Results contain the following information:
● taxon: the taxonomy ID specific to this entry. Used by Uniprot and the NCBI

Taxonomy database.
● type: may be “peripheral species” or “core species”. Core species are more likely

to be representative models.
● name_official: The full name of the corresponding species and strain.
● name_compact: A shorter form of the name.
● name_NCBI: The name used by NCBI databases.
● nr_of_loci: the total count of protein-coding loci in this species and strain's

genome.

206

Spicednog provides a suggestion of the best match to the query based on which of the
results is a core species, if any. Otherwise, the entry may be chosen by typing the
corresponding taxon value.

Once a reference proteome is selected, spicednog generates four files in the current
directory.

[species name] OGs.txt contains on each line:
● An eggNOG v.3 OG. This may be a COG, NOG, or bactNOG.
● A single protein ID from the corresponding reference proteome. This is the

internal ID used by eggNOG.
● The count of proteins in this set matching this OG. (This value includes all

possible OG matches and will therefore not match values in other files.)
● The total count of members of the OG.

[species name] OG counts.txt contains on each line:
● An OG found in the set.
● The number of proteins in the set matching this OG.

[species name] loci counts.txt contains on each line:
● A protein found in the set.
● The number of potential OG matches for this protein.

[species name] conservation across Bacteria.txt contains on each line:
● An OG found in the set.
● A count of bacterial genomes also containing this OG.

The spicednog output also includes descriptive statistics of the reference proteome in
terms of how many proteins can be mapped to OGs of any type and how many are
highest-level OGs (that is, COGs) vs. more specific NOGs.

I.I.III Running accessory scripts

Spicednog-convert.py takes a list of Uniprot protein IDs as input and returns eggNOG
IDs. This is useful for determining which proteins may map to multiple OGs. These IDs
must be provided in a separate file. The script then prompts the user for the filename.
The script searches the alias file for a corresponding eggNOG protein/locus ID, COG,
NOG, and bactNOG. Results of NA indicate a corresponding ID was not found. An
example of spicednog-convert.py output is shown in Figure A3.

207

Fig. A3. The results of an example spicednog-convert.py search.

Spicednog-marshmallow.py searches for a given OG among a given set of species.
This list may be customized (e.g., to search only Proteobacteria or another taxonomic
group) but must be in the same directory as spicednog-marshmallow.py, must be
named “speclist.txt”, and must contain one taxonomy ID per line. Note that some
species or strains may not be present in all databases and may return OG counts of
zero. The name of one or more OGs must be provided at the command line. The script
then returns the number of times the OG is found in each of the given species with IDs
provided in the species list. An example of spicednog-marshmallow.py output is shown
in Figure A4.

Fig. A4. The results of an example spicednog-marshmallow.py search.

208

I.II. Code

I.II.I spicednog.py

#!/usr/bin/python
SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG
For parsing eggNOG files on a single­species or strain basis.
Works properly when in same directory as the following:
species.v3.txt
Extracted "all.members.tar.gz"
Optimized for bacteria.
#INPUT: name of desired species or eggNOG identifier. Can enter as command line argument or when prompted

import mmap, re, sys, string, os

Define input files
filenameSpecies = "species.v3.txt"
filenameCOG = "all.members/COG.members.txt"
filenameNOG = "all.members/NOG.members.txt"
filenamebactNOG = "all.members/bactNOG.members.txt"

Open the species file and prompt for species name
txt = open(filenameSpecies)
print "The species file is %r:" % filenameSpecies
print "Which species are you looking for?"
if (len(sys.argv)>1):

print str(sys.argv[1])
speciesname = str(sys.argv[1])

else:
speciesname = raw_input("> ")

Search the species file for matching rows, get species code and display them
speciesmatches = 0
print txt.readline()
for line in txt:

if re.search(speciesname, line):
speciescode = re.match('[0­9]{4,}', line)
if re.search("core species", line):

bestspeciescode = speciescode
speciesmatches = speciesmatches + 1
print line,

If there is one match, use that one. If there are >1 matches, allow the user to choose by species code
if speciesmatches != 0:

209

if speciesmatches == 1:
print "Your species code is %r." % speciescode.group()
speciescode = speciescode.group()

else:
try:

bestspeciescode
except NameError:

print "More than one entry was matched. Aborting this run."
sys.exit(0)

else:
speciescode = bestspeciescode

print "There were %s matches. Your species code may be %s." % (speciesmatches, speciescode.group())
print "If that is acceptable, enter Y. If not, type your chosen species code (the first number)."
if (len(sys.argv)>1): #For automation purposes. Otherwise will wait for input when 4­

digit codes used
confirms = "Y"

else:
confirms = raw_input("> ")

if confirms == "Y":
speciescode = speciescode.group()

else:
speciescode = confirms

else:
sys.exit("There were no matches. This is how things go sometimes.")

Go back and get one species (row) entry in case a new one was specified
Retrieve its name and total number of loci
txt.seek(0)
for line in txt:

if re.match(speciescode + '\s', line):
speciesFullName = re.search('[A­Z]{1}[a­z]+\s[a­z]+(\w+)?(\w+)?', line)
speciesAllLoci = float((re.search('[0­9]+$', line)).group())
print "Species name: %s. Number of loci: %s." % (speciesFullName.group(), '{:g}'.format(speciesAllLoci))

Move on to the COG and NOG files
txt.close()
ogfile=open(speciesFullName.group() + ' OGs.txt', 'w+')
print "\nOK. Building lists..."

Retrieve rows from OG files with the corresponding species code. Write to the same output file
Also populate the list of bacterial species while we have that bactNOG file open
loci = 0
bactnogloci = 0
txt2 = open(filenameCOG)
for line in txt2:

210

if re.search("\t" + speciescode + "\.\w+", line):
#print line
loci = loci + 1
ogfile.write(line),

txt3 = open(filenameNOG)
for line in txt3:

if re.search("\t" + speciescode + "\.\w+", line):
#print line
loci = loci + 1
ogfile.write(line),

txt4 = open(filenamebactNOG)
listOfBacteria = [0] #To be a bacterial species, a code must be used with at least one bactNOG.
for line in txt4:

if (re.search('\t[0­9]{4,}\.', line)):
#print (re.search('(?:\t)([0­9]{4,})(?:\.)', line)).group(1)
listOfBacteria.append(re.search('(?:\t)([0­9]{4,})(?:\.)', line).group(1))

if re.search("\t" + speciescode + "\.\w+", line):
#print line
bactnogloci = bactnogloci + 1
ogfile.write(line),

setOfBacteria = (set(listOfBacteria))
if (bactnogloci>0):

print "This is one of 943 bacterial species/strains in the database."
else:

print "This is not a bacterial species."
sys.exit(0) #This is just here for automation purposes. Comment out when using non­bacteria

ogfile.seek(0)
#for line in ogfile:

#print line
print "\nSee %s for the OG list." % (ogfile.name)

Get the number of times each OG is present ­ a rough analog for paralogy. Duplicates are removed.
print "Looking at OGs in %s" % (ogfile.name)

ogfileogcounts=open(speciesFullName.group() + ' OG counts.txt', 'w')
with ogfile as f:

filesize = os.path.getsize(speciesFullName.group() + ' OGs.txt')
data = mmap.mmap(f.fileno(), filesize)
#while True:

#lineline = data.readline()
#if lineline == "": break
#print lineline

allOGlist = re.findall('[C|N]OG[0­9]{4,6}', data)
allOGset = (set(allOGlist))
if allOGset:

211

for i in allOGset:
countOG = len(re.findall(i, data))
ogcountline = "\n" + i + "\t" + str(countOG)
#print ogcountline
ogfileogcounts.write(ogcountline),

print "\nSee %s for the OG counts." % (ogfileogcounts.name)
ogfileogcounts.close()

Get the number of times each locus is present ­ shows which loci are in >1 OG.
raw_input("\nPress Enter to see how many times each locus is present.")

ogfilelocicounts=open(speciesFullName.group() + ' loci counts.txt', 'w')
alllocilist = re.findall(speciescode + '\.\w+', data)
alllociset = (set(alllocilist))
if alllociset:

for i in alllociset:
countlocus = len(re.findall(i, data))
locuscountline = "\n" + i + "\t" + str(countlocus)
#print locuscountline
ogfilelocicounts.write(locuscountline),

print "\nSee %s for the locus counts." % (ogfilelocicounts.name)
ogfilelocicounts.close()

print "\n* Within %s there are %s loci which map to OGs. %s loci are unique (that is, they don't share OGs)." %
(speciesFullName.group(), loci, len(alllociset))
if bactnogloci >1:

print "* There are %s highest­level OGs and %s bactNOG loci." % ((len(allOGset) ­ bactnogloci), bactnogloci)
else:

print "* There are %s OGs." % (len(allOGset))
print "* OG loci, including any level of NOGs, comprise %s of all loci for this entry. %s loci did not map to OGs." %
(('{:.2%}'.format(len(alllociset) / speciesAllLoci)),'{:g}'.format(speciesAllLoci ­ len(alllociset)))
print "In summary: /| %s | %s | %s | %s |/" % (speciesFullName.group(), speciescode, '{:g}'.format(speciesAllLoci),
len(alllociset))

#print "\nPress Enter to get OG conservation across the whole database,\n\ttype B to restrict the search to Bacteria,\n\tOR
type X to exit."
#confirms2 = raw_input("> ")
print "Moving on to the bacterial conservation search."
confirms2 = "B"
if confirms2 == "X":

sys.exit("Bye!")

#If requested, open up the COG and NOG and bactNOG files, split by species and remove duplicates, then search for all OGs
found above
#If just looking at bacterial conservation, retrieves only OGs from bacterial species.

212

print "\nOK, searching. This may take a while."
if confirms2 == "B":

ogfileAllConserve=open(speciesFullName.group() + ' conservation across Bacteria.txt', 'w')
else:

ogfileAllConserve=open(speciesFullName.group() + ' conservation across the database.txt', 'w')
cogs = mmap.mmap(txt2.fileno(), 0, prot=mmap.PROT_READ)
cogs = re.split('\..+(\n|\Z)', cogs)
cogset = (set(cogs))
if confirms2 == "B":

filteredcogset = set([])
for i in cogset:

if re.search('(?:\t)([0­9]{4,})', i):
if re.search('(?:\t)([0­9]{4,})', i).group(1) in setOfBacteria:

filteredcogset.add(i)
cogset = filteredcogset
print "Filtered COGs for bacteria only."

cogsettogether = '\t'.join(cogset)
nogs = mmap.mmap(txt3.fileno(), 0, prot=mmap.PROT_READ)
nogs = re.split('\..+(\n|\Z)', nogs)
nogset = (set(nogs))
if confirms2 == "B":

filterednogset = set([])
for i in nogset:

if re.search('(?:\t)([0­9]{4,})', i):
if re.search('(?:\t)([0­9]{4,})', i).group(1) in setOfBacteria:

filterednogset.add(i)
nogset = filterednogset
print "Filtered NOGs for bacteria only."

nogsettogether = '\t'.join(nogset)
bactnogs = mmap.mmap(txt4.fileno(), 0, prot=mmap.PROT_READ)
bactnogs = re.split('\..+(\n|\Z)', bactnogs) #Saves time by not filtering bactNOGs ­ they're already just in bacteria
bactnogset = (set(bactnogs))
bactnogsettogether = '\t'.join(bactnogset)
allOGlistCon = re.findall('[a­z]*[A­Z]{3}[0­9]{4,6}', data) #Get all the OGs for our chosen species.
print "Got all the OGs for the target species."
#print allOGlistCon
allOGsetCon = (set(allOGlistCon))
#print allOGsetCon
if allOGsetCon:

for i in allOGsetCon:
countOG = 0
if 'COG' in i:

countOG = (len(re.findall(i + '\t[0­9]+', cogsettogether))) #Finds one instance of the OG per species
code.

ogcountline = "\n" + i + "\t" + str(countOG)

213

ogfileAllConserve.write(ogcountline),
if 'bactNOG' in i:

countOG = (len(re.findall(i + '\t[0­9]+', bactnogsettogether))) #Ditto.
ogcountline = "\n" + i + "\t" + str(countOG)
ogfileAllConserve.write(ogcountline),

if 'NOG' in i and not 'bactNOG' in i:
countOG = (len(re.findall(i + '\t[0­9]+', nogsettogether))) #Same here. Leaves out missing ones to avoid

double­counting bactNOGs
ogcountline = "\n" + i + "\t" + str(countOG)
ogfileAllConserve.write(ogcountline),

print "\nSee %s for the OG counts." % (ogfileAllConserve.name)
sys.exit(0)

I.II.II spicednog-convert.py

#!/usr/bin/python
SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG
convert module ­ for turning Uniprot IDs into other things
Works properly when in same directory as the following:
protein.aliases.v3.txt
Extracted "all.members.tar.gz"
Optimized for bacteria.
#INPUT: A list of Uniprot IDs, one per line, in file
import mmap, re, sys, string, os

Define input files
filenameAliases = "protein.aliases.v3.txt"
filenameCOG = "all.members/COG.members.txt"
filenameNOG = "all.members/NOG.members.txt"
filenamebactNOG = "all.members/bactNOG.members.txt"

prompt for upids
if (len(sys.argv)>1):

#print str(sys.argv[1])
filenameupid = str(sys.argv[1])

else:
print("Please enter Uniprot ID list file")
filenameupid = input("> ")

idfile = open(filenameupid)
print("upid\tlocus\tcogID\tnogID\tbactnogID")

Search the input file for matching rows.
#Just returns the first matching hit.
undefinedvar = 'undefined'

214

for line in idfile:
upid = line.rstrip()
#print("***NOW SEARCHING ALIAS FILE FOR LOCUS FOR " + upid + "***")
txt = open(filenameAliases)
for line in txt:

#print line
locusline = undefinedvar
if upid in line:

locusline = line
#print line
break

if locusline is undefinedvar:
locus = locusline

locuslist=locusline.split("|")
locus = locuslist[0]
#print locus

Move on to the COG and NOG files
txt.seek(0,0)

Retrieve rows from OG files with the corresponding species code. Write to the same output file
cogID = "NA"
nogID = "NA"
bactnogID = "NA"
txt2 = open(filenameCOG)
#print("***NOW SEARCHING COG FILE FOR LOCUS FOR " + upid + "***")
for line in txt2:

if locus is undefinedvar:
break

if locus in line:
#print line
cogID = line[0:7]
break

txt2.close()
txt3 = open(filenameNOG)
#print("***NOW SEARCHING NOG FILE FOR LOCUS FOR " + upid + "***")
for line in txt3:

if locus is undefinedvar:
break

if locus in line:
#print line
nogID = line[0:8]
break

txt3.close()
txt4 = open(filenamebactNOG)
#print("***NOW SEARCHING bactNOG FILE FOR LOCUS FOR " + upid + "***")

215

for line in txt4:
if locus is undefinedvar:

break
if locus in line:

#print line
bactnogID = line[0:12]
break

txt4.close()
print(upid + "\t" + locus + "\t" + cogID + "\t" + nogID + "\t" + bactnogID)

Output everything, one line each ID

sys.exit(0)

I.II.III spicednog-marshmallow.py

#!/usr/bin/python
SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG
OG presence helper
Input: At the command line, the name of the set (usually a protein complex name; don't use spaces)
followed by the name of one or more eggNOG OGs (i.e., COG1234).
COGs, NOGs, and bactNOGs will work.
Output: A taxon ID number and the number of members of the specified OG its genome contains.

import sys, array

specieslist = open("speclist.txt") #This is just a list of NCBI taxon IDs (Also used by eggNOG), one on each line.
listOfSpec = []
listOfOG = []
searchOGs = []

if (len(sys.argv)>1):
for eacharg in sys.argv:

searchOGs.append(eacharg)
#del searchOGs[0]
groupname = searchOGs[0]
del searchOGs[0]
print groupname
print "Searching for %s OGs in total." % len(searchOGs)

else:
sys.exit("No OGs provided.")

resultsList = [0]

216

#Set up the arrays of species and OGs to search.
for line in specieslist:

listOfSpec.append(line.rstrip())
specieslist.close()
if any("COG" in item for item in searchOGs):

coglist = open("all.members/COG.members.txt")
for line in coglist:

listOfOG.append(line)
print "Loaded COG list."
coglist.close()

if any("bactNOG" in item for item in searchOGs):
bactnoglist = open("all.members/bactNOG.members.txt")
for line in bactnoglist:

listOfOG.append(line)
print "Loaded bactNOG list."
bactnoglist.close()

if any("NOG" in item for item in searchOGs):
noglist = open("all.members/NOG.members.txt")
for line in noglist:

listOfOG.append(line)
print "Loaded NOG list."
noglist.close()

for eachOG in searchOGs:
print "Searching for %s..." % eachOG
resultsLine = ­1
oneSpeciesResults = []
for i in listOfSpec:

resultsLine = resultsLine +1
positivecount = 0
for jline in listOfOG:

if i in jline and eachOG in jline:
positivecount = positivecount + 1

#print "%s\t%s" % (i, positivecount)
oneSpeciesResults.append(positivecount)
#print oneSpeciesResults

resultsList.append(oneSpeciesResults)

print "*Species*\t%s" % '\t'.join(map(str, searchOGs))
index = 0
for item in listOfSpec:

tempString = "%s\t" % item
index2 = 1
for OG in searchOGs:

tempString = tempString + "\t" + str(resultsList[index2][index])

217

index2 = index2 +1
print tempString
index = index +1
#On the same line, print the corresponding results row

I.II.IV ConToComplexCon.py

#!/usr/bin/python
Script for converting spicednog­marshmallow­simple output to fractional conservation for
each complex in a set of complexes.
INPUTS: A matrix of conservation per species, with one species per row and
one OG per column. A second file contains a list of complexes and their OG components.
OUTPUT: A matrix like the first input file, but with one complex per column.
Output values are fractional conservation (that is, (# conserved vs. ref)/(# of components in ref. complex))

import sys, array

conlist = open("EcoCyc_and_Hu_complex_component_conservation.txt")
complexlist = open("Hu_E_coli_complexes.txt")
fractionsf = open('Hu_complex_conservation_fractions.txt', 'w')

#Load all the complexes, storing components in one list and names in another
#They should all remain in the same order though
allcomplexes = []
allnames = []
for line in complexlist:

singlecomplex = (line.rstrip()).split("\t")
singlename = singlecomplex.pop(0)
allcomplexes.append(singlecomplex)
allnames.append(singlename)

#print(allcomplexes)

#Load all components we have conservation for ­ list includes first column for consistency
possiblecomponents = ((conlist.readline()).rstrip()).split("\t")
print("Using conservation of " + str(len(possiblecomponents)) + " components in " + str(len(allnames)) + " complexes.")

#Check to make sure the data matches up
missingcount = 0
missingcomponents = []
for itercomplex in allcomplexes:

for component in itercomplex:
if component in possiblecomponents:

continue

218

#print(component + " is in the set.")
else:

#print(component + " is NOT IN THE SET.")
missingcomponents.append(component)
missingcount = missingcount +1

if missingcount > 0:
print(str(missingcount) + " components are missing in the conservation data.")
print(missingcomponents)

#Set up the output file
allnames.insert(0,"Species")
fractionsf.write("\t".join(allnames) + "\n")

#Iterate through all species and complexes
errors = 0 #The number of components which couldn't be found in the set
for line in conlist:

line = (line.rstrip()).split("\t")
fractionsf.write(line[0] + "\t")
for itercomplex in allcomplexes:

totalcon = 0
for component in itercomplex:

try:
whichone = possiblecomponents.index(component)
totalcon = totalcon + int(line[whichone])
#print(totalcon)

except ValueError:
errors = errors +1
#print("Can't find " + component + " in the search set!")

fractioncon = (totalcon / float(len(itercomplex)))
fractionsf.write(str(fractioncon) + "\t")
#if fractioncon:

#print("%s\t%s\t%s\t%s") % (line[0], itercomplex, totalcon, len(itercomplex))
#fractionsf.write(repr(fractioncon))
#print(line[0] + "\t" + str(fractioncon))

fractionsf.write("\n")
print("Wrote output to " + fractionsf.name)

219

APPENDIX II

Guide to network_umbra

II.I. User’s guide to network_umbra

Network_umbra predicts interactions in a protein interaction network based off a meta-
interactome network. It is intended for use with bacterial proteins and offers some
support for viral proteins. This set of scripts is intended to be run from the Linux
command line. It was written for Python 2.7 but should be compatible with Python 3.

Network_umbra uses eggNOG v.4 for orthology assignments (releases v.4.1 have been
confirmed to work as expected, though previous versions will not). These scripts also
provide options for retrieving reference proteomes from Uniprot, assigning their proteins
to orthologs, and predicting interactions among those orthologs.

II.I.I Setup

Network_umbra requires at least 5 GB of free disk space for input and output files. It will
download the required files if they are not found and therefore requires an Internet
connection for this purpose.

It also requires the following:

● Biopython 1.65 or more recent. Try installing with the pip package installer as
follows:

pip install numpy

pip install biopython

or see http://biopython.org/DIST/docs/install/Installation.html

● BeautifulSoup 4. Install as follows:

pip install beautifulsoup4

or see http://www.crummy.com/software/BeautifulSoup/bs4/doc/

220

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://biopython.org/DIST/docs/install/Installation.html

Network_umbra provides the option to download all available protein-protein
interactions for bacteria from the IntAct database. Due to differences in data availability,
interactions retrieved in this way may not directly correspond to those available through
the IntAct HTML interface. See the EBI PSIQUIC View page
(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml) for the status of
source interaction databases. Alternatively, download interaction sets in PSI-MI TAB 2.7
format or convert other data files to this format. These input files should contain no
header row.

II.I.II Running Network-umbra

The first time it is run, network-umbra will download several files from eggNOG,
including a protein ID conversion file, OG membership files, and annotation files.

It will then assemble a meta-interactome network from the provided interaction data
file(s). All interactions involving interactors other than proteins are removed before
addition to the meta-interactome. Finally, the meta-interactome is compressed into a
consensus meta-interactome. The user is then presented with an options menu (Figure
A5).

Fig. A5. The network-umbra menu seen after meta-interactome construction.

The following output files will be created, along with corresponding folders in the current
working directory:

● 'metainteractome[date].txt'

A meta-interactome composed of all available bacterial protein-protein
interactions. Follows PSI-MI Tab27 format, with the addition of two ortholog
identifiers per row. See format description
athttps://code.google.com/p/psimi/wiki/PsimiTab27Format

221

https://code.google.com/p/psimi/wiki/PsimiTab27Format

● 'meta_statistics[date].txt'

Contains statistics relevant to the produced meta-interactome.

● 'taxid_context[date].txt'

Contains NCBI taxonomy IDs, names, parent IDs, and domains for all input
interactions. All domains should be Bacteria. Used as a reference if meta-
interactome and consensus meta-interactome not built during the same session.

● 'consensus[date].txt'

A consensus meta-interactome composed of all available bacterial protein-protein
interactions. This set of interactions compresses all unique proteins into their
corresponding orthologous groups. Data in each column is the following, from left
to right:

1. InteractorA The first interactor. Usually an OG.

2. InteractorB The second interactor. Usually an OG.

3. InteractionCount Count of individual PROTEIN interactions contributing to
this consensus interaction, as per the meta-interactome.

4. TaxonCount Count of different taxons (here, a proxy for species)
corresponding to the interaction. Similar taxons are grouped together where
possible, e.g. two different E. coli K-12 strains considered E. coli K-12 only.

5. Taxons The taxons corresponding to this interaction.

6. FuncCatA Functional category of the first interactor

7. DescA Description of the first interactor

8. FuncCatB Functional category of the second interactor

9. DescB Description of the second interactor

● 'cons_statistics[date].txt'

Contains statistics relevant to the produced consensus meta-interactome.

222

Option A, the expanded subgraph filtering, filters the consensus meta-interactome by
functional category and returns interactions in which one interactor is an OG and the
other is an individual protein. These interactions can be filtered further by specifying
how many different species/taxids each OG vs. OG interaction must have been
observed in.

● 'subgraph_expansion_[FuncCat]_[date].txt'

A set of subgraphs of the consensus meta-interactome, filtered by conservation
of interactions and function of interactors. Each line is one interaction between a
consensus interactor and a unique protein, accompanied by the source taxid of
the unique protein.

● 'subgraph_expansion_[FuncCat]nodes[date].txt'

Annotation file for the nodes in the expanded subgraphs. Each line is a single
node and includes an OG or protein ID, a functional category if available, an OG
description, and a protein description (each line will have one of the two types of
description; protein descriptions are taken directly from the meta-interactome
file).

Option B permits retrieval of one or more reference proteomes from Uniprot (see Figure
A6). These proteomes are then used for interactome prediction. A warning is shown if a
given proteome cannot be mapped to OGs or has limited mapping. All mapped
proteomes are stored for later use.

223

Fig. A6. Using network-umbra to retrieve a proteome.

Reference proteome retrieval may also be performed without constructing a meta-
interactome first by running proteins_umbra.py.

Network_umbra then provides the option to predict interactomes for all OG-mapped
proteomes (see Figure A7). It first checks for experimental interactions (specifically,
interactions involving proteins directly from the species of interest, including spoke-
model interactions) and then makes additional interaction predictions based on the
presence of proteins with at least one interaction observed between corresponding OGs
in a different species (that is, an interolog). The result is provided in the folder
“predicted_interactomes” with the filename “pred_interactome[taxid].txt”. Each line in
this file is a single interaction including the two protein interactors, two corresponding
OGs, and whether the interaction is classified as Predicted or Experimental. A table of
summary statistics of all interactomes predicted in the current batch is also created in
the current working directory.

224

Fig. A7. Example of interactome prediction process.

Option C provides counts of consensus meta-interactome properties. These include
unique interactors (including both OGs and unmapped proteins, treated as single-
member OGs), interactions, and unique taxids.

225

II.II. Code

II.II.I Network_umbra.py

#!/usr/bin/python
#Network_umbra.py
'''
Predicts interactions in a protein interaction network based off a meta­interactome network.
Uses eggNOG v.4.1.
Written for Python 2.7. Not tested with Python 3.

REQUIRES: Biopython 1.65 or more recent
 Also needs at least 5 GB of available disk space to accomodate data files and output
 More space may be necessary for proteome files.

INPUT: Downloads all available protein­protein interactions for bacteria from IntAct.
 Alternatively, uses a provided PPI data file in PSI­MI TAB 2.7 format.
 REMOVE THE HEADER ROW if it's present!
 Downloads highest­level (LUCA) and bacteria­specific Uniprot ID to NOG mappings from eggNOG v.4.1.
 Downloads highest­level (LUCA) bacteria­specific NOG annotations from eggNOG v.4.1.

OUTPUT:
'metainteractome[date].txt'
 A meta­interactome composed of all available bacterial protein­protein interactions.
 Follows PSI­MI Tab27 format, with the addition of two ortholog identifiers per row.
 See format description at https://code.google.com/p/psimi/wiki/PsimiTab27Format

'meta_statistics[date].txt'
 Contains statistics relevant to the produced meta­interactome.

'taxid_context[date].txt'
 Contains NCBI taxonomy IDs, names, parent IDs, and domains for all input interactions.
 All domains should be Bacteria.
 Used as a reference if meta­interactome and consensus meta­interactome not
 built during the same session.

'consensus[date].txt'
 A consensus meta­interactome composed of all available bacterial protein­protein interactions.
 This set of interactions compresses all unique proteins into their corresponding orthologous groups.

226

 Data in each column is the following, from left to right:
InteractorA The first interactor. Usually an OG.
InteractorB The second interactor. Usually an OG.
InteractionCount Count of individual PROTEIN interactions contributing to this consensus interaction, as per
the meta­interactome.
TaxonCount Count of different taxons (here, a proxy for species) corresponding to the interaction.
 Similar taxons have been grouped together where possible, e.g. two different E. coli K­12 strains are
just considered E. coli K­12.
Taxons The taxons corresponding to this interaction.
FuncCatA Functional category of the first interactor
DescA Description of the first interactor
FuncCatB Functional category of the second interactor
DescB Description of the second interactor

'cons_statistics[date].txt'
 Contains statistics relevant to the produced consensus meta­interactome.

'subgraph_expansion_[FuncCat]_[date].txt'
 A set of subgraphs of the consensus meta­interactome, filtered by conservation of interactions and
function of interactors.
 Each line is one interaction between a consensus interactor and a unique protein, accompanied by the
source taxid of the unique protein.

'subgraph_expansion_[FuncCat]_nodes_[date].txt'
 Annotation file for the nodes in the expanded subgraphs.

'interactome_statistics_[date].txt'
 Counts of interactors ­ proteins and OGs ­ participating in predicted interactomes.
 Contains the following counts per input proteome:
 Name, taxid, Proteins, ProteinsNotInPPI, ProteinsWithExpPPI, ProteinsWithPredPPI,
 UniqueOGs, OGsWithoutInteractions, OGsWithExpInt, OGsWithPredInt, ExpOGIntNet, OGIntInPredNet

Uses PSIQUIC service to retrieve IntAct data ­ see https://github.com/micommunity/psicquic

'''

import proteins_umbra

227

import glob, gzip, operator, os, re, requests, sys, urllib2, zipfile
from Bio import Entrez
from bs4 import BeautifulSoup
from collections import Counter
from datetime import date

Entrez.email = 'caufieldjh@vcu.edu'

#Options
useViruses = True #Option for using eggNOG's viral OGs. Requires the filters permitting only Bacteria to be modified
 #Also requires the viral OGs to be downloaded and added.
 #This option needs to be set True BEFORE the Uniprot to OG map is built or it won't
include proteins from viruses

useNonRefProteomes = True #Option to search non­reference Uniprot proteomes in the interactome prediction module
#Retrieving non­reference proteomes sometimes returns an empty response.
#This happens with proteomes only in UniParc (e.g., if they are redundant)
#In those cases, we reject the search result.

#Functions

def get_eggnog_maps():
 #Download and unzip the eggNOG ID conversion file
 #Filters file to just Uniprot IDs; the resulting file is the map file.
 #One Uniprot ID may correspond to multiple OGs ­ e.g. COG1234,COG3810,COG9313.
 #these cases are considered OGs in their own right as this may indicate a pattern of conserved sequences on its own
 baseURL = "http://eggnogdb.embl.de/download/eggnog_4.1/"
 convfilename = "eggnog4.protein_id_conversion.tsv.gz" #File contains ALL database identifiers and corresponding
proteins

 convfilepath = baseURL + convfilename
 outfilepath = convfilename[0:­3]
 dl_convfile = 1 #If 1, we need to download
 if os.path.isfile(convfilename): #Already have the compressed file, don't download
 print("Found compressed ID conversion file on disk: %s" % convfilename)
 decompress_convfile = 1
 dl_convfile = 0
 if os.path.isfile(outfilepath): #Already have the decompressed file don't download
 print("Found ID conversion file on disk: %s" % outfilepath)

228

 decompress_convfile = 0
 dl_convfile = 0

 if dl_convfile == 1:
 print("Downloading ID mapping file ­ this file is ~400 Mb compressed so this may take some time.")
 print("Downloading from %s" % convfilepath)
 response = urllib2.urlopen(convfilepath)
 compressed_file = open(os.path.basename(convfilename), "w+b") #Start local compressed file
 chunk = 1048576
 while 1:
 data = (response.read(chunk)) #Read one Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n%s file download complete." % convfilename)
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write(".")
 decompress_convfile = 1

 if decompress_convfile == 1:
 print("Decompressing map file. Lines written, in millions:")
 #Done in chunks since it's a large file
 with gzip.open(convfilename) as infile: #Open that compressed file, read and write to uncompressed file
 outfile = open(outfilepath, "w+b")
 linecount = 0
 for line in infile:
 outfile.write(line)
 linecount = linecount +1
 if linecount % 100000 == 0:
 sys.stdout.write(".")
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(linecount/1000000))
 infile.close()
 newconvfilename = outfilepath
 outfile.close()

 #Download and decompress member NOG files (2 of them)

229

 nogURL = baseURL + "data/NOG/"
 nogfilename = "NOG.members.tsv.gz"
 bactnogURL = baseURL + "data/bactNOG/"
 bactnogfilename = "bactNOG.members.tsv.gz"
 all_nog_locations = [[nogURL, nogfilename], [bactnogURL, bactnogfilename]]

 if useViruses == True:
 virnogURL = baseURL + "data/viruses/Viruses/"
 virnogfilename = "Viruses.members.tsv.gz"
 all_nog_locations.append([virnogURL, virnogfilename])

 for location in all_nog_locations:
 baseURL = location[0]
 memberfilename = location[1]
 memberfilepath = baseURL + memberfilename
 outfilepath = memberfilename[0:­3]
 if os.path.isfile(memberfilename):
 print("\nFound compressed NOG membership file on disk: %s" % memberfilename)
 decompress_memberfile = 1
 if os.path.isfile(outfilepath):
 print("\nFound NOG membership file on disk: %s" % outfilepath)
 decompress_memberfile = 0
 else:
 print("\nDownloading NOG membership file ­ this may take some time.")
 print("Downloading from %s" % memberfilepath)
 response = urllib2.urlopen(memberfilepath)
 compressed_file = open(os.path.basename(memberfilename), "w+b") #Start local compressed file
 chunk = 1048576
 while 1:
 data = (response.read(chunk)) #Read one Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n%s file download complete." % memberfilename)
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write(".")
 decompress_memberfile = 1

230

 if decompress_memberfile == 1:
 print("Decompressing NOG membership file %s" % memberfilename)
 #Done in chunks since it's a large file
 with gzip.open(memberfilename) as infile: #Open that compressed file, read and write to uncompressed
file
 outfile = open(outfilepath, "w+b")
 linecount = 0
 for line in infile:
 outfile.write(line)
 linecount = linecount +1
 if linecount % 100000 == 0:
 sys.stdout.write(".")
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(linecount/1000000))
 infile.close()
 outfile.close()

 #Clean up by removing compressed files
 print("\nRemoving compressed files.")
 all_compressed_files = [convfilename, nogfilename, bactnogfilename]
 if useViruses == True:
 all_compressed_files.append(virnogfilename)
 for filename in all_compressed_files:
 if os.path.isfile(filename):
 os.remove(filename)

 #Load and filter the ID conversion file as dictionary
 print("Parsing ID conversion file. Lines read, in millions:")
 with open(convfilename[0:­3]) as infile:
 id_dict = {} #Dictionary of eggNOG protein IDs with database IDs as keys
 #Gets filtered down to relevant database IDs (i.e., Uniprot IDs)
 linecount = 0
 for line in infile:
 linecount = linecount +1
 line_raw = ((line.rstrip()).split("\t")) #Protein IDs are split for some reason; merge them
 one_id_set = [line_raw[0] + "." + line_raw[1], line_raw[2], line_raw[3]]
 if "UniProt_AC" in one_id_set[2]:
 id_dict[one_id_set[1]] = one_id_set[0]

231

 if linecount % 100000 == 0:
 sys.stdout.write(".")
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(linecount/1000000))
 infile.close()

 #Use filtered ID conversion input to map to NOG members
 print("\nReading NOG membership files.")
 all_nog_filenames = [nogfilename[0:­3], bactnogfilename[0:­3]]
 nog_members = {} #Dictionary of NOG ids with protein IDs as keys (need to split entries for each)
 nog_count = 0
 for filename in all_nog_filenames:
 temp_nog_members = {} #We will have duplicates within each set but don't want to lose the information.
 print("Reading from %s" % filename)
 with open(filename) as infile:
 for line in infile:
 nog_count = nog_count +1
 line_raw = ((line.rstrip()).split("\t"))
 nog_id = line_raw[1]
 line_members = line_raw[5].split(",")
 for protein_id in line_members: #The same protein could be in more than one
OG at the same level
 if protein_id in temp_nog_members:
 temp_nog_members[protein_id] = temp_nog_members[protein_id] + "," + nog_id
 else:
 temp_nog_members[protein_id] = nog_id
 infile.close()
 nog_members.update(temp_nog_members)

 upids_length = str(len(id_dict))
 nogs_length = str(nog_count)
 proteins_length = str(len(nog_members))

 print("Mapping %s Uniprot IDs to %s NOGs through %s eggNOG protein IDs:" % (upids_length, nogs_length,
proteins_length))
 upid_to_NOG = {} #Conversion dictionary. Values are OGs, keys are UPIDs.
 mapped_count = 0 #upids mapped to nogs.
 for upid in id_dict:

232

 if id_dict[upid] in nog_members:
 upid_to_NOG[upid] = nog_members[id_dict[upid]]
 mapped_count = mapped_count +1
 if mapped_count % 100000 == 0:
 sys.stdout.write(".")
 if mapped_count % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(mapped_count/1000000))

 #Use this mapping to build map file, named "uniprot_og_maps_*.txt"
 print("Writing map file.")
 nowstring = (date.today()).isoformat()
 mapfilename = "uniprot_og_maps_" + nowstring + ".txt"
 mapfile = open(mapfilename, "w+b")
 for mapping in upid_to_NOG:
 mapfile.write(mapping + "\t" + upid_to_NOG[mapping] + "\n") #Each line is a uniprot ID and an OG id
 mapfile.close()

def get_interactions():
 #Download and unzip the most recent IntAct version, filtered for bacteria, using REST
 #Just uses IntAct for consistency, but could theoretically include other PSIQUIC compatible DB's
 #May need to add more interactions to the file if not present in IntAct
 #The PSICQUIC interface may also not retrieve all available interactions or may not filter as desired,
 #so script prompts for option to use other input files.
 #See format description here: https://code.google.com/p/psimi/wiki/PsimiTab27Format

 #As of Feb 8 2016, this only downloads a few entries ­ seem to be an issue with PSICQUIC or IntAct or both.

 baseURL = "http://www.ebi.ac.uk/Tools/webservices/psicquic/intact/webservices/current/search/query/species:
%22taxid:2%22?format=tab27"
 intfilename = "protein­interactions.tab"

 if os.path.isfile(intfilename):
 print("Found default interaction file on disk: %s" % intfilename)
 else:
 response = urllib2.urlopen(baseURL)
 print("Downloading from IntAct. NOTE: This option may only provide enough interactions for an example.")
 intfile = open(os.path.basename(intfilename), "w+b") #Start local file
 chunk = 1048576

233

 while 1:
 data = (response.read(chunk)) #Read one Mb at a time
 intfile.write(data)
 if not data:
 print("\nInteraction file download complete.")
 intfile.close()
 break
 sys.stdout.flush()
 sys.stdout.write(".")

def get_eggnog_annotations():
 #Downloads and extracts the eggNOG NOG annotations.
 baseURLs = ["http://eggnogdb.embl.de/download/latest/data/bactNOG/",
"http://eggnogdb.embl.de/download/latest/data/NOG/"]
 bactannfilename = "bactNOG.annotations.tsv.gz" #The annotations for bacteria­specific NOGs
 lucaannfilename = "NOG.annotations.tsv.gz" #The annotations for other NOGs, but not bacteria­specific NOGs
 annfilenames = [bactannfilename, lucaannfilename]

 if useViruses == True:
 baseURLs.append("http://eggnogdb.embl.de/download/latest/data/viruses/Viruses/")
 annfilenames.append("Viruses.annotations.tsv.gz")

 this_url = 0
 for annfilename in annfilenames:
 annfilepath = baseURLs[this_url] + annfilename
 this_url = this_url +1
 outfilepath = annfilename[0:­3]
 if os.path.isfile(annfilename):
 print("Found compressed annotation file on disk: " + annfilename)
 else:
 response = urllib2.urlopen(annfilepath)
 print("Downloading from " + annfilepath)
 compressed_file = open(os.path.basename(annfilename), "w+b") #Start local compressed file
 chunk = 1048576
 while 1:
 data = (response.read(chunk)) #Read one Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n" + annfilename + " file download complete.")

234

 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write(".")

 print("Decompressing annotation file.")
 with gzip.open(annfilename) as infile: #Open that compressed file, read and write to uncompressed file
 file_content = infile.read()
 outfile = open(outfilepath, "w+b")
 outfile.write(file_content)
 infile.close()
 outfile.close()

 print("\nRemoving compressed files.")
 all_compressed_files = [bactannfilename, lucaannfilename]
 for filename in all_compressed_files:
 os.remove(filename)

def build_meta(mapping_file_list, ppi_data):
 #Sets up the meta­interactome network.
 #Also creates statistics file about the meta­interactome.
 #This means unique proteins become referred to by their OGs.
 #Interactions are still unique, so two OGs may interact multiple times.

 nowstring = (date.today()).isoformat()
 meta_network_filename = "metainteractome" + nowstring + ".txt"
 taxid_context_filename = "taxid_context" + nowstring + ".txt"
 meta_network_file = open(meta_network_filename, "w")
 taxid_context_file = open(taxid_context_filename, "w")

 all_taxids = []
 all_filtered_taxids = [] #Will remove non­bacterial taxids, unless useViruses is on
 map_dict = {} #Uniprot ID to OG dictionary for ALL IDs
 interaction_file = open(ppi_data)
 interaction_array = []
 interaction_filtered_array = []
 protein_array = []
 taxid_species = {} #Dictionary to store taxids and their name and PARENT taxid.

235

 print("Building meta­interactome...")
 print("Setting up protein to OG maps.")
 #We preferentially use bacteria mapping first
 for input_map_file in mapping_file_list:
 try:
 map_file = open(input_map_file)
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in map_file:
 one_map = ((line.rstrip()).split("\t"))
 map_dict[one_map[0]] = one_map[1]
 map_file.close()

 #for item in map_dict:
 # print(item + "\t" + map_dict[item])

 print("Arraying interaction file and creating lists of proteins and taxids.")

 for line in interaction_file:
 one_interaction = (line.rstrip()).split("\t")
 for taxid in [one_interaction[9], one_interaction[10]]:
 taxid = (((((taxid.split("|"))[0]).lstrip("taxid:")).split("("))[0])
 if taxid not in all_taxids and taxid != "­": #Need to start filtering taxids here so we don't pass
bad values to Entrez
 #Why would we get this value anyway? Could be malformed entry as all interactions should have
taxids
 all_taxids.append(taxid) #Just the raw taxid list
 interaction_array.append(one_interaction) #This is just the raw interaction list at this point

 interaction_file.close()

 print("Finding details for interactor taxids. This will take some time.")

 for taxid in all_taxids:

 if taxid in ["Taxid interactor A", "Taxid interactor B"]: #This means the header wasn't removed.
 continue

236

 unique_taxid_count = 0
 #print(str(taxid))
 target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
 target_records = Entrez.read(target_handle)
 taxid_name = target_records[0]["ScientificName"]
 taxid_parent = target_records[0]["ParentTaxId"]
 taxid_division = target_records[0]["Division"]
 #print(taxid_division)
 taxid_filter = ["Bacteria"]
 if useViruses == True:
 virus_types = ["Phages", "Viruses"]
 for virus_type in virus_types:
 taxid_filter.append(virus_type)
 if taxid_division in taxid_filter: #Restrict the set to bacteria, unless useViruses is on
 taxid_species[taxid] = [taxid_name, taxid_parent, taxid_division]
 taxid_context_file.write(str(taxid) + "\t" + "\t".join(taxid_species[taxid])+ "\n")
 if taxid not in all_filtered_taxids:
 all_filtered_taxids.append(taxid)
 sys.stdout.flush()
 sys.stdout.write(".")
 unique_taxid_count = unique_taxid_count +1
 if unique_taxid_count % 100 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(unique_taxid_count))
 #print(taxid_species[taxid])
 taxid_context_file.close()

 if useViruses == False:
 print("\nCleaning up data by removing non­protein and non­bacterial interactors.")
 else:
 print("\nCleaning up data by removing non­protein and non­bacterial and non­viral interactors.")
 interactions_removed = 0
 for interaction in interaction_array:
 interaction_ok = 1
 for taxid in [interaction[9], interaction[10]]:
 taxid = (((((taxid.split("|"))[0]).lstrip("taxid:")).split("("))[0])
 if taxid not in all_filtered_taxids: #This is where the non­bacterial (and non­viral, if
useViruses is on) interactions get removed
 interaction_ok = 0 #Ensure the interaction won't be kept later

237

 break #Ignore this interactor and the other in the pair
 if interaction_ok == 1: #Don't bother to filter proteins if this didn't pass the first filter
 for protein in interaction[0:2]: #both proteins in the interacting pair
 if protein[0:9] != "uniprotkb": #Only keep proteins with uniprot IDs
 #Might be nice to keep other protein IDs too but they're rare
 interaction_ok = 0 #Ensure the interaction won't be kept later
 break #Ignore this interactor and the other in the pair
 this_protein = protein.lstrip("uniprotkb:")
 if this_protein not in protein_array:
 protein_array.append(this_protein)
 if interaction_ok == 1: # The last filter check for cleaning
 if interaction not in interaction_filtered_array:
 interaction_filtered_array.append(interaction)
 else:
 interactions_removed = interactions_removed +1
 else:
 interactions_removed = interactions_removed +1

 print("Total taxids: %s" % (len(all_filtered_taxids)))
 print("Total raw interactions: %s" % (len(interaction_array)))
 print("Interactions removed: %s" % (interactions_removed))

 print("Mapping OGs to %s proteins in %s interactions." % (len(protein_array), len(interaction_filtered_array)))

 protein_OG_maps = {} #Dictionary to save protein­OG mapping specific for this interaction set
 mapped_count = 0
 proteins_without_OG = 0
 for protein in protein_array:
 mapped_count = mapped_count +1

 if protein in map_dict:
 matching_OG = map_dict[protein]
 else:
 matching_OG = protein #If the protein doesn't map to an OG it retains its original ID
 proteins_without_OG = proteins_without_OG +1

 protein_OG_maps[protein] = matching_OG

238

 print("\nWriting meta­interactome file.")
 interaction_count = 0
 for interaction in interaction_filtered_array: #Write OGs for all (filtered) interactions.
 interaction_count = interaction_count +1

 for protein in interaction[0:2]: #Get matching OGs for both proteins in the pair.
 matching_OG = protein_OG_maps[protein.lstrip("uniprotkb:")]
 interaction.append(matching_OG)

 interaction_out = "\t".join(interaction) + "\n"
 meta_network_file.write(interaction_out)

 #print("mapped " + str(interaction_count) + " ­ " + matching_OG_A + " vs. " + matching_OG_B)

 meta_network_file.close()

 meta_stats_filename = "meta_statistics_" + nowstring + ".txt"
 meta_stats_file = open(meta_stats_filename, "w")
 stats_header = ("Unique proteins\tInteractions\tProteins without OG\n")
 meta_stats_file.write(stats_header)
 meta_statistics = []
 for meta_stat in [len(protein_array), interaction_count, proteins_without_OG]:
 meta_statistics.append(str(meta_stat))
 meta_stats_file.write("\t".join(meta_statistics))
 print("\nWrote meta­interactome statistics to %s" % meta_stats_filename)
 meta_stats_file.close()

 return [meta_network_filename, taxid_species]

def build_consensus(metafile, annotation_file_list, taxid_species):
 #Sets up the consensus meta­interactome network.
 #This is identical to the meta­interactome but compresses interactions into their respective OGs.
 #Interactors without OG assignment are retained and considered single­member OGs.

 nowstring = (date.today()).isoformat()
 consensus_network_filename = "consensus" + nowstring + ".txt"
 consensus_network_file = open(consensus_network_filename, "w")

 consensus_interactors = [] #Consensus interactome interactors ­ an OG where mapping is possible

239

 all_interactions_taxids = [] #All interactions in the meta­interactome, but just with OGs and taxids
 all_interactions_simple = [] #All interactions in the meta­interactome, but just with OGs
 consensus_interactions = [] #Consensus interactome interactions first, then associated data. Get written to
output file.
 all_annotations = [] #Annotations in file ­ a bit inefficient to load the whole thing but more searchable this way
 consensus_annotations = {} #Dictionary to store functional category and descriptions of OG interactors.

 #Load the meta­interactome file, removing true cross­species interactions
 for line in metafile:
 one_interaction = ((line.rstrip()).split("\t"))
 taxid_A = (((((one_interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 taxid_B = (((((one_interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 taxid_mismatch = 0 #Assume that the two taxids are the same by default
 if taxid_A != taxid_B: #If the two taxids aren't identical, they may still be related or may truly be cross­
species.
 #Cross­species PPI get removed.
 taxid_mismatch = 1
 if (taxid_species[taxid_A])[1] == (taxid_species[taxid_B])[1]: #Check if taxids share a parent
 taxid_mismatch = 0
 if (taxid_species[taxid_A])[1] == taxid_B or (taxid_species[taxid_B])[1] == taxid_A: #Check for
parent­child relationship
 taxid_mismatch = 0
 if taxid_mismatch != 1:
 all_interactions_taxids.append([one_interaction[42], one_interaction[43], taxid_A, taxid_B])
 all_interactions_simple.append([one_interaction[42], one_interaction[43]])

 #First pass: create a list of unique interactors and interactions, using OG IDs
 print("Finding unique interactors and interactions. Interactions found:")
 cons_interaction_count = 0

 for interaction in all_interactions_simple:
 interaction_rev = [interaction[1], interaction[0]]
 new_interaction = 0
 for interactor in interaction: #Interactor A or B's OG or ID if no OG mapped
 if interactor not in consensus_interactors:
 consensus_interactors.append(interactor)
 if interaction not in consensus_interactions and interaction_rev not in consensus_interactions:
 new_interaction = 1
 if new_interaction == 1:

240

 cons_interaction_count = cons_interaction_count +1
 if cons_interaction_count % 100 == 0:
 sys.stdout.flush()
 sys.stdout.write(".")
 if cons_interaction_count % 1000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(cons_interaction_count))
 consensus_interactions.append(interaction)

 #Second pass: count the number of interactions contributing to each consensus
 #Compare taxids across interactions to see how many different sources interaction is seen for (i.e., X different
species)
 #Add counts to each item in consensus_interactions
 #The first count is the total occurence of the given interaction across the full meta­interactome
 #The second count is the number of different, unique taxids (species or at least distant strains) corresponding to
the interaction

 print("\nCounting interaction contributions. This may take a while.")
 print("Consensus interactions checked, out of %s:" % (len(consensus_interactions)))

 all_consensus_taxids = []
 con_interactions_counted = 0
 for interaction in consensus_interactions:
 con_interactions_counted = con_interactions_counted +1
 if con_interactions_counted % 100 == 0:
 sys.stdout.flush()
 sys.stdout.write(".")
 if con_interactions_counted % 1000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(con_interactions_counted))
 interaction_sources = [] #The list of taxids found to correspond to this interaction.
 original_count = 0
 #This gets a bit complicated.
 for original_interaction in all_interactions_taxids: #For each interaction in the set of all (not OG­
compressed consensus) meta­interactome interactions...
 original_interaction_slim = original_interaction[0:2]
 original_interaction_slim_rev = [original_interaction[1], original_interaction[0]]
 if interaction == original_interaction_slim or interaction == original_interaction_slim_rev: #If
the original interaction OR its reverse matches the consensus interaction...

241

 original_count = original_count +1 #Add to the count of this interaction across the
meta­interactome.
 for taxid in original_interaction[2:4]: #For both taxids corresponding to the meta­
interactome interaction...
 if taxid not in interaction_sources and taxid != "­": #If the taxid isn't in the
source taxids for this interaction yet...and isn't empty...
 if (taxid_species[taxid])[1] not in interaction_sources: #Check to see
if the sources contain the taxid's parent taxid (if so, it's redundant)
 for source in interaction_sources:
 if (taxid_species[source])[1] == taxid: #Check to see if
taxid is a parent of existing sources (if so, remove children and just use parent)
 interaction_sources.remove(source)
 if (taxid_species[source])[1] == (taxid_species[taxid])[1]:
#Check if taxids share a parent (if so, use parent taxid and drop children)
 taxid = (taxid_species[source])[1] #The problem
here is that the parent taxid may not be in taxid_species since it's new to us

 #So we look it up and add it!
 target_handle = Entrez.efetch(db="Taxonomy",
id=str(taxid), retmode="xml")
 target_records = Entrez.read(target_handle)
 taxid_name = target_records[0]["ScientificName"]
 taxid_parent = target_records[0]["ParentTaxId"]
 taxid_species[taxid] = [taxid_name, taxid_parent]
 #This really should be its own function to limit
redundancy

 interaction_sources.remove(source)
 interaction_sources.append(taxid)
 for source in interaction_sources: #List all the taxids used across the consensus ­ does NOT care about
parent/child relationships
 if source not in all_consensus_taxids:
 all_consensus_taxids.append(source)
 interaction.append(str(original_count))
 interaction.append(str(len(interaction_sources)))
 interaction.append(" ".join(interaction_sources))
 #print(interaction)

 #Third pass: get the functional categories and descriptions of all interactors

242

 print("\nAdding interactor annotations.")
 for input_ann_file in annotation_file_list:
 try:
 ann_file = open(input_ann_file)
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in ann_file:
 all_annotations.append((line.rstrip()).split("\t"))
 ann_file.close()

 multiple_og_count = 0 #The count of interactors mapping to >1 OG. Are treated as single OGs as this may be
biologically meaningful
 annotation_count = 0
 for interactor in consensus_interactors:
 annotation_count = annotation_count +1
 if annotation_count % 100 == 0:
 sys.stdout.write(".")
 if annotation_count % 1000 == 0:
 sys.stdout.write(str(annotation_count))
 consensus_annotations[interactor] = ["NA", "NA"] #Should only happen if OG not in description file (e.g. if
it's unmapped to an OG)
 if "," in interactor: #Meaning it maps to multiple OGs, so we need to annotate all of them
 #print(interactor)
 this_mult_og_count = 0 #Keeps track of multiple OG sets. Usually just two or three different OGs at
most.
 consensus_annotations[interactor] = ["", ""]
 multiple_og_count = multiple_og_count +1
 multiple_ogs = interactor.split(",")
 for og in multiple_ogs:
 this_mult_og_count = this_mult_og_count +1
 for annotation in all_annotations:
 if og == annotation[1]:
 #Concatenate each FuncCat, separated by |
 (consensus_annotations[interactor])[0] = (consensus_annotations[interactor])
[0] + annotation[4]
 if this_mult_og_count != len(multiple_ogs):
 (consensus_annotations[interactor])[0] =
(consensus_annotations[interactor])[0] + "|"
 #Concatenate each description, separated by |

243

 (consensus_annotations[interactor])[1] = (consensus_annotations[interactor])
[1] + annotation[5]
 if this_mult_og_count != len(multiple_ogs):
 (consensus_annotations[interactor])[1] =
(consensus_annotations[interactor])[1] + "|"
 break
 else:
 for annotation in all_annotations:
 if interactor == annotation[1]:
 consensus_annotations[interactor] = [annotation[4], annotation[5]] #FuncCat and
description
 break
 for interaction in consensus_interactions:
 for interactor in interaction[0:2]:
 interaction.append("\t".join(consensus_annotations[interactor]))

 print("\nConsensus meta­interactome involves " +
 "%s interactors and %s interactions." % (len(consensus_interactors), cons_interaction_count))
 print("It involves %s unique taxids, " % (len(all_consensus_taxids)) +
 "though some may be closely related.")
 print("%s interactors map to more than one OG." % multiple_og_count)

 print("Writing consensus meta­interactome file.")
 for interaction in consensus_interactions:
 consensus_network_file.write("\t".join(interaction) + "\n")
 consensus_network_file.close()

 cons_stats_filename = "cons_statistics_" + nowstring + ".txt"
 cons_stats_file = open(cons_stats_filename, "w")
 stats_header = ("Unique interactors\tInteractions\tTaxids\n")
 cons_stats_file.write(stats_header)
 cons_statistics = []
 for cons_stat in [len(consensus_interactors), cons_interaction_count, len(all_consensus_taxids)]:
 cons_statistics.append(str(cons_stat))
 cons_stats_file.write("\t".join(cons_statistics))
 print("Wrote consensus meta­interactome statistics to " + cons_stats_filename)
 cons_stats_file.close()

 return consensus_network_filename

244

def merge_data(list_of_filenames):

 nowstring = (date.today()).isoformat()
 merged_file_name = "interactions" + nowstring + ".txt"
 merged_file = open(merged_file_name, "w")

 for item in list_of_filenames:
 this_file = open(item)
 line_count = 0
 for line in this_file:
 write_ok = 1
 line_count = line_count +1
 line_contents = ((line.rstrip()).split("\t"))
 for interactor in line_contents[0:2]:
 if interactor == "­":
 print("Empty interactor in %s in line %s" + str() % (item, line_count))
 write_ok = 0
 #Unmapped interactors might be denoted with a ­. Don't add them.
 if len(line_contents) != 42:
 print("Format problem in %s line %s" % (item, line_count))
 write_ok = 0
 #Just checking to see if the right number of columns are there
 #Won't write problem lines to the merged file
 if write_ok == 1:
 merged_file.write(line)
 this_file.close()
 return merged_file_name

def subgraph_expansion(metafile, consensusfile):
 print("\nSubset expansion will filter consensus interactions by functional category" +
 " and by conservation across taxonomic groups.\n" +
 "It will produce a set of subgraphs, where each graph involves a consensus" +
 " interactor and ALL of its interactions in the meta­interactome.\n" +
 "These graphs will contain taxonomy annotations for each interaction" +
 " and can be split in network analysis software, e.g. Cytoscape.\n")
 print("Functional categories:\n"
 "INFORMATION STORAGE AND PROCESSING\n"
 "[J] Translation, ribosomal structure and biogenesis\n"

245

 "[A] RNA processing and modification\n"
 "[K] Transcription\n"
 "[L] Replication, recombination and repair\n"
 "[B] Chromatin structure and dynamics\n"
 "CELLULAR PROCESSES AND SIGNALING\n"
 "[D] Cell cycle control, cell division, chromosome partitioning\n"
 "[Y] Nuclear structure\n"
 "[V] Defense mechanisms\n"
 "[T] Signal transduction mechanisms\n"
 "[M] Cell wall/membrane/envelope biogenesis\n"
 "[N] Cell motility\n"
 "[Z] Cytoskeleton\n"
 "[W] Extracellular structures\n"
 "[U] Intracellular trafficking, secretion, and vesicular transport\n"
 "[O] Posttranslational modification, protein turnover, chaperones\n"
 "METABOLISM\n"
 "[C] Energy production and conversion\n"
 "[G] Carbohydrate transport and metabolism\n"
 "[E] Amino acid transport and metabolism\n"
 "[F] Nucleotide transport and metabolism\n"
 "[H] Coenzyme transport and metabolism\n"
 "[I] Lipid transport and metabolism\n"
 "[P] Inorganic ion transport and metabolism\n"
 "[Q] Secondary metabolites biosynthesis, transport and catabolism\n"
 "POORLY CHARACTERIZED\n"
 "[R] General function prediction only\n"
 "[S] Function unknown\n")

 func_filter = raw_input("Filter interactors for which functional category? (Type X for interactors of unknown
function.)\n")
 search_unknowns = 0
 if func_filter in ["x", "X"]:
 search_unknowns = 1
 print("Filtering for interactors of unknown function. Interactors marked NA will not be included.")

 consensus_interactions = [] #Contains whole line (one interaction) from consensus
 consensus_interactions_filtered = [] #Interactions filtered by FuncCat
 consensus_interactions_taxfilt = [] #Interactions filtered by FuncCat and taxids
 consensus_interactors_filtered = {} #Contains interactor, FuncCat, and description (filtered by FuncCat)

246

 consensus_interactors_taxfilt = {} #Contains interactor, FuncCat, and description (filtered by FuncCat and
 #by participation in an interaction passing
the taxid filter)
 expanded_interactions = {} #Keys are consensus interactors. Values are all unique proteins (and
sources) they interact with.
 #Actually a dict of lists of lists. Fun.
 max_taxon_range = 1 #The greatest count of different taxids per interaction, across the whole consensus
 all_interactions = [] #All interactions in the meta­interactome
 protein_annotations = {} #Annotations (from IntAct) for unique proteins. No FuncCats here.

 print("Filtering consensus interactors by function.")
 consensusfile.seek(0) #In case we've been using the file already
 for line in consensusfile: #Filter interactors by FuncCat
 one_consensus_interaction = ((line.rstrip()).split("\t"))
 consensus_interactions.append(one_consensus_interaction)

 if one_consensus_interaction[5] != "NA": #For interactor A
 if search_unknowns == 1:
 if "R" in one_consensus_interaction[5] or "S" in one_consensus_interaction[5]:
 consensus_interactors_filtered[one_consensus_interaction[0]] =
[one_consensus_interaction[5], one_consensus_interaction[6]]
 else:
 if func_filter in one_consensus_interaction[5]:
 consensus_interactors_filtered[one_consensus_interaction[0]] =
[one_consensus_interaction[5], one_consensus_interaction[6]]
 if one_consensus_interaction[7] != "NA": #For interactor B
 if search_unknowns == 1:
 if "R" in one_consensus_interaction[7] or "S" in one_consensus_interaction[7]:
 consensus_interactors_filtered[one_consensus_interaction[1]] =
[one_consensus_interaction[7], one_consensus_interaction[8]]
 else:
 if func_filter in one_consensus_interaction[7]:
 consensus_interactors_filtered[one_consensus_interaction[1]] =
[one_consensus_interaction[7], one_consensus_interaction[8]]

 consensusfile.close() #May not want to close file if we plan on doing multiple filters during same session.

 for interaction in consensus_interactions:
 if interaction[0] in consensus_interactors_filtered or interaction[1] in consensus_interactors_filtered:

247

 consensus_interactions_filtered.append(interaction)
 if interaction[3] > max_taxon_range:
 max_taxon_range = interaction[3]

 print("The maximum for this filter will be " + str(max_taxon_range) + " different taxids.")
 tax_filter = raw_input("Select for at least how many different taxonomic groups?\n")

 for interaction in consensus_interactions_filtered:
 if interaction[3] >= tax_filter:
 consensus_interactions_taxfilt.append(interaction)

 if interaction[5] != "NA": #For interactor A
 if search_unknowns == 1:
 if "R" in interaction[5] or "S" in interaction[5]:
 consensus_interactors_taxfilt[interaction[0]] = [interaction[5],
interaction[6]]
 else:
 if func_filter in interaction[5]:
 consensus_interactors_taxfilt[interaction[0]] = [interaction[5],
interaction[6]]
 if interaction[7] != "NA": #For interactor B
 if search_unknowns == 1:
 if "R" in interaction[7] or "S" in interaction[7]:
 consensus_interactors_taxfilt[interaction[1]] = [interaction[7],
interaction[8]]
 else:
 if func_filter in interaction[7]:
 consensus_interactors_taxfilt[interaction[1]] = [interaction[7],
interaction[8]]

 print("Generated list of filtered consensus interactors. Searching meta­interactome.")

 for line in metafile: #Set up the meta­interactome file first
 one_interaction = (line.rstrip()).split("\t")
 all_interactions.append(one_interaction) #This is just the raw interaction list at this point

 metafile.close()

 for interactor in consensus_interactors_taxfilt:

248

 expanded_interactions[interactor] = []
 for interaction in all_interactions: #Search meta­interactome for matching interactions; return unique all
proteins and corresponding organisms
 if interaction[42] == interactor:
 taxid = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 protein = interaction[1].lstrip("uniprotkb:")
 if protein not in protein_annotations:
 protein_annotations[protein] = [interaction[23], interaction[43]]
 protein_and_source = [protein, taxid]
 (expanded_interactions[interactor]).append(protein_and_source)
 if interaction[43] == interactor:
 if interaction[0] != interaction[1]: #Avoid adding self­interactions twice.
 taxid = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 protein = interaction[0].lstrip("uniprotkb:")
 if protein not in protein_annotations:
 protein_annotations[protein] = [interaction[22], interaction[42]]
 protein_and_source = [protein, taxid]
 (expanded_interactions[interactor]).append(protein_and_source)

 nowstring = (date.today()).isoformat()
 subgraph_file_name = "subgraph_expansion_" + func_filter + "_" + nowstring + ".txt"
 subgraph_node_file_name = "subgraph_expansion_" + func_filter + "_nodes_" + nowstring + ".txt"
 subgraph_file = open(subgraph_file_name, "w")
 subgraph_node_file = open(subgraph_node_file_name, "w")

 #print(consensus_interactors_taxfilt)
 #print(expanded_interactions)

 print("Writing subgraph expansion file and node annotation file.")
 for consensus_interactor in expanded_interactions:
 for interaction in expanded_interactions[consensus_interactor]:
 #print(consensus_interactor + "\t" + "\t".join(interaction))
 subgraph_file.write(consensus_interactor + "\t" + "\t".join(interaction) + "\n")

 #Protein annotations are kind of a mess but that's because the interaction data table combines interactor annotations
into single columns.
 #It's also difficult to know what kind of annotation to expect.
 #All are included here, for now.

249

 for interactor in consensus_interactors_taxfilt:
 subgraph_node_file.write(interactor + "\t" + "\t".join(consensus_interactors_taxfilt[interactor]) + "\t­\n")
 for protein in protein_annotations:
 subgraph_node_file.write(protein + "\t­\t" + "\t".join(protein_annotations[protein]) + "\n")

 print("Done.")

def predict_interactome(mapping_file_list, metafile, consensusfile):
 cwd = os.getcwd()
 storage_path = "proteomes"
 if not os.path.isdir(storage_path):
 try:
 os.mkdir(storage_path)
 print("Setting up proteome directory.")
 except OSError:
 if not os.path.isdir(storage_path):
 raise

 pred_interactome_path = "predicted_interactomes"
 if not os.path.isdir(pred_interactome_path):
 try:
 os.mkdir(pred_interactome_path)
 print("Setting up predicted interactome directory.")
 except OSError:
 if not os.path.isdir(pred_interactome_path):
 raise

 getting_proteomes = 1 #Can retrieve proteome entries from Uniprot and will map to OGs.
 while getting_proteomes == 1:
 get_new_proteomes = raw_input("Get a proteome from Uniprot? (Y/N)\n")
 if get_new_proteomes in ["Y", "y"]:
 get_a_proteome() #run get_a_proteome() method
 else:
 print("Will now map proteomes to OGs.")
 break

 os.chdir(storage_path)
 proteome_list = glob.glob('proteome_raw_*.txt') #Raw proteomes, from Uniprot, in list format, labeled with taxid
 os.chdir("..")

250

 map_dict = {} #Dictionary for Uniprot to OG maps

 if len(proteome_list) > 0: #Only need the OG map if we have raw proteomes to be processed
 print("Setting up protein to OG maps.")
 for input_map_file in mapping_file_list:
 try:
 map_file = open(input_map_file)
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in map_file:
 one_map = ((line.rstrip()).split("\t"))
 map_dict[one_map[0]] = one_map[1]
 map_file.close()

 for proteome_filename in proteome_list: #Map all available raw proteomes to OGs.
 #Proteins without OG mappings retain their Uniprot IDs but we keep track of it in an extra column, too
 os.chdir(storage_path)
 print("Mapping proteins in " + proteome_filename)
 proteome_proteins = []
 proteome_map_filename = proteome_filename.replace("raw", "map")
 try:
 proteome_file = open(proteome_filename)
 proteome_map_file = open(proteome_map_filename, "w")
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in proteome_file:
 one_protein = line.rstrip()
 proteome_proteins.append(one_protein)
 total_proteins = 0
 total_proteins_mapped = 0
 for protein in proteome_proteins:
 og_mapped = 0 #All proteins are unmapped to OGs by default
 total_proteins = total_proteins +1
 if protein in map_dict:
 og_mapped = 1
 total_proteins_mapped = total_proteins_mapped +1
 proteome_map_file.write(map_dict[protein] + "\t" + protein + "\t" + str(og_mapped) + "\n")
 else:

251

 proteome_map_file.write(protein + "\t" + protein + "\t" + str(og_mapped) + "\n")

 proteome_file.close()
 os.remove(proteome_filename) #Remove the raw file as it's redundant now.

 print(proteome_filename + " contains " + str(total_proteins) + " proteins. "
 + str(total_proteins_mapped) + " map to OGs.")
 if total_proteins_mapped == 0:
 print("WARNING: No proteins in this proteome map to OGs.")
 os.chdir("..")

 os.chdir(storage_path)
 proteome_map_list = glob.glob('proteome_map_*.txt') #Proteomes mapped to eggNOG OGs, labeled with taxid
 os.chdir("..")

 #Uses Entrez here for more info about taxid corresponding to proteome.
 print("\nAvailable proteome maps:")
 taxid_context = {} #We'll keep the taxonomy information for later.
 for proteome_filename in proteome_map_list:
 taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
 target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
 target_records = Entrez.read(target_handle)
 #print(target_records)
 taxid_name = target_records[0]["ScientificName"]
 taxid_parent = target_records[0]["ParentTaxId"]
 taxid_division = target_records[0]["Division"]
 if taxid_division != "Bacteria" and useViruses == False:
 print(taxid_name + "\t\t" + proteome_filename + "\tNOTE: Not Bacteria! May not work well with
bacterial consensus networks.")
 if taxid_division == "Viruses" and useViruses == True:
 print(taxid_name + "\t\t" + proteome_filename + "\tNOTE: This is a viral proteome. Ensure your meta­
interactome uses viral proteins.")
 else:
 print(taxid_name + "\t\t" + proteome_filename)
 taxid_context[taxid] = [taxid_name, taxid_parent, taxid_division] #This is critical as we'll need it
shortly

 #Also retrieve taxid details from the taxid context file.
 taxid_context_filenames = glob.glob("taxid_context*.txt")

252

 if len(taxid_context_filenames) > 1:
 print("More than one taxid context file found. Check for duplicates.")
 return None
 if len(taxid_context_filenames) == 0:
 print("Cannot find taxid context file. Rebuild meta­interactome.")
 return None
 taxid_context_file = open(taxid_context_filenames[0])
 for line in taxid_context_file:
 one_context = (line.rstrip()).split("\t")
 this_taxid = one_context[0]
 taxid_name = one_context[1]
 taxid_parent = one_context[2]
 taxid_division = one_context[3]
 taxid_context[this_taxid] = [taxid_name, taxid_parent, taxid_division]

 #Now that we have proteomes, we can use them to predict interactomes.

 continue_prediction = raw_input("Predict interactomes for all above? (Y/N)\n")
 if continue_prediction in ["Y", "y"]:
 print("Predicting interactomes for the above species.")
 else:
 return None

 print("Loading meta­interactome files.") #Only uses the consensus right now, but full meta­interactome may be
needed
 consensus_interactions = [] #if we want to filter by spoke expansion or know
individual proteins
 all_interactions = []

 for line in consensusfile:
 one_consensus_interaction = (line.rstrip()).split("\t")
 consensus_interactions.append(one_consensus_interaction)
 consensusfile.close()

 for line in metafile:
 one_interaction = (line.rstrip()).split("\t")
 all_interactions.append(one_interaction) #This is just the raw interaction list at this point
 metafile.close()

253

 #Interactome prediction starts here, iterating through each OG­mapped proteome.
 interactome_stats = {} #Uses taxid as key

 for proteome_filename in proteome_map_list: #Go through each of the available OG­mapped proteomes
 print("\nPredicting interactome for " + proteome_filename + ".")
 taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
 this_proteome_map = {} #A dictionary of OGs to multiple proteins, since >1 protein may map to an OG.
 this_proteome = [] #A list of just proteins
 this_og_eome = [] #A list of just OGs in the proteome
 this_pred_interactome = [] #Actually the interactome at any one time ­ the whole prediction is written
to file
 this_pred_interactome_detailed = [] #The same interactome, but with contextual details
 #It will also include a prediction category.
 os.chdir(storage_path)
 proteome_map_file = open(proteome_filename)
 for line in proteome_map_file:
 contents = (line.rstrip()).split("\t")
 one_protein = contents[1]
 one_og = contents[0]
 if one_og not in this_proteome_map:
 this_proteome_map[one_og] = [one_protein]
 else:
 this_proteome_map[one_og].append(one_protein)
 this_proteome.append(one_protein) #Each line in the input should already contain a unique
protein ID
 if one_og not in this_og_eome:
 this_og_eome.append(one_og) #Should be the same as the keys in this_proteome_map
 proteome_map_file.close()

 os.chdir("..")
 os.chdir(pred_interactome_path)
 pred_interactome_filename = proteome_filename.replace("proteome_map", "pred_interactome")
 pred_interactome_file = open(pred_interactome_filename, "w")

 pred_ppi_count = 0 #The count of PPI from predictions
 exp_ppi_count = 0 #The count of PPI from experimental results, counting spoke expansion

 #First pass: check the meta­interactome for exact match PPI
 #This is mostly to account for proteins without OG matches, but we count them all

254

 #as we want to distingish between interactions seen already and new predictions.
 #Like with building the consensus set, we need to check for related taxids.

 print("Checking for experimental interactions.")
 for interaction in all_interactions:
 same_species = 0 #Well, not the same, but same as the target species OR related
 parent_taxid = taxid_context[taxid][1]
 taxid_A = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 taxid_B = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 if taxid == taxid_A or parent_taxid == taxid_A: #If taxids are the same as target or its parent
 if taxid == taxid_B or parent_taxid == taxid_B:
 same_species = 1
 elif taxid == taxid_A or taxid == taxid_context[taxid_A][1]: #If taxids are child of target
 if taxid == taxid_B or taxid == taxid_context[taxid_B][1]:
 same_species = 1
 elif taxid == taxid_A or parent_taxid == taxid_context[taxid_A][1]: #If taxids share parent
 if taxid == taxid_B or parent_taxid == taxid_context[taxid_B][1]:
 same_species = 1
 #May throw KeyError here, indicating taxid not in taxid_context ­ look up if needed?
 if same_species == 1:
 proteinA = interaction[0].lstrip("uniprotkb:")
 proteinB = interaction[1].lstrip("uniprotkb:")
 ogA = interaction[42]
 ogB = interaction[43]
 unique_interaction = [proteinA, proteinB, ogA, ogB]
 unique_interaction_detailed = [proteinA, proteinB, ogA, ogB, "Experimental"]
 if unique_interaction not in this_pred_interactome:
 exp_ppi_count = exp_ppi_count +1
 if exp_ppi_count % 10 == 0:
 sys.stdout.write(".")
 if exp_ppi_count % 100 == 0:
 sys.stdout.write(str(exp_ppi_count))
 this_pred_interactome.append(unique_interaction)
 this_pred_interactome_detailed.append(unique_interaction_detailed)
 sys.stdout.write(str(exp_ppi_count))

 print("\nMaking interaction predictions.")
 #Second pass: make predictions based on OGs and the consensus interactome.
 #That is, if two proteins interact, predict all proteins in their two OGs interact.

255

 #All experimental interactions should be covered in the consensus, so don't care about species here
 #Don't need to handle protein vs. protein as we should have seen it in the meta­interactome already

 for interaction in consensus_interactions:
 if interaction[0] in this_og_eome and interaction[1] in this_og_eome: #Check for OG vs. OG first
 for proteinA in this_proteome_map[interaction[0]]: #Expand interaction to all possible
proteins with OG matches
 for proteinB in this_proteome_map[interaction[1]]:
 unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
 unique_interaction_detailed = [proteinA, proteinB, interaction[0],
interaction[1], "Predicted"]
 if unique_interaction not in this_pred_interactome:
 pred_ppi_count = pred_ppi_count +1
 this_pred_interactome.append(unique_interaction)
 this_pred_interactome_detailed.append(unique_interaction_detailed)
 if pred_ppi_count % 10 == 0:
 sys.stdout.write(".")
 if pred_ppi_count % 100 == 0:
 sys.stdout.write(str(pred_ppi_count))
 elif interaction[0] in this_og_eome and interaction[1] in this_proteome: #Check if it's an OG
and a protein
 for proteinA in this_proteome_map[interaction[0]]: #Expand interaction to all possible
proteins with OG matches
 proteinB = interaction[1]
 unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
 unique_interaction_detailed = [proteinA, proteinB, interaction[0], interaction[1],
"Predicted"]
 if unique_interaction not in this_pred_interactome:
 pred_ppi_count = pred_ppi_count +1
 this_pred_interactome.append(unique_interaction)
 this_pred_interactome_detailed.append(unique_interaction_detailed)
 if pred_ppi_count % 10 == 0:
 sys.stdout.write(".")
 if pred_ppi_count % 100 == 0:
 sys.stdout.write(str(pred_ppi_count))
 elif interaction[0] in this_proteome and interaction[1] in interaction[1] in this_og_eome:
#Check if it's a protein and an OG
 proteinA = interaction[0]

256

 for proteinB in this_proteome_map[interaction[1]]: #Expand interaction to all possible
proteins with OG matches
 unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
 unique_interaction_detailed = [proteinA, proteinB, interaction[0], interaction[1],
"Predicted"]
 if unique_interaction not in this_pred_interactome:
 pred_ppi_count = pred_ppi_count +1
 this_pred_interactome.append(unique_interaction)
 this_pred_interactome_detailed.append(unique_interaction_detailed)
 if pred_ppi_count % 10 == 0:
 sys.stdout.write(".")
 if pred_ppi_count % 100 == 0:
 sys.stdout.write(str(pred_ppi_count))
 sys.stdout.write(str(pred_ppi_count))

 #Finally ­ get a few more protein and OG counts.
 #These counts won't be right if we just use the proteome, as PPI may include related species
 #Isn't a problem for predictions as they're all based off one proteome
 #But for experimental results we just get every Uniprot ID
 proteins_in_interactions = []
 proteins_w_exp_ppi = []
 proteins_w_pred_ppi = []
 ogs_in_interactions = []
 ogs_w_exp_int = []
 ogs_w_pred_int = []
 exp_og_int = []
 pred_og_int = []
 for interaction in this_pred_interactome_detailed:
 og_pair = interaction[2:4]
 rev_og_pair = [interaction[3], interaction[2]] #We don't care about interaction direction.
 if interaction[4] == "Experimental":
 for protein in interaction[0:2]:
 if protein not in proteins_w_exp_ppi:
 proteins_w_exp_ppi.append(protein)
 for og in og_pair:
 if og not in ogs_w_exp_int:
 ogs_w_exp_int.append(og)
 if og_pair not in exp_og_int and rev_og_pair not in exp_og_int:
 exp_og_int.append(og_pair)

257

 for protein in this_proteome:
 both_interactors = 0
 if protein in interaction[0:2] and protein not in proteins_in_interactions:
 both_interactors = both_interactors +1
 proteins_in_interactions.append(protein)
 if interaction[4] == "Predicted" and protein not in proteins_w_pred_ppi:
 proteins_w_pred_ppi.append(protein)
 if both_interactors == 2:
 break
 for og in this_og_eome:
 both_interactors = 0
 if og in interaction[2:4] and og not in ogs_in_interactions:
 both_interactors = both_interactors +1
 ogs_in_interactions.append(og)
 if interaction[4] == "Predicted" and og not in ogs_w_pred_int:
 ogs_w_pred_int.append(og)
 if both_interactors == 2:
 break
 if og_pair not in exp_og_int and rev_og_pair not in pred_og_int:
 pred_og_int.append(og_pair)

 proteins_not_in_interactions = len(this_proteome) ­ len(proteins_in_interactions) #Just a count, here
 ogs_not_in_interactions = len(this_og_eome) ­ len(ogs_in_interactions)
 #interactome_stats contains statistics used in batch output. Contains:
 #Name, taxid, Proteins, ProteinsNotInPPI, ProteinsWithExpPPI, ProteinsWithPredPPI,
 #UniqueOGs, OGsWithoutInteractions, OGsWithExpInt, OGsWithPredInt, ExpOGIntNet, OGIntInPredNet
 interactome_stats[taxid] = [taxid_context[taxid][0], taxid, str(len(this_proteome)),
str(proteins_not_in_interactions),
 str(len(proteins_w_exp_ppi)),
str(len(proteins_w_pred_ppi)), str(len(this_og_eome)),
 str(ogs_not_in_interactions),
str(len(ogs_w_exp_int)), str(len(ogs_w_pred_int)),
 str(len(exp_og_int)), str(len(pred_og_int))]

 #This is just for testing.
 '''
 for interaction in all_interactions:
 taxid_A = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
 taxid_B = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])

258

 if taxid == taxid_A or taxid == taxid_B:
 proteinA = interaction[0].lstrip("uniprotkb:")
 proteinB = interaction[1].lstrip("uniprotkb:")
 ogA = interaction[42]
 ogB = interaction[43]
 this_meta_interaction = [proteinA, proteinB, ogA, ogB]
 if this_meta_interaction not in this_pred_interactome:
 print(this_meta_interaction)
 '''

 #Write interactome file.
 for interaction in this_pred_interactome_detailed:
 pred_interactome_file.write("\t".join(interaction) + "\n")

 print("\nFound " + str(exp_ppi_count) + " experimental interactions (including spoke" +
 " expansion) and made " + str(pred_ppi_count) + " interaction predictions" +
 " for " + taxid_context[taxid][0] + ".")

 pred_interactome_file.close()
 os.chdir("..")

 #Once all the interactome predictions for all proteomes are done, do summary statistics.
 nowstring = (date.today()).isoformat()
 multi_inter_stats_file_name = "interactome_statistics_" + nowstring + ".txt"
 multi_inter_stats_file = open(multi_inter_stats_file_name, "w")
 os.chdir("predicted_interactomes")
 interactome_filenames = glob.glob("pred_interactome_*.txt")

 stats_outlines = [] #This is where the output for each species will go, one interactome per line
 for filename in interactome_filenames:
 taxid = ((filename.rstrip(".txt")).split("_"))[2]
 outline = "\t".join(interactome_stats[taxid]) + "\n"
 stats_outlines.append(outline)

 os.chdir("..")
 #Text header
 multi_inter_stats_file.write("Species\tTaxid\tProteins\tProteinsNotInPPI\tProteinsWithExpPPI\tProteinsWithPredPPI\t"
+

259

"UniqueOGs\tOGsWithoutInteractions\tOGsWithExpInt\tOGsWithPredInt\tOGIntInExpNet\tOGIntInPredNet\n")
 for outline in stats_outlines:
 multi_inter_stats_file.write(outline)

 print("\nWrote summary statistics for these interactomes to " + multi_inter_stats_file_name)
 print("\nComplete.\n")

def get_a_proteome():
 proteins_umbra.get_a_proteome()

def describe_consensus(consensusfile):
 cons_stats_filenames = glob.glob("cons_statistics_*.txt")
 if len(cons_stats_filenames) > 1:
 print("More than one consensus statistics file found. Check for duplicates.")
 return None
 if len(cons_stats_filenames) == 0:
 print("No consensus statistics file found. Will skip basic counts.")
 else:
 con_stats = open(cons_stats_filenames[0])
 for line in con_stats:
 print(line)
 print("\n")

 consensus_interactions = []
 for line in consensusfile:
 one_interaction = (line.rstrip()).split("\t")
 consensus_interactions.append(one_interaction)

 taxids_and_context = {}
 taxid_ref_list = glob.glob('taxid_context*.txt')
 if len(taxid_ref_list) >1:
 sys.exit("Something went wrong ­ more than one taxid context file found.")
 if len(taxid_ref_list) == 0:
 sys.exit("Something went wrong ­ no taxid context file found.")
 taxid_ref_file = open(taxid_ref_list[0])
 for line in taxid_ref_file:
 content = ((line.rstrip()).split("\t"))
 taxids_and_context[content[0]] = [content[1], content[2], content[3]]

260

 taxid_ref_file.close()

 print("Top taxid contributions, in number of consensus interactions corresponding to the taxid.")
 print("Name\tTaxid\tNumber of interactions")
 all_taxids = {} #All taxids AND their counts.

 for interaction in consensus_interactions: #Check each interaction for contributing taxids
 these_sources = interaction[4].split()
 for taxid in these_sources:
 if taxid not in all_taxids:
 all_taxids[taxid] = 1
 all_taxids[taxid] = all_taxids[taxid] + 1

 sorted_taxids = sorted(all_taxids.items(), key=operator.itemgetter(1), reverse=True)
 top_taxids = sorted_taxids[0:15]

 for taxid in top_taxids:
 taxid_only = taxid[0]
 taxid_name = taxids_and_context[taxid_only][0]
 print(taxid_name + "\t" + taxid_only + "\t" + str(taxid[1]))

def main():
 #Check for eggNOG mapping file and get if needed
 #Requires downloading several files and building new mapping file from them
 mapping_file_list = glob.glob('uniprot_og_maps*.txt')
 if len(mapping_file_list) >2:
 sys.exit("Found more than one mapping file. Check for duplicates.")
 if len(mapping_file_list) == 0:
 print("No eggNOG mapping files found or they're incomplete. Rebuilding them.")
 get_eggnog_maps()
 mapping_file_list = glob.glob('uniprot_og_maps*.txt')

 #Check for eggNOG annotation file and get if needed
 annotation_file_list = glob.glob('*annotations.tsv')
 expected_filecount = 2
 if useViruses == True:
 expected_filecount = 3
 if len(annotation_file_list) > expected_filecount:
 sys.exit("Found more eggNOG annotation files than expected. Check for duplicates.")

261

 if len(annotation_file_list) < expected_filecount:
 print("No eggNOG annotation files found or they're incomplete. Retrieving them.")
 get_eggnog_annotations()
 annotation_file_list = glob.glob('*annotations.tsv')

 #Prompt for choice of protein interactions.
 #May provide manually or may download, but downloaded set may not be filtered properly.
 #Don't need to get interactions if we already have a meta­interactome.
 meta_file_list = glob.glob('*metainteractome*.txt')
 ppi_data_filename = ""
 if len(meta_file_list) >1:
 sys.exit("More than one meta­interactome found. Please use just one at a time.")
 if len(meta_file_list) == 0:
 print("\nNo meta­interactome found.")
 while ppi_data_filename == "":
 ppi_data_option = raw_input("Retreive IntAct bacterial PPI or use local file(s) to build meta­
interactome?\n"
 "Enter:\n R for retrieval\n L for local file, \n M for multiple inputs, \n or X to quit.\n")
 if ppi_data_option in ["R", "r"]: #Downloads PPI data from IntAct server.
 #May not include all PPI available through HTTP IntAct interface.
 ppi_data_filename = "protein­interactions.tab"
 interaction_file_list = glob.glob(ppi_data_filename)
 if len(interaction_file_list) >1:
 sys.exit("One protein interaction file at a time, please! Check for duplicates.")
 if len(interaction_file_list) == 0:
 print("No protein interaction file found. Retrieving it.")
 get_interactions()
 interaction_file_list = glob.glob(ppi_data_filename)
 try:
 interactionfile = open(interaction_file_list[0])
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 if ppi_data_option in ["L", "l"]: #Uses a local file, usually a downloaded IntAct PPI set, in
PSI­MI Tab27 format
 print("Will use single local file. Note that it should be in PSI­MI TAB 2.7 format and have
no header row.")
 ppi_data_filename = raw_input("Please provide local filename.\n")
 interaction_file_list = glob.glob(ppi_data_filename)
 if len(interaction_file_list) == 0:

262

 sys.exit("Can't find a file with that filename.")
 if ppi_data_option in ["M", "m"]: #Uses multiple local files in PSI­MI Tab27 format
 print("Will append multiple local files. Note that each should be in PSI­MI TAB 2.7 format
and have no header row.")
 adding_files = 1
 interaction_file_list = []
 while adding_files:
 ppi_data_filename = raw_input("Please provide local filename.\n")
 files_present = glob.glob(ppi_data_filename)
 if len(files_present) >0:
 interaction_file_list.append(ppi_data_filename) #Can be expanded easily later
to do batch processing
 print("Added " + ppi_data_filename + " to input list.")
 else:
 print("Can't find a file with that filename. Didn't add.")
 ask_again = raw_input("Add another? Y/N\n")
 if ask_again in ["N", "n"]:
 adding_files = 0
 print("Using the following inputs for the meta­interactome:\n")
 if len(interaction_file_list) == 0:
 sys.exit("Input list is empty. Exiting...")
 for item in interaction_file_list:
 print(item)
 print("Merging into a single file and checking for malformed interaction entries.")
 ppi_data_filename = merge_data(interaction_file_list)
 if ppi_data_option in ["X", "x"]:
 sys.exit("Exiting...")

 #Load meta­interactome network file
 #Needs to be built first.
 new_meta = 0
 if len(meta_file_list) == 0:
 build_meta_network = raw_input("Build a new meta­interactome? Y/N ")
 if build_meta_network in ["Y", "y"]:
 new_meta_result = build_meta(mapping_file_list, ppi_data_filename)
 new_meta_filename = new_meta_result[0]
 taxids_and_context = new_meta_result[1]
 new_meta = 1
 else:

263

 sys.exit("Meta­network needed. Exiting.")
 try:
 if new_meta == 1:
 metafile = open(new_meta_filename)
 else:
 metafile = open(meta_file_list[0])
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 print("\nUsing " + metafile.name + " as the meta­interactome network.")

 #Load consensus network file
 #Needs to be built first.
 consensus_file_list = glob.glob('*consensus*.txt')
 new_consensus = 0
 if len(consensus_file_list) >1:
 sys.exit("One consensus network at a time, please!")
 if len(consensus_file_list) == 0:
 print("No consensus network file found. Building one.")
 description_file = open("bactNOG.annotations.tsv")
 if new_meta == 1: #If we just build a meta­interactome we have taxid details already
 new_consensus_filename = build_consensus(metafile, annotation_file_list, taxids_and_context)
 else: #Otherwise we need to read taxid details from file ­ just rebuild dict from it
 taxid_ref_list = glob.glob('taxid_context*.txt')
 taxids_and_context = {}
 if len(taxid_ref_list) >1:
 sys.exit("Something went wrong ­ more than one taxid context file found.")
 if len(taxid_ref_list) == 0:
 sys.exit("Something went wrong ­ no taxid context file found.")
 taxid_ref_file = open(taxid_ref_list[0])
 for line in taxid_ref_file:
 content = ((line.rstrip()).split("\t"))
 taxids_and_context[content[0]] = [content[1], content[2], content[3]]
 taxid_ref_file.close()
 new_consensus_filename = build_consensus(metafile, annotation_file_list, taxids_and_context)
 new_consensus = 1
 try:
 if new_consensus == 1:
 consensusfile = open(new_consensus_filename)
 else:

264

 consensusfile = open(consensus_file_list[0])
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 print("\nUsing " + consensusfile.name + " as the consensus network.")

 #Quit now or ask for next step.
 requested = 0
 while requested == 0:
 print("\n­­")
 request_next = raw_input("\nChoose from the following options.\n"
 "A: Generate expanded subgraphs of the consensus network, filtering by function.\n"
 "B: Generate a predicted interactome for one or more proteomes.\n"
 "C: Get statistics for the consensus meta­interactome.\n"
 "X: Exit.\n")
 if request_next in ["x", "X"]:
 sys.exit("Exiting...")
 if request_next in ["a", "A"]:
 subgraph_expansion(metafile, consensusfile)
 if request_next in ["b", "B"]:
 predict_interactome(mapping_file_list, metafile, consensusfile)
 if request_next in ["c", "C"]:
 describe_consensus(consensusfile)
 print("\nChoose from the list, please.")

if __name__ == "__main__":
 main()

sys.exit(0)

II.II.II proteins_umbra.py

#!/usr/bin/python
#proteins_umbra.py
'''

265

Downloads a reference proteome and assigns an orthologous group (OG) to each.
Uses eggNOG v.4.1 ­ or whatever the most recent version is.

REQUIRES: Biopython 1.65 or more recent
 Needs ~5 GB of disk space for ID conversion files.
 Needs an additional ~29 GB for mapping virus protein IDs.
 (This is because it uses the full Uniprot ID mapping database,
 which is excessive but more reliable than their mapping server
 for large mapping requests)

INPUT: Downloads a reference proteome from Uniprot.
 Produces OG maps if needed or uses those produced by Network_umbra.py.

OUTPUT:
'proteome_map_[taxid].txt' ­ on each line:
 a single OG membership
 the UniProtAC of the protein
 a binary value indicating whether the protein maps to an OG (0 if no, 1 if yes)

'''

import glob, gzip, operator, os, re, requests, sys, urllib2, zipfile
from Bio import Entrez
from bs4 import BeautifulSoup
from collections import Counter
from datetime import date

Entrez.email = 'caufieldjh@vcu.edu'

#Options
useViruses = True #Option for using eggNOG's viral OGs. Requires the filters permitting only Bacteria to be modified
 #Also requires the viral OGs to be downloaded and added.
 #This option needs to be set True BEFORE the Uniprot to OG map is built or it won't
include proteins from viruses
#NOTE: Viruses are not currently in the eggNOG ID conversion file
#The eggNOG protein IDs vary from protein to protein but are often Uniprot IDs (mnemonic identifiers, i.e. A9J730_BPLUZ)
#We still check the ID conversion file for them in case it gets updated soon

266

useNonRefProteomes = True #Option to search non­reference Uniprot proteomes
#Many of these proteomes have been made redundant in Uniprot
#and this script ignores redundant results, so they will not be seen

#Functions

def chunkit(input_seq, chunk_size):
 return (input_seq[position:position + chunk_size] for position in xrange(0, len(input_seq), chunk_size))

def get_eggnog_maps(version):
 #Download and unzip the eggNOG ID conversion file
 #Filters file to just Uniprot IDs; the resulting file is the map file.
 #One Uniprot ID may correspond to multiple OGs ­ e.g. COG1234,COG3810,COG9313.
 #these cases are considered OGs in their own right as this may indicate a pattern of conserved sequences on its own
 baseURL = "http://eggnogdb.embl.de/download/" + version + "/"
 convfilename = "eggnog4.protein_id_conversion.tsv.gz" #File contains ALL database identifiers and corresponding
proteins

 convfilepath = baseURL + convfilename
 outfilepath = convfilename[0:­3]
 dl_convfile = 1 #If 1, we need to download
 if os.path.isfile(convfilename): #Already have the compressed file, don't download
 print("Found compressed ID conversion file on disk: %s" % convfilename)
 decompress_convfile = 1
 dl_convfile = 0
 if os.path.isfile(outfilepath): #Already have the decompressed file, don't download
 print("Found ID conversion file on disk: %s" % outfilepath)
 decompress_convfile = 0
 dl_convfile = 0

 if dl_convfile == 1:
 print("Downloading ID mapping file ­ this file is large so this may take some time.")
 print("Downloading from %s" % convfilepath)
 response = urllib2.urlopen(convfilepath)
 filesize = response.info()['Content­Length']
 compressed_file = open(os.path.basename(convfilename), "w+b") #Start local compressed file
 chunk = 2097152
 totaldata = 0
 while 1:

267

 data = (response.read(chunk)) #Read two Mb at a time
 compressed_file.write(data)
 totaldata = totaldata + chunk
 if not data:
 print("\n%s file download complete." % convfilename)
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
 decompress_convfile = 1

 if decompress_convfile == 1:
 print("Decompressing map file. Lines written, in millions:")
 with gzip.open(convfilename) as infile: #Open that compressed file, read and write to uncompressed file
 outfile = open(outfilepath, "w+b")
 linecount = 0
 for line in infile:
 outfile.write(line)
 linecount = linecount +1
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write("\r%s" % (linecount/1000000))
 infile.close()
 newconvfilename = outfilepath
 outfile.close()

 #Download and decompress member NOG files (at least 2 of them)
 nogURL = baseURL + "data/NOG/"
 nogfilename = "NOG.members.tsv.gz"
 bactnogURL = baseURL + "data/bactNOG/"
 bactnogfilename = "bactNOG.members.tsv.gz"
 all_nog_locations = [[nogURL, nogfilename], [bactnogURL, bactnogfilename]]

 if useViruses == True: #Need some additional files to handle viral proteins
 virnogURL = baseURL + "data/viruses/Viruses/"
 virnogfilename = "Viruses.members.tsv.gz"
 all_nog_locations.append([virnogURL, virnogfilename])
 up_baseURL = "ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/"
 up_mapping_filename = "idmapping.dat.gz"

268

 up_mapping_filepath = up_baseURL + up_mapping_filename
 up_outfilepath = up_mapping_filename[0:­3]

 dl_up_mapping_file = 1 #If 1, we need to download
 if os.path.isfile(up_mapping_filename): #Already have the compressed file, don't download
 print("Found compressed Uniprot ID conversion file on disk: %s" % up_mapping_filename)
 decompress_up_mapping_file = 1
 dl_up_mapping_file = 0
 if os.path.isfile(up_outfilepath): #Already have the decompressed file, don't download
 print("Found ID conversion file on disk: %s" % up_outfilepath)
 decompress_up_mapping_file = 0
 dl_up_mapping_file = 0

 if dl_up_mapping_file == 1:
 print("\nDownloading Uniprot ID mapping file for viral protein mapping. Please wait as this file is
large.")
 print("Downloading from %s" % up_mapping_filepath)
 response = urllib2.urlopen(up_mapping_filepath)
 filesize = response.info()['Content­Length']
 compressed_file = open(os.path.basename(up_mapping_filename), "w+b") #Start local compressed file
 chunk = 2097152
 totaldata = 0
 while 1:
 data = (response.read(chunk)) #Read two Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n%s file download complete." % up_mapping_filename)
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
 decompress_up_mapping_file = 1

 if decompress_up_mapping_file == 1:
 print("Decompressing Uniprot ID mapping file. Lines written, in millions:")
 with gzip.open(up_mapping_filename) as infile: #Open that compressed file, read and write to
uncompressed file
 outfile = open(up_outfilepath, "w+b")
 linecount = 0

269

 for line in infile:
 outfile.write(line)
 linecount = linecount +1
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write("\r%s" % (linecount/1000000))
 infile.close()
 outfile.close()

 for location in all_nog_locations:
 baseURL = location[0]
 memberfilename = location[1]
 memberfilepath = baseURL + memberfilename
 outfilepath = memberfilename[0:­3]
 if os.path.isfile(memberfilename):
 print("\nFound compressed NOG membership file on disk: %s" % memberfilename)
 decompress_memberfile = 1
 if os.path.isfile(outfilepath):
 print("\nFound NOG membership file on disk: %s" % outfilepath)
 decompress_memberfile = 0
 else:
 print("\nDownloading NOG membership file ­ this may take some time.")
 print("Downloading from %s" % memberfilepath)
 response = urllib2.urlopen(memberfilepath)
 filesize = response.info()['Content­Length']
 compressed_file = open(os.path.basename(memberfilename), "w+b") #Start local compressed file
 chunk = 2097152
 totaldata = 0
 while 1:
 data = (response.read(chunk)) #Read two Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n%s file download complete." % memberfilename)
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
 decompress_memberfile = 1

270

 if decompress_memberfile == 1:
 print("Decompressing NOG membership file %s" % memberfilename)
 #Done in chunks since it's a large file
 with gzip.open(memberfilename) as infile: #Open that compressed file, read and write to uncompressed
file
 outfile = open(outfilepath, "w+b")
 linecount = 0
 for line in infile:
 outfile.write(line)
 linecount = linecount +1
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write("\r%s" % (linecount/1000000))
 infile.close()
 outfile.close()

 #Clean up by removing compressed files
 print("\nRemoving compressed files.")
 all_compressed_files = [convfilename, nogfilename, bactnogfilename]
 if useViruses == True:
 for this_filename in [virnogfilename, up_mapping_filename]:
 all_compressed_files.append(this_filename)
 for filename in all_compressed_files:
 if os.path.isfile(filename):
 os.remove(filename)

 #Load and filter the ID conversion file as dictionary
 print("Parsing ID conversion file. Lines read, in millions:")
 with open(convfilename[0:­3]) as infile:
 id_dict = {} #Dictionary of eggNOG protein IDs as values and database IDs (UniprotAC) as keys
 #Gets filtered down to relevant database IDs (i.e., Uniprot IDs)
 linecount = 0
 for line in infile:
 linecount = linecount +1
 line_raw = ((line.rstrip()).split("\t"))
 one_id_set = [line_raw[0] + "." + line_raw[1], line_raw[2], line_raw[3]] #Protein IDs are split for
some reason; merge them
 if "UniProt_AC" in one_id_set[2]:
 id_dict[one_id_set[1]] = one_id_set[0]

271

 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write("\r%s" % (linecount/1000000))
 infile.close()

 #Use filtered ID conversion input to map to NOG members
 print("\nReading NOG membership files.")
 all_nog_filenames = [nogfilename[0:­3], bactnogfilename[0:­3]]
 if useViruses == True:
 all_nog_filenames.append(virnogfilename[0:­3])
 nog_members = {} #Dictionary of NOG ids with protein IDs as keys (need to split entries for each)
 nog_count = 0
 for filename in all_nog_filenames:
 temp_nog_members = {} #We will have duplicates within each set but don't want to lose the information.
 print("Reading from %s" % filename)
 with open(filename) as infile:
 membercol = 5 #The column where the NOG members are
 if filename == virnogfilename[0:­3]: #The virus members file has a different format as there is no
FuncCat column
 infile.readline() #Skip the first line
 membercol = 4
 viral_ids = [] #A list of viral eggNOG protein IDs, some of which are Uniprot IDs to be
converted to ACs
 for line in infile:
 nog_count = nog_count +1
 line_raw = ((line.rstrip()).split("\t"))
 nog_id = line_raw[1]
 line_members = line_raw[membercol].split(",")
 for protein_id in line_members:
 if filename == virnogfilename[0:­3]: #If Viruses, we need to convert IDs as they
aren't in the eggNOG ID conversion file.
 if protein_id not in viral_ids:
 viral_ids.append(protein_id)
 if protein_id in temp_nog_members: #The same protein could be in more than one OG at
the same level
 temp_nog_members[protein_id] = temp_nog_members[protein_id] + "," + nog_id
 else:
 temp_nog_members[protein_id] = nog_id
 infile.close()

272

 nog_members.update(temp_nog_members)

 if useViruses == True:

 #We use three different dictionaries here.
 #The first is Uniprot IDs to UniprotACs (just for viral proteins)
 #The second is eggNOG IDs to Uniprot IDs.
 #The third is UniprotACs to eggNOG IDs ­ this is id_dict{} already.
 uniprotID_to_uniprotAC = {}
 eggnog_to_uniprotID = {}
 unmapped_ids = [] #eggNOG protein IDs which may not contain Uniprot IDs

 #We go through the viral protein IDs twice, first to get Uniprot IDs
 #and then to add them to id_dict.

 for viral_id in viral_ids:
 eggnog_to_uniprotID[viral_id] = (viral_id.split("."))[1] #Remove the taxid
 #Some of the eggNOG IDs may not include UniprodIDs, but many do

 #This data file is too large to efficiently much of it in a dict.
 #Luckily we just got the IDs we need here to filter it
 print("Parsing Uniprot ID mapping file. Lines read, in millions:")
 with open(up_outfilepath) as infile:
 linecount = 0
 for line in infile:
 linecount = linecount +1
 line_raw = ((line.rstrip()).split("\t"))
 if line_raw[1] == "UniProtKB­ID" and line_raw[2] in eggnog_to_uniprotID.values():
 uniprotID_to_uniprotAC[line_raw[2]] = line_raw[0]
 if linecount % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write("\r%s" % (linecount/1000000))
 infile.close()

 print("Finding identifiers for %s viral proteins." % len(viral_ids))

 for viral_id in viral_ids:
 upid = eggnog_to_uniprotID[viral_id]

273

 if upid in uniprotID_to_uniprotAC:
 upid_ac = uniprotID_to_uniprotAC[upid]
 id_dict[upid_ac] = viral_id
 else:
 unmapped_ids.append(viral_id)

 print("Done mapping viral proteins.")
 print("The following entries were not recognized as Uniprot IDs:")
 print(unmapped_ids)

 #Get counts of how many identifiers we have now
 upids_length = str(len(id_dict))
 nogs_length = str(nog_count)
 proteins_length = str(len(nog_members))

 print("Mapping %s Uniprot IDs to %s NOGs through %s eggNOG protein IDs:" % (upids_length, nogs_length,
proteins_length))
 upid_to_NOG = {} #Conversion dictionary. Values are OGs, keys are UPIDs.
 mapped_count = 0 #upids mapped to nogs.
 for upid in id_dict:
 if id_dict[upid] in nog_members:
 upid_to_NOG[upid] = nog_members[id_dict[upid]]
 mapped_count = mapped_count +1
 if mapped_count % 100000 == 0:
 sys.stdout.flush()
 sys.stdout.write(".")
 if mapped_count % 1000000 == 0:
 sys.stdout.flush()
 sys.stdout.write(str(mapped_count/1000000))

 #Use this mapping to build map file, named "uniprot_og_maps_*.txt"
 print("\nWriting map file.")
 nowstring = (date.today()).isoformat()
 mapfilename = "uniprot_og_maps_" + nowstring + ".txt"
 mapfile = open(mapfilename, "w+b")
 for mapping in upid_to_NOG:
 mapfile.write(mapping + "\t" + upid_to_NOG[mapping] + "\n") #Each line is a uniprot ID and an OG id
 mapfile.close()

274

def get_eggnog_annotations():
 #Downloads and extracts the eggNOG NOG annotations.
 baseURLs = ["http://eggnogdb.embl.de/download/latest/data/bactNOG/",
"http://eggnogdb.embl.de/download/latest/data/NOG/"]
 bactannfilename = "bactNOG.annotations.tsv.gz" #The annotations for bacteria­specific NOGs
 lucaannfilename = "NOG.annotations.tsv.gz" #The annotations for other NOGs, but not bacteria­specific NOGs
 annfilenames = [bactannfilename, lucaannfilename]

 if useViruses == True:
 virannfilename = "Viruses.annotations.tsv.gz"
 baseURLs.append("http://eggnogdb.embl.de/download/latest/data/viruses/Viruses/")
 annfilenames.append(virannfilename)

 this_url = 0
 for annfilename in annfilenames:
 annfilepath = baseURLs[this_url] + annfilename
 this_url = this_url +1
 outfilepath = annfilename[0:­3]
 if os.path.isfile(annfilename):
 print("Found compressed annotation file on disk: " + annfilename)
 else:
 response = urllib2.urlopen(annfilepath)
 filesize = response.info()['Content­Length']
 print("Downloading from " + annfilepath)
 compressed_file = open(os.path.basename(annfilename), "w+b") #Start local compressed file
 chunk = 2097152
 totaldata = 0
 while 1:
 data = (response.read(chunk)) #Read two Mb at a time
 compressed_file.write(data)
 if not data:
 print("\n" + annfilename + " file download complete.")
 compressed_file.close()
 break
 sys.stdout.flush()
 sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))

 print("Decompressing annotation file.")
 with gzip.open(annfilename) as infile: #Open that compressed file, read and write to uncompressed file

275

 file_content = infile.read()
 outfile = open(outfilepath, "w+b")
 outfile.write(file_content)
 infile.close()
 outfile.close()

 print("\nRemoving compressed files.")
 all_compressed_files = [bactannfilename, lucaannfilename]
 if useViruses == True:
 all_compressed_files.append(virannfilename)
 for filename in all_compressed_files:
 os.remove(filename)

def get_mapped_proteome(mapping_file_list):
 cwd = os.getcwd()
 storage_path = "proteomes"
 if not os.path.isdir(storage_path):
 try:
 os.mkdir(storage_path)
 print("Setting up proteome directory.")
 except OSError:
 if not os.path.isdir(storage_path):
 raise

 getting_proteomes = 1 #Can retrieve proteome entries from Uniprot and will map to OGs.
 while getting_proteomes == 1:
 get_new_proteomes = raw_input("Get a proteome from Uniprot? (Y/N)\n")
 if get_new_proteomes in ["Y", "y"]:
 get_a_proteome() #run get_a_proteome() method
 else:
 print("Will now map proteomes to OGs.")
 break

 os.chdir(storage_path)
 proteome_list = glob.glob('proteome_raw_*.txt') #Raw proteomes, from Uniprot, in list format, labeled with taxid
 os.chdir("..")

 map_dict = {} #Dictionary for Uniprot to OG maps

276

 if len(proteome_list) > 0: #Only need the OG map if we have raw proteomes to be processed
 print("Setting up protein to OG maps.")
 for input_map_file in mapping_file_list:
 try:
 map_file = open(input_map_file)
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in map_file:
 one_map = ((line.rstrip()).split("\t"))
 map_dict[one_map[0]] = one_map[1]
 map_file.close()

 unmapped_taxids = [] #These are the taxids without any OG mapping
 for proteome_filename in proteome_list: #Map all available raw proteomes to OGs.
 #Proteins without OG mappings retain their Uniprot IDs but we keep track of it in an extra column, too
 os.chdir(storage_path)
 print("Mapping proteins in " + proteome_filename)
 taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
 proteome_proteins = []
 proteome_map_filename = proteome_filename.replace("raw", "map")
 try:
 proteome_file = open(proteome_filename)
 proteome_map_file = open(proteome_map_filename, "w")
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 for line in proteome_file:
 one_protein = line.rstrip()
 proteome_proteins.append(one_protein)
 total_proteins = 0
 total_proteins_mapped = 0
 for protein in proteome_proteins:
 og_mapped = 0 #All proteins are unmapped to OGs by default
 total_proteins = total_proteins +1
 if protein in map_dict:
 og_mapped = 1
 total_proteins_mapped = total_proteins_mapped +1
 proteome_map_file.write(map_dict[protein] + "\t" + protein + "\t" + str(og_mapped) + "\n")
 else:
 proteome_map_file.write(protein + "\t" + protein + "\t" + str(og_mapped) + "\n")

277

 proteome_file.close()
 os.remove(proteome_filename) #Remove the raw file as it's redundant now.

 print(proteome_filename + " contains " + str(total_proteins) + " proteins. "
 + str(total_proteins_mapped) + " map to OGs.")
 if total_proteins_mapped == 0:
 print("WARNING: No proteins in this proteome map to OGs.")
 unmapped_taxids.append(taxid)
 os.chdir("..")

 os.chdir(storage_path)
 proteome_map_list = glob.glob('proteome_map_*.txt') #Proteomes mapped to eggNOG OGs, labeled with taxid
 os.chdir("..")

 #Uses Entrez here for more info about taxid corresponding to proteome.
 print("\nAvailable proteome maps:")
 taxid_context = {} #We'll keep the taxonomy information for later.
 for proteome_filename in proteome_map_list:
 taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
 target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
 target_records = Entrez.read(target_handle)
 #print(target_records)
 taxid_name = target_records[0]["ScientificName"]
 taxid_parent = target_records[0]["ParentTaxId"]
 taxid_division = target_records[0]["Division"]
 if taxid_division != "Bacteria" and useViruses == False:
 nameline = (taxid_name + "\t\t" + proteome_filename + "\tNOTE: Not Bacteria! May not work well with
bacterial consensus networks.")
 if taxid_division == "Viruses" and useViruses == True:
 nameline = (taxid_name + "\t\t" + proteome_filename + "\tNOTE: This is a viral proteome. Ensure your
meta­interactome uses viral proteins.")
 else:
 nameline = (taxid_name + "\t\t" + proteome_filename)
 if taxid in unmapped_taxids:
 nameline = "** " + nameline
 print(nameline)
 taxid_context[taxid] = [taxid_name, taxid_parent, taxid_division] #Not used at the moment

278

 if len(unmapped_taxids) > 0:
 print("Maps marked with ** have no OG mappings.")

 print("\nComplete.\n")

def get_a_proteome(): #Does what it says. Much more organized than the rest of this since I wrote it a while ago.

 def get_search_url(query, fil):
 search_url = "http://www.uniprot.org/proteomes/?query=" + query + \
 "+redundant%3Ano&fil=" + fil + "&sort=score"
 return search_url

 def parse_search(up_input):
 search_results = []
 soup = BeautifulSoup(up_input, "lxml")
 for child in (soup.find_all('tr')):
 single_result = child.get_text("\t")
 search_results.append(single_result)
 del search_results[0:2]
 if len(search_results) == 0:
 print("No results found.")
 return None
 return search_results

 def get_proteome_url(entry, format_choice):
 proteome_url = "http://www.uniprot.org/uniprot/?sort=&desc=&query=proteome:" + entry + "&force=no&format=" +
format_choice
 return proteome_url

 def parse_proteome_entry(up_input):
 if not up_input:
 entry_text = "EMPTY"
 else:
 soup = BeautifulSoup(up_input, "lxml")
 entry_text = (soup.p.get_text())
 return entry_text

 def save_proteome(text,taxid):
 os.chdir("proteomes")

279

 filename = "proteome_raw_" + str(taxid) + ".txt"
 try:
 outfile = open(filename, 'wb')
 except IOError as e:
 print("I/O error({0}): {1}".format(e.errno, e.strerror))
 sys.exit()
 for line in text:
 outfile.write(line)
 print("File written to " + filename)
 outfile.close()
 os.chdir("..")

 #Retrieve proteomes on a query
 query = (raw_input("Please specify a full or partial species name.\n")).rstrip()
 ref_filter = "reference%3Ayes"
 if useNonRefProteomes == True:
 ref_filter = ""
 search_results_url = get_search_url(query, ref_filter) #Leave filter as "" to get non­reference proteomes too
 #Other option: taxonomy%3A"Bacteria+%5B2%5D" for just
bacteria

 search_response = requests.get(search_results_url)

 #Output the query results
 #print(search_response)
 proteome_entries = parse_search(search_response.text)
 if proteome_entries == None:
 return None
 i = 0
 print("Result\tAccession\tName")
 for entry in proteome_entries:
 print(str(i) + "\t" + entry)
 i = i +1

 #Choose a single proteome and output to file
 choice = raw_input('Please choose a search result.\n')
 if not re.match("^[0­9]*$", choice):
 print("Numbers only, please.")
 sys.exit()

280

 chosen_entry = (proteome_entries[int(choice)]).split("\t")
 print("Retrieving proteome for " + chosen_entry[1])
 proteome_url = get_proteome_url(chosen_entry[0], "list") #Options include list, txt, tab
 proteome_response = requests.get(proteome_url)
 proteome_text = parse_proteome_entry(proteome_response.text)
 if proteome_text == "EMPTY":
 print("Could not retrieve this proteome. It may be a redundant entry. See the Uniprot entry for %s." %
chosen_entry[0])
 else:
 save_proteome(proteome_text, chosen_entry[2])

def main():
 #Check for eggNOG mapping file and get if needed
 #Requires downloading several files and building new mapping file from them
 mapping_file_list = glob.glob('uniprot_og_maps*.txt')
 if len(mapping_file_list) >2:
 sys.exit("Found more than one mapping file. Check for duplicates.")
 if len(mapping_file_list) == 0:
 print("No eggNOG mapping files found or they're incomplete. Rebuilding them.")
 version = "latest"
 version = raw_input("Which eggNOG version would you prefer? Default is latest version.\n")
 if version not in ["4.5","4.1","4.0"]:
 version = "latest"
 else:
 version = "eggnog_" + version
 get_eggnog_maps(version)
 mapping_file_list = glob.glob('uniprot_og_maps*.txt')

 #Check for eggNOG annotation file and get if needed
 annotation_file_list = glob.glob('*annotations.tsv')
 expected_filecount = 2
 if useViruses == True:
 expected_filecount = 3
 if len(annotation_file_list) > expected_filecount:
 sys.exit("Found more eggNOG annotation files than expected. Check for duplicates.")
 if len(annotation_file_list) < expected_filecount:
 print("No eggNOG annotation files found or they're incomplete. Retrieving them.")
 get_eggnog_annotations()
 annotation_file_list = glob.glob('*annotations.tsv')

281

 #Quit now or ask for next step.
 requested = 0
 while requested == 0:
 request_next = raw_input("\nChoose from the following options.\n"
 "A: Download a reference proteome and map to OGs.\n"
 "X: Exit.\n")
 if request_next in ["x", "X"]:
 sys.exit("Exiting...")
 if request_next in ["a", "A"]:
 get_mapped_proteome(mapping_file_list)

 print("\nChoose from the list, please.")

if __name__ == "__main__":
 sys.exit(main())

282

APPENDIX III

Additional data tables for Chapter 2

Table III-A. Average conservation of loci and orthologous groups across
numerous bacterial species.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-A.xlsx

283

Table III-B. Average conservation of orthologous groups among protein complex
components.

Species

Hu et al. E.
coli
complexes

EcoCyc E. coli
complexes

Kühner et al.
Mycoplasma
pneumoniae
complexes

Mycoplasma genitalium G37 87.98% 87.36% 75.57%

Mycoplasma pneumoniae M129 86.00% 86.26% 61.38%

Helicobacter pylori 26695 79.10% 76.08% 91.19%

Streptococcus sanguinis SK36 78.56% 76.06% 83.12%

Caulobacter crescentus NA1000 75.08% 70.06% 85.87%

Bacillus subtilis subsp. subtilis 168 74.02% 71.85% 82.46%

Escherichia coli K-12 W3110 57.20% 56.01% 85.93%

Pseudomonas aeruginosa UCBPP-PA14 67.76% 65.90% 87.04%

284

Table III-C. Conservation of orthologous groups and protein-coding loci between pairs of model bacterial species.

Table III-C-A. Counts of total orthologous groups shared between species. Exact strains of each species are identified in the
Chapter 2 Methods. Values are locus counts as per shared eggNOG v.3 orthologous groups. Identity values are total OG counts

for the given species.

M. pneumoniae M. genitalium B. subtillis S. sanguinis H. pylori C. crescentus P. aeruginosa E. coli
M. pneumoniae 461 0.6972 0.0016 0.5707 0.4326 0.4908 0.5324 0.5408

M. genitalium 0.8693 435 0.7116 0.6992 0.5332 0.6100 0.6535 0.6556

B. subtillis 0.0856 0.0846 2582 0.2421 0.1714 0.2564 0.3052 0.3023

S. sanguinis 0.1681 0.1652 0.4814 1437 0.2549 0.3652 0.4255 0.4338

H. pylori 0.1775 0.1754 0.4744 0.3549 1180 0.4894 0.5379 0.5365

C. crescentus 0.0818 0.0815 0.2882 0.2065 0.1987 2231 0.3853 0.3489

P. aeruginosa 0.0554 0.0546 0.2144 0.1503 0.1365 0.2407 3112 0.2884

E. coli 0.0784 0.0762 0.2958 0.2135 0.1896 0.3037 0.4017 2593

Table III-C-B. Percentage of total loci shared between species. Exact strains of each species are identified in the Methods.
Values are locus counts as per shared eggNOG v.3 orthologous groups; following values in parentheses are total conservation

fractions, e.g., 466 of 482 M. genitalium loci appear to be conserved in the M. pneumoniae genome (or a fraction of 0.9668)
while 517 of 601 M. pneumoniae loci appear to be conserved in the M. genitalium genome (or a fraction of 0.8602).

M. pneumoniae M. genitalium B. subtilis S. sanguinis H. pylori C. crescentus P. aeruginosa E. coli
M. pneumoniae 601 (1) 517 (0.8602) 430 (0.7155) 427 (0.7105) 336 (0.5591) 379 (0.6306) 395 (0.6572) 408 (0.6789)
M. genitalium 466 (0.9668) 482 (1) 388 (0.805) 381 (0.7905) 290 (0.6017) 333 (0.6909) 353 (0.7324) 355 (0.7365)
B. subtilis 644 (0.1588) 627 (0.1546) 4056 (1) 1974 (0.4867) 1374 (0.3388) 2101 (0.518) 2465 (0.6077) 2428 (0.5986)
S. sanguinis 538 (0.2637) 519 (0.2544) 1514 (0.7422) 2040 (1) 804 (0.3941) 1186 (0.5814) 1341 (0.6574) 1379 (0.676)
H. pylori 314 (0.2143) 304 (0.2075) 844 (0.5761) 631 (0.4307) 1465 (1) 916 (0.6253) 979 (0.6683) 992 (0.6771)
C. crescentus 454 (0.1258) 440 (0.122) 2064 (0.5721) 1487 (0.4121) 1401 (0.3883) 3608 (1) 2618 (0.7256) 2414 (0.6691)
P. aeruginosa 678 (0.1174) 655 (0.1134) 3275 (0.5672) 2353 (0.4075) 1963 (0.34) 3615 (0.6261) 5774 (1) 4007 (0.694)

E. coli 594 (0.1433) 567 (0.1368) 2418 (0.5834) 1791 (0.4321) 1414 (0.3411) 2409 (0.5812) 3027 (0.7303) 4145 (1)

285

Table III-D. Key to short protein complex IDs.

Short ID EcoCyc ID Complex Name Note

C1 F-1-CPLX ATP synthase F1 complex

C2 ATPSYN-CPLX
ATP synthase / thiamin triphosphate
synthase

C3 UVRABC-CPLX
UvrABC Nucleotide Excision Repair
Complex

C4 RNAPS-CPLX RNA polymerase sigma S

C5 RNAP32-CPLX RNA polymerase sigma 32

C6 RNAP70-CPLX RNA polymerase sigma 70

C7 APORNAP-CPLX RNA polymerase, core enzyme

C8 F-O-CPLX ATP synthase F0 complex

C9 HSP70-CPLX DnaK-DnaJ-GrpE chaperone system

C10 CPLX0-3801
DNA polymerase III, preinitiation
complex

C11 RIBONUCLEOSIDE-DIP-REDUCTII-CPLX ribonucleoside-diphosphate reductase 2

C12 CPLX0-7609
5-carboxymethylaminomethyluridine-
tRNA synthase

C13 PHES-CPLX phenylalanyl-tRNA synthetase

C14 CPLX0-7879 NusB-NusE complex

C15 CPLX0-2424 topoisomerase IV

C16 CPLX0-2425 DNA gyrase

C17 PC00027
IHF DNA-binding transcriptional dual
regulator

C18 CPLX0-3934 GroEL-GroES chaperonin complex

C19 CPLX0-2021
HU DNA-binding transcriptional dual
regulator

C20 RIBONUCLEOSIDE-DIP-REDUCTI-CPLX ribonucleoside diphosphate reductase 1

C21 CPLX0-3956 50S ribosomal protein complex L8

C22 CPLX0-3964 ribosome

C23 SECE-G-Y-CPLX SecYEG translocase

C24 RNAPE-CPLX RNA polymerase sigma 24

C25 CPLX0-221 RNA polymerase sigma 19

286

C26 RNAP54-CPLX RNA polymerase sigma 54

C27 CPLX0-222 RNA polymerase sigma 28

C28 ABC-22-CPLX peptide ABC transporter OppABCDF

C29 CPLX0-3970
murein tripeptide ABC transporter
OppBCDFMppA

C30 ABC-8-CPLX dipeptide ABC transporter

C31 ABC-49-CPLX glutathione ABC transporter

C32 ABC-20-CPLX nickel ABC transporter

C33 ABC-59-CPLX
YddO/YddP/YddQ/YddR/YddS ABC
transporter

C34 GCVMULTI-CPLX glycine cleavage system

C35 CPLX0-1944 ferric enterobactin transport system

C36 ABC-23-CPLX phosphonate ABC transporter

C37 CPLX0-3323
CcmEFGH holocytochrome <I>c</I>
synthetase

C38 HCAMULTI-CPLX 3-phenylpropionate dioxygenase system

C39 ABC-11-CPLX iron (III) hydroxamate ABC transporter

C40 CPLX0-3108 ClpAXP

C41 CPLX0-3104 ClpAP

C42 ABC-21-CPLX YadG/YadH ABC transporter

C43 ABC-57-CPLX YbhF/YbhR/YbhS ABC transporter

C44 SECD-SECF-YAJC-YIDC-CPLX
SecD-SecF-YajC-YidC Secretion
Complex

C45 ABC-9-CPLX ferric dicitrate ABC transporter

C46 CPLX0-2982
HflB, integral membrane ATP-dependent
zinc metallopeptidase

C47 RUVABC-CPLX resolvasome

C48 SEC-SECRETION-CPLX Sec Translocation Complex

C49 CPLX0-5
EntS-TolC Enterobactin Efflux Transport
System

C50 TRANS-200-CPLX
MacAB-TolC macrolide efflux transport
system

C51 CPLX0-2381 degradosome

C52 CPLX0-2161 EmrKY-TolC multidrug efflux transport

287

system

C53 CPLX0-2121
EmrAB-TolC multidrug efflux transport
system

C54 ABC-62-CPLX LolCDE ABC lipoprotein transporter

C55 CPLX0-1981 ferrichrome transport system

C56 CPLX0-7954 ferric coprogen transport system

C57 CPLX0-2001 ferric dicitrate transport system

C58 CPLX0-7934 FtsLBQ cell division complex

C59 ABC-10-CPLX ferric enterobactin ABC transporter

C60 CPLX0-3803 DNA polymerase III, holoenzyme

C61 CPLX0-2361 DNA polymerase III, core enzyme

C62 CPLX0-3922 primosome

C63 CPLX0-241 tagatose-1,6-bisphosphate aldolase 2

C64 CPLX0-240 tagatose-1,6-bisphosphate aldolase 1

C65 ABC-25-CPLX putrescine ABC transporter

C66 ABC-51-CPLX YdcS/YdcT/YdcV/YdcU ABC transporter

C67 ABC-24-CPLX putrescine / spermidine ABC transporter

C68 CPLX-158 fructose PTS permease

C69 CPLX-159 PTS permease - unknown specificity

C70 CPLX-157 glucose PTS permease

C71 CPLX0-7 N-acetylmuramic acid PTS permease

C72 CPLX-164 maltose / glucose PTS permease
Entry removed from EcoCyc but
present in MetaCyc

C73 CPLX-168 trehalose PTS permease

C74 ABC-27-CPLX phosphate ABC transporter

C75 PYRUVATEDEH-CPLX pyruvate dehydrogenase

C76 2OXOGLUTARATEDEH-CPLX 2-oxoglutarate dehydrogenase complex

C77 CPLX0-3925 DNA polymerase V

C78 CPLX-156 mannitol PTS permease - cryptic

C79 MONOMER0-1761 MalT-MalK

C80 ABC-16-CPLX maltose ABC transporter

C81 CPLX-160 PTS permease - unknown specificity

288

C82 ABC-34-CPLX
glycerol-3-phosphate /
glycerophosphodiester ABC transporter

C83 ABC-55-CPLX YcjN/YcjO/YcjP ABC transporter

C84 CPLX0-3958 EcoKI restriction-modification system

C85 EIISGA L-ascorbate PTS permease

C86 EIISGC PTS permease - unknown specificity

C87 CPLX0-231 galactitol PTS permease

C88 SUCC-DEHASE succinate dehydrogenase

C89 CPLX0-3933
Outer Membrane Protein Assembly
Complex

289

Table III-E. Conservation of E. coli complexes from Hu et al. (2009).

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-E.xlsx

290

Table III-F. Essentiality of E. coli complexes from Hu et al. (2009).

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-F.xlsx

291

Table III-G. Conservation of E. coli complexes from EcoCyc.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-G.xlsx

292

Table III-H. Essentiality of E. coli complexes from EcoCyc.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-H.xlsx

293

Table III-I. Conservation of Mycoplasma pneumoniae complexes from Kühner et
al. (2009).

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-I.xlsx

294

Table III-J. Essentiality of Mycoplasma pneumoniae complexes from Kühner et al.
(2009).

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-J.xlsx

295

Table III-K. Experimental protein complexes containing uncharacterized components.

In this table, Data Set identifies the source of the complex.

CplxID is the complex identifier assigned by the data source. For the experimentally-observed complexes (Hu et al. (2009) and
Kühner et al (2009)) this is the CplxID or Purification ID, respectively.

Size is the number of unique protein components (by OG) in the complex.

Unknown Components is the total number of components in this complex with unknown or unclear functions beyond their
membership in the complex. The corresponding OGs must have functional category labels of R or S.

Highly Conserved Components are those coded for by the genomes of at least half of the eight species in the focused set.

Highly Essential Components are those coded for by essential genes present in at least half of the eight species in the
focused set.

Data Set CplxID Size
Unknown
Components

Highly Conserved
Components

Highly Essential
Components Notes

Hu et al. (2009) 1 39 13 26 4 degradosome

2 25 10 15 2 resolvasome

5 16 7 9 2

23 9 6 5 0 HflB complex?

3 22 4 15 6 ClpP protease complex?

9 13 4 10 2 efflux transport system?

15 11 4 7 1

4 18 3 13 3 ABC transporter

11 12 3 9 1 DosC-DosP complex?

25 9 3 4 1 ABC transporter

52 6 3 4 1

296

59 6 3 4 1

105 5 3 4 1

66 6 3 3 1

101 5 3 3 1

26 8 3 6 0

40 7 3 4 0

79 5 3 3 0

90 5 3 3 0

109 5 3 3 0

62 6 3 1 0

12 12 2 7 5

20 10 2 10 4

36 7 2 5 4

41 7 2 7 1

18 11 2 5 1

53 6 2 5 1

91 5 2 4 1

146 4 2 4 1

75 5 2 3 1

80 5 2 3 1

88 5 2 3 1

143 4 2 3 1

151 4 2 3 1

85 5 2 2 1

14 11 2 6 0

33 8 2 6 0

48 7 2 6 0

34 8 2 5 0

100 5 2 5 0

297

45 7 2 4 0

49 7 2 4 0

55 6 2 4 0

68 6 2 4 0

103 5 2 4 0

116 4 2 3 0

127 4 2 3 0

145 4 2 3 0

149 4 2 3 0

251 3 2 3 0

123 4 2 2 0

245 3 2 2 0

84 5 2 1 0

134 4 2 1 0

154 4 2 1 0

6 13 1 10 5

10 13 1 10 5

27 8 1 8 4

29 8 1 7 4

28 8 1 6 3

30 8 1 6 3

42 7 1 3 3

22 9 1 8 2

21 9 1 5 2

60 6 1 5 2

58 6 1 4 2

137 4 1 2 2

8 13 1 10 1

19 11 1 9 1

298

17 11 1 8 1

50 6 1 5 1

95 5 1 5 1

97 5 1 5 1

35 8 1 4 1

98 5 1 4 1

107 5 1 4 1

121 4 1 3 1

82 5 1 2 1

102 5 1 2 1

112 4 1 2 1

165 3 1 2 1

173 3 1 2 1

176 3 1 2 1

192 3 1 2 1

232 3 1 2 1

239 3 1 2 1

346 2 1 2 1

204 3 1 1 1

13 12 1 5 0

39 7 1 5 0

46 7 1 5 0

108 5 1 5 0

44 7 1 4 0

54 6 1 4 0

56 6 1 4 0

61 6 1 4 0

78 5 1 4 0

86 5 1 4 0

299

110 4 1 4 0

120 4 1 4 0

161 4 1 4 0

65 6 1 3 0

67 6 1 3 0

69 6 1 3 0

73 5 1 3 0

87 5 1 3 0

89 5 1 3 0

92 5 1 3 0

94 5 1 3 0

114 4 1 3 0

150 4 1 3 0

198 3 1 3 0

210 3 1 3 0

240 3 1 3 0

72 5 1 2 0

93 5 1 2 0

115 4 1 2 0

118 4 1 2 0

148 4 1 2 0

156 4 1 2 0

181 3 1 2 0

222 3 1 2 0

227 3 1 2 0

237 3 1 2 0

247 3 1 2 0

261 3 1 2 0

262 3 1 2 0

300

264 3 1 2 0

289 2 1 2 0

290 2 1 2 0

339 2 1 2 0

354 2 1 2 0

364 2 1 2 0

365 2 1 2 0

403 2 1 2 0

43 7 1 1 0

74 5 1 1 0

126 4 1 1 0

162 4 1 1 0

203 3 1 1 0

228 3 1 1 0

230 3 1 1 0

246 3 1 1 0

248 3 1 1 0

259 3 1 1 0

426 2 1 1 0

99 5 1 0 0

178 3 1 0 0

258 3 1 0 0

Kühner et al
(2009), table S2 50 62 2 39 33 Ribosome

10 10 2 8 6
Aminoacyl-tRNA
synthetase complex

36 10 2 8 5
Complex function unknown
- contains GroL/GroS

8 16 2 7 1 Protein chaperone complex

19 3 2 3 1
Complex function unknown
- contains thymidylate

301

synthase

49 28 1 19 12 RNA polymerase complex

44 13 1 8 5
Pyruvate dehydrogenase
complex

15 10 1 7 4
DNA Recombination
complex

29 10 1 5 3 DNA Pol III core complex

46 4 1 3 3

Carbohydrate
transport/metabolism
complex - contains enolase

45 11 1 7 2

34 5 1 4 2

35 5 1 4 2

11 2 1 2 2

27 9 1 3 1

59 2 1 2 1

100 2 1 2 1

70 2 1 2 1

98 2 1 1 1

24 5 1 2 0

31 4 1 2 0

14 3 1 2 0

68 2 1 2 0

74 2 1 2 0

2 5 1 1 0

42 4 1 1 0

20 4 1 1 0

21 4 1 1 0

43 2 1 1 0

109 2 1 1 0

55 2 1 1 0

302

56 2 1 1 0

58 2 1 1 0

76 2 1 1 0

303

Table III-L. Complex-based protein-protein interactions for E. coli.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-L.xlsx

This table includes all protein-protein interactions among E. coli proteins (as determined
by Rajagopala et al. 2014) involved in heteromeric protein complexes (from the EcoCyc
set). Each row corresponds to a single protein-protein interaction between the two
proteins defined using Uniprot identifiers (InteractorA and InteractorB).

Each protein is assigned to an OG (specifically, an eggNOG v.4 bactNOG or highest-
level NOG where possible, or otherwise a COG; see OG_A and OG_B).

GroupA and GroupB correspond to the EcoCyc protein complex containing InteractorA
and InteractorB, respectively.

Cplx_Int_Predicted indicates interactions predicted to occur in the lack of direct
experimental evidence but observed experimentally for other proteins of the same two
OGs.

FunctionalityA and FunctionalityB are general functional categories referring to
complex function (of GroupA and GroupB, respectively) rather than individual protein
function. The functional categories are primarily based on EcoCyc annotations but also
take the shared functions of the component proteins into account.

304

APPENDIX IV

Additional data tables for Chapter 3

Table IV-A. Counts of literature citing multiple bacterial interactomes.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-A.xls

The initial version of this data was produced by Christopher Wimble.

All publications in PubMed Central were searched for citations for at least one of the 11
publications listed below, each of which describes a comprehensive bacterial protein-
protein interactome.

PMCID Pubmed Central identifier of the publication.

DOI DOI of the publication, if available.

Publication Title Title of the publication.

Citations The total count of papers, of those listed below, cited by
the specified publication. An “x” denotes a citation to the
publication in this row.

Rain 2001 Citation to Rain JC, Selig L, De Reuse H, Battaglia V,
Reverdy C, et al. (2001) The protein-protein interaction
map of Helicobacter pylori. Nature 409: 211–215.

Parrish 2007 Citation to Parrish JR, Yu J, Liu G, Hines J a, Chan JE, et
al. (2007) A proteome-wide protein interaction map for
Campylobacter jejuni. Genome Biol 8: R130.

Sato 2007 Citation to Sato S, Shimoda Y, Muraki A, Kohara M,
Nakamura Y, et al. (2007) A large-scale protein-protein

305

interaction analysis in synechocystis sp. PCC6803. DNA
Res 14: 207–216.

Shimoda 2008 Citation to Shimoda Y, Shinpo S, Kohara M, Nakamura Y,
Tabata S, et al. (2008) A large scale analysis of protein-
protein interactions in the nitrogen-fixing bacterium
Mesorhizobium loti. DNA Res 15: 3–11.

Titz 2008 Citation to Titz B, Rajagopala S V., Goll J, Häuser R,
McKevitt MT, et al. (2008) The binary protein interactome
of Treponema pallidum - The syphilis spirochete. PLoS
One 3: e2292.

Hu 2009 Citation to Hu P, Janga SC, Babu M, Díaz-Mejía JJ,
Butland G, et al. (2009) Global functional atlas of
Escherichia coli encompassing previously
uncharacterized proteins. PLoS Biol 7: 0929–0947.

Kuhner 2009 Citation to Kühner S, van Noort V, Betts MJ, Leo-Macias
A, Batisse C, et al. (2009) Proteome organization in a
genome-reduced bacterium. Science 326: 1235–1240.

Wang 2010 Citation to Wang Y, Cui T, Zhang C, Yang M, Huang Y, et
al. (2010) Global protein-protein interaction network in
the human pathogen Mycobacterium tuberculosis H37Rv.
J Proteome Res 9: 6665–6677.

Cherkasov 2011 Citation to Cherkasov A, Hsing M, Zoraghi R, Foster LJ,
See RH, et al. (2011) Mapping the Protein Interaction
Network in Methicillin-Resistant Staphylococcus aureus.
J Proteome Res 10: 1139–1150.

Hauser 2014 Citation to Häuser R, Ceol A, Rajagopala S V, Mosca R,
Siszler G, et al. (2014) A second-generation protein-
protein interaction network of Helicobacter pylori. Mol
Cell Proteomics 13: 1318–1329.

Rajagopala 2014 Citation to Rajagopala S V., Sikorski P, Kumar A, Mosca
R, Vlasblom J, et al. (2014) The binary protein-protein
interaction landscape of Escherichia coli. Nat Biotechnol
32: 285–290.

306

307

Table IV-B. All interactions in the meta-interactome network.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-B.csv.tar.gz

Interactions are provided in PSI-MI TAB 2.7 format, with the addition of orthologous
group identifiers for interactor A and B in the 43rd and 44th columns, respectively. The
table does not contain a heading for this reason. The file must be decompressed prior to
use.

The PSI-MI TAB 2.7 format depends on PSI-MI controlled vocabularies and is described
in detail at: https://code.google.com/archive/p/psimi/wikis/PsimiTab27Format.wiki

308

Table IV-C. All interactions in the consensus meta-interactome network.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-C.xls

In this table:

InteractorA The first interactor. Either an eggNOG OG identifier or a Uniprot
protein identifier, representative of a single-member OG.

InteractorB The second interactor. Either an eggNOG OG identifier or a Uniprot
protein identifier, representative of a single-member OG.

For InteractorA and InteractorB, interactors mapping to multiple
OGs include all corresponding OGs, separated by commas. For
purposes of this data set, multiple-OG interactors are treated as
unique OGs, even if their mappings overlap with other OGs.

InteractionCount Count of individual PROTEIN interactions contributing to this
consensus interaction, as per the meta-interactome.

TaxonCount Count of different taxons (here, a proxy for species) corresponding
to the interaction.

Similar taxons have been grouped together where possible, e.g.
two different E. coli K-12 strains are just considered E. coli K-12.

Taxons The taxons corresponding to this interaction.

FuncCatA Functional category of the first interactor.

DescA Description of the first interactor.

FuncCatB Functional category of the second interactor.

DescB Description of the second interactor.

For all FuncCats and Descriptions, multiple-OG interactors include all annotations,
separated by pipe (|) symbols. NA indicates that a functional category or description is
not available.

309

Table IV-D. Conserved interactions of unclear function.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-D.xls

The format of this table is identical to that of Table IV-C. All interactions in this table are
OG-OG interactions from the consensus meta-interactome where the interaction has
been observed in at least two distinct species and involves at least one OG with a
functional category of “S”.

310

APPENDIX V

Additional data tables for Chapter 4

Table V-A. Interactions between bacteriophage and bacterial proteins.

This table is not included in this document due to size.

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20V-A.xlsx

All interactions in this table are between a bacterial protein and a bacteriophage protein.
Induction of a phenotype (I.e., gpX causes lysis) is insufficient evidence, as are host
range studies (e.g., gpX mutations allow infection of Species A but not Species B) even
if a specific receptor is named. Protein-focused methods (e.g., yeast two hybrid) are
acceptable. Reciprocal interactions are included when available but each interaction
appears only once between two unique proteins. If an interaction was found in more
than one study, all studies are listed under the Source heading.

Phage_Interactor The protein name of the phage interactor.

Phage The name of the bacteriophage source of the phage
interactor.

Phage_UPID The Uniprot entry ID of the phage interactor.

Phage_Alt_ID An alternate ID for the phage interactor if a Uniprot ID is not
available. Otherwise, this is identical to Phage_UPID.

Phage_OG An eggNOG v.4.5 orthologous group assignment for the
phage interactor, if available. Otherwise, this is identical to
Phage_Alt_ID. Lack of current OG assignment does not
preclude future OG assignment.

311

Host_Interactor The protein name of the host interactor.

Host The species name of the bacterial host and source of the
host interactor.

Host_UPID The Uniprot entry ID of the host interactor.
Host_Alt_ID An alternate ID for the host interactor if a Uniprot ID is not

available. Otherwise, this is identical to Host_UPID.

Host_OG An eggNOG v.4.5 orthologous group assignment for the host
interactor, if available. Otherwise, this is identical to
Host_Alt_ID.

ExpMethod The experimental method used to observe the interaction, as
one of the methods defined by the PSI MI 2.5 methods
ontology.

ExpMethodID The ontology ID for the experimental method. See
http://www.ebi.ac.uk/ols/beta/ontologies/mi

InfMethod "Spoke" if the reported interaction is the product of a spoke
expansion model. "-" if otherwise.

Source The first author and publication year of the source of the
reported interaction. Multiple sources may be provided for a
single interaction but will have different entries.

SourceID An NCBI PubMed ID for the source.

Database The source database, if present in a database of protein
interactions, or a review article including a collection of
interactions.

312

Table V-B. Citations for phage-host protein interaction sources.

First Author PMID Full Citation

Atanasiu et al., 2002 12235377
Atanasiu, C., Su, T.-J., Sturrock, S. S. & Dryden, D. T. F. Interaction of the ocr gene 0.3 protein of bacteriophage T7
with EcoKI restriction/modification enzyme. Nucleic Acids Res. 30, 3936–44 (2002).

Berkane et al. (2006) 16489764
Berkane, E. et al. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of
the viral tail protein gpJ to LamB (Maltoporin). Biochemistry 45, 2708–20 (2006).

Blasche et al. (2013) 24049175
Blasche, S., Wuchty, S., Rajagopala, S. V & Uetz, P. The protein interaction network of bacteriophage lambda with
its host, Escherichia coli. J. Virol. 87, 12745–55 (2013).

Breyton et al. (2013) 24014030
Breyton, C. et al. Assessing the conformational changes of pb5, the receptor-binding protein of phage T5, upon
binding to its Escherichia coli receptor FhuA. J. Biol. Chem. 288, 30763–72 (2013).

Brieba et al. (2004) 15297882
Brieba, L. G. et al. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA
polymerase. EMBO J. 23, 3452–61 (2004).

Chen et al. (2002) 11751917
Chen, M. et al. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein
insertion. J. Biol. Chem. 277, 7670–5 (2002).

Cheng et al. (2004) 15302217
Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326,
340–52 (2004).

Ding et al. (1995) 7578104
Ding, Y., Duda, R. L., Hendrix, R. W. & Rosenberg, J. M. Complexes between chaperonin GroEL and the capsid
protein of bacteriophage HK97. Biochemistry 34, 14918–31 (1995).

Doublié et al. (1998) 9440688
Doublié, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA
replication complex at 2.2 A resolution. Nature 391, 251–8 (1998).

Dove and Hochschild
(2001) 11591686

Dove, S. L. & Hochschild, A. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit
of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas
aeruginosa. J. Bacteriol. 183, 6413–21 (2001).

Dutta et al. (2004) 15528277
Dutta, S. et al. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA
polymerase reveal mechanisms of mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 101, 16186–91 (2004).

Fornelos et al. (2015) 26138485
Fornelos, N. et al. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit
RecA-mediated auto-cleavage. Nucleic Acids Res. 43, 7315–29 (2015).

Ghosh et al. (2008) 18757858
Ghosh, S., Hamdan, S. M., Cook, T. E. & Richardson, C. C. Interactions of Escherichia coli thioredoxin, the
processivity factor, with bacteriophage T7 DNA polymerase and helicase. J. Biol. Chem. 283, 32077–84 (2008).

Hinnerwisch et al.
(2005) 15989953

Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA
chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–41 (2005).

Hood and Berger
(2016) 27244442

Hood, I. V & Berger, J. M. Viral hijacking of a replicative helicase loader and its implications for helicase loading
control and phage replication. Elife 5, (2016).

Kennaway et al., 2009 19074193
Kennaway, C. K. et al. The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction
protein. Nucleic Acids Res. 37, 762–70 (2009).

313

Klenner and Kuhn
(2012) 22179606

Klenner, C. & Kuhn, A. Dynamic disulfide scanning of the membrane-inserting Pf3 coat protein reveals multiple
YidC substrate contacts. J. Biol. Chem. 287, 3769–76 (2012).

Klenner et al. (2008) 18996118
Klenner, C., Yuan, J., Dalbey, R. E. & Kuhn, A. The Pf3 coat protein contacts TM1 and TM3 of YidC during
membrane biogenesis. FEBS Lett. 582, 3967–72 (2008).

Lambert et al. (2004) 15257291
Lambert, L. J., Wei, Y., Schirf, V., Demeler, B. & Werner, M. H. T4 AsiA blocks DNA recognition by remodeling
sigma70 region 4. EMBO J. 23, 2952–62 (2004).

Liu and Richardson
(1993) 7680479

Lambert, L. J., Wei, Y., Schirf, V., Demeler, B. & Werner, M. H. T4 AsiA blocks DNA recognition by remodeling
sigma70 region 4. EMBO J. 23, 2952–62 (2004).

Mallory et al. (1990) 2165499

Mallory, J. B., Alfano, C. & McMacken, R. Host virus interactions in the initiation of bacteriophage lambda DNA
replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J. Biol. Chem. 265,
13297–307 (1990).

Mariano et al. (2016) 27103053

Mariano, R., Wuchty, S., Vizoso-Pinto, M. G., Häuser, R. & Uetz, P. The interactome of Streptococcus pneumoniae
and its bacteriophages show highly specific patterns of interactions among bacteria and their phages. Sci. Rep. 6,
24597 (2016).

McMahon et al. (2005) 16170324
McMahon, S. A. et al. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat. Struct.
Mol. Biol. 12, 886–92 (2005).

Miller et al. (2008) 18532877
Miller, J. L. et al. Selective ligand recognition by a diversity-generating retroelement variable protein. PLoS Biol. 6,
e131 (2008).

Muñoz-Espín et al.
(2009) 19654094

 Muñoz-Espín, D. et al. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc. Natl.
Acad. Sci. U. S. A. 106, 13347–52 (2009).

Mustard and Little
(2000) 10692372

Mustard, J. A. & Little, J. W. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by
site-directed mutagenesis of recA. J. Bacteriol. 182, 1659–70 (2000).

Odegrip et al. (2000) 10756017
Odegrip, R., Schoen, S., Haggård-Ljungquist, E., Park, K. & Chattoraj, D. K. The interaction of bacteriophage P2 B
protein with Escherichia coli DnaB helicase. J. Virol. 74, 4057–63 (2000).

Pani et al. (2009) 19409394
Pani, B., Ranjan, A. & Sen, R. Interaction surface of bacteriophage P4 protein Psu required for complex formation
with the transcription terminator Rho. J. Mol. Biol. 389, 647–60 (2009).

Perrody et al. (2012) 23133404
Perrody, E. et al. A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and
stabilizes the heat-shock factor σ32 of Escherichia coli. PLoS Genet. 8, e1003037 (2012).

Putnam et al. (1999) 10080896
Putnam, C. D. et al. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein
and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287, 331–46 (1999).

Qi et al. (2015) 26323881
Qi, D., Alawneh, A. M., Yonesaki, T. & Otsuka, Y. Rapid Degradation of Host mRNAs by Stimulation of RNase E
Activity by Srd of Bacteriophage T4. Genetics 201, 977–87 (2015).

Qiao et al. (2008) 18836083
Qiao, X., Sun, Y., Qiao, J. & Mindich, L. The role of host protein YajQ in the temporal control of transcription in
bacteriophage Phi6. Proc. Natl. Acad. Sci. U. S. A. 105, 15956–60 (2008).

Saikrishnan et al.
(2002) 12136137

Saikrishnan, K. et al. Domain closure and action of uracil DNA glycosylase (UDG): structures of new crystal forms
containing the Escherichia coli enzyme and a comparative study of the known structures involving UDG. Acta
Crystallogr. D. Biol. Crystallogr. 58, 1269–76 (2002).

314

São-José et al. (2006) 16481324
São-José, C. et al. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage
SPP1 DNA. J. Biol. Chem. 281, 11464–70 (2006).

Sauer et al. (1981) 7021852
Sauer, B., Ow, D., Ling, L. & Calendar, R. Mutants of satellite bacteriophage P4 that are defective in the
suppression of transcriptional polarity. J. Mol. Biol. 145, 29–46 (1981).

Serrano-Heras et al.
(2006) 16421108

Serrano-Heras, G., Salas, M. & Bravo, A. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing
viral DNA. J. Biol. Chem. 281, 7068–74 (2006).

Sharma and Chatterji
(2008) 18359804

Sharma, U. K. & Chatterji, D. Differential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and
bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences. J. Bacteriol. 190,
3434–43 (2008).

Shen et al. (2004) 15169771

Shen, R., Olcott, M. C., Kim, J., Rajagopal, I. & Mathews, C. K. Escherichia coli nucleoside diphosphate kinase
interactions with T4 phage proteins of deoxyribonucleotide synthesis and possible regulatory functions. J. Biol.
Chem. 279, 32225–32 (2004).

Shtatland et al. (2000) 11058143
Shtatland, T. et al. Interactions of Escherichia coli RNA with bacteriophage MS2 coat protein: genomic SELEX.
Nucleic Acids Res. 28, E93 (2000).

Solteszova et al.
(2015) 25463056

Solteszova, B., Halgasova, N. & Bukovska, G. Interaction between phage BFK20 helicase gp41 and its host
Brevibacterium flavum primase DnaG. Virus Res. 196, 150–6 (2015).

Stephanou et al.
(2009) 19523474

Stephanou, A. S. et al. Dissection of the DNA mimicry of the bacteriophage T7 Ocr protein using chemical
modification. J. Mol. Biol. 391, 565–76 (2009).

Van den Bossche et
al. (2014) 25185497

Van den Bossche, A. et al. Systematic identification of hypothetical bacteriophage proteins targeting key protein
complexes of Pseudomonas aeruginosa. J. Proteome Res. 13, 4446–56 (2014).

Van den Bossche et
al. (2016) 27447594

Van den Bossche, A. et al. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the
RNA degradosome. Elife 5, (2016).

Vinga et al. (2012) 22171743
Vinga, I. et al. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage
DNA ejection. Mol. Microbiol. 83, 289–303 (2012).

Wagemans et al.
(2015) 26594207

Wagemans, J. et al. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT
inhibiting protein. Front. Microbiol. 6, 1242 (2015).

Wan et al. (2016) 27169810
Wan, H. et al. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin
Dmd. Mol. Microbiol. 101, 757–69 (2016).

Wang et al. (2008) 18157148
Wang, G. et al. The structure of a DnaB-family replicative helicase and its interactions with primase. Nat. Struct.
Mol. Biol. 15, 94–100 (2008).

Zillig et al. (1975) 1101258
Zillig, W. et al. In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by
bacteriophage-T7-induced protein kinase. Proc. Natl. Acad. Sci. U. S. A. 72, 2506–10 (1975).

315

	Interactomics-Based Functional Analysis: Using Interaction Conservation To Probe Bacterial Protein Functions
	Downloaded from

	tmp.1481133620.pdf.SjjWW

