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ABSTRACT

INTERACTOMICS-BASED FUNCTIONAL ANALYSIS: USING INTERACTION 
CONSERVATION TO PROBE BACTERIAL PROTEIN FUNCTIONS

By J. Harry Caufield, M.S.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Major Director: Peter H. Uetz, PhD
Associate Professor, Center for the Study of Biological Complexity,

VCU Life Sciences

The emergence of genomics as a discrete field of biology has changed humanity’s 

understanding of our relationship with bacteria. Sequencing the genome of each newly-

discovered bacterial species can reveal novel gene sequences, though the genome 

may contain genes coding for hundreds or thousands of proteins of unknown function 

(PUFs). In some cases, these coding sequences appear to be conserved across nearly 

all bacteria. Exploring the functional roles of these cases ideally requires an integrative, 

cross-species approach involving not only gene sequences but knowledge of 

interactions among their products. Protein interactions, studied at genome scale, extend 

genomics into the field of interactomics. I have employed novel computational methods 

to provide context for bacterial PUFs and to leverage the rich genomic, proteomic, and 

interactomic data available for hundreds of bacterial species.

The methods employed in this study began with sets of protein complexes. I initially 

hypothesized that, if protein interactions reveal protein functions and interactions are 
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frequently conserved through protein complexes, then conserved protein functions 

should be revealed through the extent of conservation of protein complexes and their 

components. The subsequent analyses revealed how partial protein complex 

conservation may, unexpectedly, be the rule rather than the exception. Next, I expanded 

the analysis by combining sets of thousands of experimental protein-protein 

interactions. Progressing beyond the scope of protein complexes into interactions 

across full proteomes revealed novel evolutionary consistencies across bacteria but 

also exposed deficiencies among interactomics-based approaches. I have concluded 

this study with an expansion beyond bacterial protein interactions and into those 

involving bacteriophage-encoded proteins.

This work concerns emergent evolutionary properties among bacterial proteins. It is 

primarily intended to serve as a resource for microbiologists but is relevant to any 

research into evolutionary biology. As microbiomes and their occupants become 

increasingly critical to human health, similar approaches may become increasingly 

necessary.
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DISSERTATION

Chapter 1 – Introduction

1.1 Background

1.1.1 The challenge of finding protein function

Bacteria are ubiquitous, diverse, and constantly subject to genetic flux at a colossal 

scope. Despite more than 150 years of research since the emergence of modern 

microbiology, many of the intricate components and processes within even well-studied 

bacterial species remain mysterious. Even E. coli, the microbiologist’s workhorse, 

contains a genome with more than a thousand open reading frames of unclear function.  

Identifying the roles, regulation, and interactions of microbial proteins depends upon a 

combination of comparison to known, conserved phenomena and experimental 

analysis. The latter approach has not been able to keep pace with the constant influx of 

genome and proteome data: fewer than 1% of protein sequences have functional 

annotations from experimental results (Erdin et al. 2011). The NCBI RefSeq database 

contained more than 50 million entries for bacterial proteins alone as of June 2016, 

suggesting that the functions of more than 49 million proteins have not been 

experimentally determined or even investigated.

The issue of defining protein function is not simply an issue of staggeringly large 

numbers. Meaningful associations between proteins may only emerge once proteins are 
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placed in their functional context, though this context may include dozens of other 

proteins. Recent developments in genome sequencing and high-throughput proteomics 

have been employed to address this issue. Additionally, a full understanding of proteins 

of unknown function must be considered within the context of other species. E. coli 

serves as an ideal model organism but provides just one, isolated genetic background. 

The roles of many proteins may only emerge once microbiomes and cross-species 

interactions are included in analyses. Confronting this issue therefore requires a 

philosophical shift. We must unify methodological advancements with holistic, data-

aggregating approaches if we wish to illuminate the darker corners of bacterial 

proteomes.

Unclear protein function is not a purely research-based concern.  Numerous recent 

microbiological studies have highlighted the tenuous relationships between humans and 

the bacteria in our environment and have revealed how otherwise uncharacterized 

proteins and cross-species interactions impact these relationships. Work by Zipperer et 

al. (2016) showed that a commensal bacterial species found in the human nose, 

Staphylococcus lugenensis, releases a peptide which can prevent colonization by 

pathogenic Staphylococcus aureus and Enterococcus strains. A multi-faceted analysis 

by Kamran et al. (2016) identified novel cell division-related proteins in the common 

human pathogen Helicobacter pylori. A study by Wu et al. (2016) identified a previously-

unknown magnesium uptake protein and virulence factor in the virulent human 

pathogen Francisella tularensis. These are just three examples of how a better 

4



understanding of bacterial protein function – and especially a focus on proteins of 

unknown function – can enhance understanding of common bacterial pathogens.

1.1.2 Interactomics as an approach to defining protein function

In this study, I leverage plentiful interactomics results using bioinformatics methods to 

re-interpret the data and draw new conclusions about bacterial genomes and proteins. 

Interactomics refers to the study of interactomes, where a single interactome is a further 

level of complexity beyond a genome or proteome: while a genome is the set of all 

genes in a genome and a proteome is the set of all proteins, an interactome is the set of 

all protein-protein interactions (PPIs) among the members of a proteome. Interactomes 

are frequently visualized and interpreted as graphs (Fig. 1-A). Like genomes and 

proteomes, interactomes may be conceptually complete but functionally incomplete. A 

protein present in nature but omitted from experimental observations of a proteome will 

in turn be missing from an interactome and experimental screens performed to build an 

interactome nearly always fail to detect some fraction of the true interactome. 

Furthermore, the conceptual interactome is an abstraction, as the significance of a PPI 

may vary between pairs or complexes of proteins. Even so, interactomics is a crucial 

element of a modern, systems biology approach to microbiology and provides rich 

context for informing protein function.

5



Fig. 1-A. Concept of the interactome. Each genome (shown here as a circle, with open reading frames 
shown as colored boxes) codes for proteins that contribute to a proteome. The proteome, in turn, is the 
source of the interactors in an interactome, as the interactome defines the set of interactions among 
proteome members. All three concepts shown here are abstractions and may be incomplete for a 
combination of biological and methodological reasons, e.g., a protein-coding sequence may exist in a 
genome but may escape annotation or its product may not be detected in a purified proteome. As binary 
protein-protein interactomes are usually determined using cloned open reading frames rather than 
purified proteins, a protein not found in an experimentally-defined proteome may still be included in an 
interactome, as is shown here.
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Complete interactomes have been defined for a handful of species, most of them 

microbial (Table 1-A). This table is not intended to be a complete listing of all 

interactomes as this remains an active field. As shown in Fig. 1-A, a complete 

experimental interactome is always some fraction of the true biological interactome for a 

combination of natural and methodological reasons. Even a well-designed study of 

numerous protein-protein interactions may therefore not be comprehensive if 

researchers intentionally omit potential interactors. Some researchers have used the 

term “interactome” to refer to other large sets of interaction screens, such as a study of 

C. elegans proteins by Li et al. (2004). This study focused on 3,024 protein-coding 

genes out of an estimated 17,800, or only ~17% genome coverage and likely less 

coverage of the C. elegans proteome. In this work, I use the term “comprehensive” to 

refer only to studies with at least ~60% proteome coverage.

Sets of microbial proteins serve as ideal subjects for interactomics studies: their 

proteomes generally contain only a few thousand proteins rather than the potentially 

more than 20 thousand proteins in the human proteome (Kim et al. 2014) without 

counting protein variants or post-translational modifications. Single-celled organisms 

also offer the benefit of comparatively few cell compartments; interactomes in higher 

organisms may only make sense for each cell type. Comprehensive interactomes have 

been published for more than nine microbial species, and in some cases, researchers 

have also identified comprehensive sets of protein complexes (or, more simply, the 

stable products of protein-protein interactions). 
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Table 1-A. A selection of published, comprehensive protein-protein interactomes. 

Taxonomic 
Superkingdom

Species Proteins in 
Ref. Proteome

Complexes Binary 
Interactions

Citation(s)

Bacteria Campylobacter jejuni 1,623 - 11,687 Parrish et al. 
(2007)

E. coli 4,305 310* 2,234** *Hu et al. 
(2009); 
**Rajagopala et 
al. (2014)

Helicobacter pylori 1,553 - 1,515 Häuser et al. 
(2014)

Mesorhizobium loti 7,255 - 3,121 Shimoda et al. 
(2008)

Mycobacterium 
tuberculosis

3,991 - >8,000 Wang et al. 
(2010)

Mycoplasma 
pneumoniae

687 259 - Kühner et al. 
(2009)

Synechocystis spp. 
PCC 6803

3,507 - 3,236 Sato et al. 
(2007)

Treponema pallidum 1,028 - 3,649 Titz et al. (2008)

Eukaryota Saccharomyces 
cerevisiae

~3,500 – 6,700 491 - 547 10,000 – 
30,000

Uetz et al. 
(2000); Ito et al. 
(2001); 
Schwikowski et 
al. (2000); Gavin 
et al. (2005); 
Krogan et al. 
(2006)

Schizosaccharomyces 
pombe 

5,121 - 2,278 Vo et al. (2016)

Viruses Bacteriophage lambda 66 - 97 Rajagopala et al. 
(2011)

Bacteriophage Giles 77 - 137 Mehla et al. 
(2015)

Hepatitis E virus 3 (processed 
into >11 
fragments) 

- 25 Osterman et al. 
(2015)

“Proteins in Ref. Proteome” refers to the number of proteins in the specified proteome as defined by 
Uniprot; individual studies may not include all proteins in their interaction screens.
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It should be noted that the expected size of an interactome can be difficult to estimate 

based only on the interactors involved.  In a very simple network such as that defined by 

a Barabási–Albert model (Albert and Barabási 2002) (Fig. 1-B-A), the overall structure 

may appear similar to that of a protein interaction network in that it has a scale-free 

degree distribution (Fig. 1-B-C). It fails to capture additional properties of an 

experimental protein interactome such as that of E. coli (Fig. 1-B-B). In comparing sets 

of protein interactions, we therefore must recognize that the overall data sets may follow 

similar trends in terms of degree distribution, but likely demonstrate novel properties at 

the local level.
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Fig. 1-B. Example interactomes from modeled and experimental data. A) A network of 1,230 nodes 
generated using a Barabasi-Albert model such that each node is connected to at least two other nodes. 
Generated with the Network Randomizer 1.1.1 plugin for Cytoscape 3.4.0. B) Network of E. coli protein-
protein interactions as reported by Rajagopala et al. (2014). This network also contains 1,230, though in 
this network each node corresponds to an E. coli protein. C) Comparison of degree distributions for each 
network, with both axes on a log scale. Both degree distributions appear to follow a power law.
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1.1.3 Protein complexes: the stable products of protein interactions

Protein complexes provide some of the most easily understood and most evolutionarily 

conserved examples of protein interactions. Nearly all of the enzymes most crucial to all 

forms of life are constructed from proteins, including RNA and DNA polymerases, 

chaperones like GroEL and Hsp60, the proteasome, the degradosome, and ATP 

synthases. Even the ribosome, with its substantial RNA content, depends upon the 

interactions between numerous proteins for stability. It is therefore critical to consider 

protein complexes when discussing comprehensive sets of PPIs. The most easily 

observable PPIs will generally be those participating in the most stable interactions and 

forming the most stable complexes.  

Protein complexes contribute just one fraction of the total potential for PPI in any single 

organism. The general structure of some complexes is well-conserved, even when the 

exact sequences of the interacting complex components differ. We may then expect to 

see similar numbers of PPIs across different species, especially if their genomes code 

for broadly-conserved protein complexes, but also if they code for other well-conserved, 

interacting proteins. Even with cases of differing sequence, however, the lack of a given 

protein sequence in a proteome may also indicate lack of a corresponding protein 

complex component and hence lack of the PPIs involving that component.

11



As seen in Table 1-A, there does not appear to be a consistent relationship between 

proteome size and interactome size. Two different species (e.g., C. jejuni and H. pylori) 

may code for very similar counts of proteins in their respective proteomes but may differ 

in interactome sizes by thousands of interactions. These results appear surprising 

without the context of biology and methodology (though even with the context, the 

inconsistency is puzzling). Some proteins may have hundreds of interacting partners yet 

remain restricted to specific taxons, just as some phenotypes and behaviors are 

restricted to various branches of the tree of life (Fig. 1-C). Other proteins may appear to 

be conserved between species but may operate in different functional contexts and 

contribute different amounts of interactions in different species. 
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Fig. 1-C. Example 
interactomes from 
experimental data and 
interactors common 
between them. A) The 
largest component of the 
Campylobacter jejuni 
interactome as published 
by Parrish et al. (2007), 
containing 1,307 nodes 
and 11,918 edges. The 
highest degree node in this 
network, with 208 edges, 
is the predicted histidine 
triad (hIT) protein Cj0499 
(Uniprot: Q0PB14). All 
proteins interacting with 
Cj0499 are highlighted in 
red. B) The largest 
component of the 
Helicobacter pylori 
interactome as published 
by Häuser et al. (2014), 
containing 502 nodes and 
1,263 edges. The closest 
ortholog to Cj0499 is 
HP_0741 (Uniprot: 
O25440), a protein coded 
for by an H. pylori gene but 
not present in this 
interactome. The highest 
degree interactor in this 
network, with 31 edges, is 
HP_1262 (Uniprot: 
O25852), a NADH-quinone 
oxidoreductase. All 
proteins interacting with 
HP_1262 are highlighted 
in red.
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It is likely, however, that much of these differences are the result of methodological 

discrepancies. Researchers performing experimental interaction screens start with 

different proteins but often assume this set is representative of the entire proteome. 

They then apply different filtering procedures to the resulting interaction data based on 

internal considerations of confidence and relevance. In the C. jejuni interactome study 

published by Parrish et al. (2007), the authors used 1,477 ORFs (or 91 percent of the 

reference proteome, roughly) in their interaction screens, found 11,687 repeatable 

interactions in their screens, and filtered this set to 2,884 using measures of biogical 

relevance (primarily, similarity to the E. coli and H. pylori interactomes available at the 

time). In comparison, the H. pylori interactome produced by Häuser et al. (2014) is the 

product of 1,587 ORFs from two different H. pylori strains which yielded a “raw” 

interactome of 2,154 PPIs, a filtered set of 1,515 and a final, “high quality” core set of 

908 PPIs. In this study, the final filtering procedure was based on a threshold where the 

authors observed “a conspicuous increase of the prey count”. (Interaction screens 

frequently distinguish between the two halves of a binary interaction as bait and prey 

interactors.) A discussion of differences in interactomics methodologies continues in 

Chapter 3.

1.1.4 Interactomics of bacteriophages and their hosts

Interactomics studies have not been limited to cellular life: work has included analyses 

of viruses infecting humans and, more frequently, those infecting bacteria. These 
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viruses – the bacteriophages – are just as ubiquitous as bacteria, if not more so. 

Starting with a rough population estimate of 1030 bacterial cells on Earth, various 

estimates have suggested between an equivalent to a 100-fold greater population of 

bacteriophages (Wommack and Colwell 2000, Rowher 2003, Clokie et al. 2011). 

Phages serve as a massive and constant source of new genetic variation, both as the 

result of phage-mediated genetic transfer (that is, transduction) and through the 

perpetual battle between viruses and their hosts (Hambly and Suttle 2005, Hatfull and 

Hendrix 2011). For these reasons, it is likely that any discussion of bacterial 

interactomes is limited if it fails to consider interactions between viral and host proteins.

Bacteriophage interactome studies, including those of famous coliphage lambda 

(Rajagopala et al. 2011) and the Streptococcus phages Cp-1 (Häuser et al. 2011) and 

Dp-1 (Sabri et al. 2011), have provided attractive interactomics subjects due to the small 

viral proteome sizes and corresponding lower level of expected complexity. Protein-

protein interactions between phage and their hosts are, with a few exceptions (Roucourt 

and Lavigne 2009, Blasche et al. 2013), largely unexplored. Due to the intimate 

relationships between bacteria and viruses, we may use these interactions as a novel 

venue for exploring bacterial genes of unknown function.

1.2 Research objectives

1.2.1 Addressing protein function through protein interaction networks
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Interactomics is a promising field with the potential to revolutionize our understanding of 

protein functions and evolution. The results of interactomics approaches exemplify the 

core tenets of systems biology: rather than considering proteins as discrete entities with 

inherent properties driving their functions, interactomics considers each protein to be 

one participant in a full interactome. The functions of a particular protein are then 

dependent not only on the proteins and other materials it interacts with, but also upon 

the other participants in this interaction network. Our understanding of each of these 

interactome networks is always incomplete (Fig. 1-A). One of the primary challenges in 

working with any interactome is therefore addressing the limits of the data.

As part of the studies described here, I have developed novel bioinformatics-based 

approaches to interpreting protein-protein interactomes. Moreover, I have constructed 

ways to predict interactome size and composition for bacterial species with limited 

protein interaction data. I have extended my results beyond single-species interactomes 

into host vs. virus protein interactions, resulting in a unique, curated collection of these 

interactions. This project essentially defines a bacterial pan-interactome. 

This work addresses a major conceptual gap in how the results of microbiological 

research are interpreted. Bacterial genomics studies provide a wealth of data: with 

73,397 genome entries in NCBI GenBank as of September 2016 (though just 5,813 

genomes, or about 8 percent, are annotated as “complete”), more species of bacteria 

have had their genomes sequenced than any other branch of the tree of life. Similarly, 
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as of September 2016, the Gene Ontology Consortium's AmiGO 2 database contains 

458,273 different gene annotations for bacteria, yet 133,988 have no experimental 

evidence to support any functional role. Numerous other genes have annotations based 

on observations from distantly-related species. At this point, the overall question is quite 

simple: what is the most efficient way to obtain functional information for bacterial genes 

of unknown or unclear function? Furthermore, given a set of gene products and their 

functions for a single bacterial species, how useful are those products as a model for 

those encoded by the genomes of other bacterial species?

1.2.2 Measuring the extent of protein complex conservation

I have designed this project from the perspective that protein function is best 

understood using a protein's role within multiple sets of interactions between those 

proteins. This work applies such an approach across hundreds of different bacterial 

species. As noted above, protein complexes provide useful sets of protein interactions 

but provide just one part of the interactome of any species. To date, few studies have 

compared protein complexes across multiple species and none have taken a purely 

bacteria-centric perspective. Comparative interactomics studies have been performed 

with the eukaryotes yeast (Saccharomyces cerevisiae), nematode (Caenorhabditis 

elegans), fly (Drosophila melanogaster) and human (Gandhi et al 2006; Haynes et al 

2006). In these cases, the similarities between interactomes were generally found to be 

small: Gandhi et al. (2006) found just 42 protein-protein interactions shared between the 

four species listed above. 
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Determining the conservation of bacterial protein complexes therefore allows these 

complexes to be used as controls in the comparison of interactomes. If a complex is 

expected be conserved among a set of genomes, then its interactions are also expected 

to be conserved. Bacterial genomes are particularly useful in this context, as unlike the 

human interactome, several bacterial interactomes are as close as possible to complete 

(see Table 1-A).

1.2.3 Using a meta-interactome to find commonalities between interactomes

A cross-species approach not only permits observation of similarities among protein 

interactions and functions but also allows quantification of deficiencies in the available 

interaction data. Due to methodological differences and the inherent bias of growing 

bacteria in the lab rather than in the wild – among other factors – no experimental 

interactome can capture the full extent of biologically-relevant protein-protein 

interactions. This renders cross-species interactome comparison difficult, as an 

interaction found in one species but missing in another may be missing due to biological 

phenomena or methodological variation. This work establishes a model set of 

interactions (in the form of a meta-interactome; see Ch. 3) to provide predicted 

interactions for bacterial species with limited to no experimental interaction data.

1.2.4 Building a set of phage-host interactions to compare viral proteins
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The penultimate chapter of this work demonstrates how a cross-species protein 

interaction comparison can be extended further. In this case, the goal is to quantify 

similarities among interactions between bacteriophage and bacterial proteins. Though 

the evolutionary history of bacteria as a whole has been and continues to be shaped by 

interactions with bacteriophages, few studies have identified comprehensive sets of 

interactions between these viruses and their hosts. Furthermore, little work has been 

done to observe patterns among virus vs. bacterial protein interactions. This work 

provides a database of interactions to serve as a resource for all researchers concerned 

with bacteriophage and bacterial evolution.

1.3 Project design and rationale

This project uses computational approaches to interpret under-utilized sequence and 

interaction data. A primarily bioinformatics-based approach is preferred in studies of 

protein-protein interactions for three primary reasons. First, much as in the field of 

genomics, the amount of data produced by even a single experimental study is so vast 

that its original authors may find a comprehensive analysis impractical (or, at least, 

outside the scope of the original study). Additionally, comparing data sets requires the 

development of new, flexible data analysis methods, occasionally because the 

researchers responsible for the experimental data designed their methods in a species-

specific manner. A cross-species approach can therefore extend conclusions to species 

for which experimental work is not feasible, such as non-culturable or highly pathogenic 

bacteria. Finally, computational approaches yield resources which are directly 
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applicable to future work. The software and data sets produced during the course of this 

work are immediately usable for any researcher concerned with bacterial protein-protein 

interactions.

Fig. 1-D provides an overview of the strategy of this overall work and the initial data 

sets used in the process. All three of the primary focus areas of this work depend upon 

two primary types of data: protein-protein interactions (PPI) and orthologous groups. In 

the first segment of this work – as described in Chapter 2 – the PPI are abstracted from 

sets of protein complexes. These sets include a set of literature-defined complexes from 

the EcoCyc database (Keseler et al. 2013) and two sets of protein complexes defined 

directly from individual proteomes (Hu et al. 2009; Kühner et al. 2009). Each member of 

a protein complex is inferred to have the potential for an interaction with each other 

member of that complex. The PPI in the second two segments of this work are binary 

interactions primarily curated from the IntAct molecular interaction database (Orchard et 

al. 2014), chosen specifically for its large collection of bacterial PPI and its inclusion of 

interactions from several other relevant databases. In all areas of this project, the 

proteins involved in each interaction are compared across species by mapping each to 

an orthologous group (OG). OGs permit proteins to be clustered together by sequence 

similarity and enable taxonomy comparisons (e.g., we may find members of a particular 

OG in strains of E. coli but rarely in other species). In lieu of developing an entirely 

novel method for defining OGs, I elected to use eggNOG (Huerta-Cepas et al. 2016), as 

it defines OGs using specific taxonomic levels rather than by similarity with every other 
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known sequence. The most recent version of eggNOG also includes OG assignment for 

viral proteins, enabling cross-virus comparisons of virus vs. host PPI (specifically, those 

described in Chapter 4 of this work).
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Fig. 1-D. Flow chart of core elements of this study. 
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The first aspect of this study, detailed in Chapter 2, focuses on conservation of protein 

complexes in bacteria.  Protein complexes and their associated sequences (e.g., 

ribosomal RNA) are known to include the most broadly conserved sequences in 

bacterial genomes. Perhaps more importantly, protein complexes generally retain their 

structures and functions across species. This assumption is, of course, based on well-

studied protein complexes such as ribosomes, polymerases, and chaperones. I 

therefore began this work with the expectation that the conservation of protein 

complexes would serve as an ideal proxy for the conservation of protein-protein 

interactions (PPIs). If a protein complex seen in one species is missing in another, for 

example, we may naturally predict that the PPIs seen among the complex components 

in the first species cannot be present in the second species. Conservation of protein 

complexes also provides a functional viewpoint into PPI conservation, as a complex 

with a missing component presumably either can no longer participate in functions 

necessitating that component or has gained a novel function.

Chapter 3 of this work concerns comparisons of experimental interaction data. While 

comprehensive interactomes have been published for more than a few bacterial species 

and beyond (see Table 1-A), it is difficult to quantify the similarities among data sets. 

These similarities are crucial to understanding biological phenomena in a broader 

evolutionary context. I elected to combine the available data in an orthology-dependent 

manner, forming a “meta-interactome” in which each interaction represents PPI from 

one or more data sets or species.
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The final chapter of the work, Chapter 4, is a compilation of bacteriophage vs. host 

protein interactions. Thus far, few interactome studies have studied the PPIs involved in 

the course of a full bacteriophage life cycle. The process is poorly understood and likely 

varies significantly between viruses and hosts, yet some similarities must exist, 

especially in cases when the phage and host each contain proteins found to interact in a 

different pair of virus and host. The majority of the effort in this section is therefore 

based upon curation of PPIs observed in published experimental results. I then 

integrate these interactions using an orthology-based approach and network analysis to 

ascertain how consistent phage vs. host PPIs may be. 

1.4 Intellectual merit

This study focuses on three concepts directly relevant to bacterial evolution: protein 

conservation, protein-protein interaction conservation, and the functions of 

uncharacterized proteins in the context of their interactions. The core idea behind all 

three of these aspects is that protein sequences are best understood using a cross-

species approach. Furthermore, it is the pattern of a protein or interaction's conservation 

across species that offers the clearest viewpoint of its role or roles in different branches 

of bacterial taxonomy. Such an approach is made possible by the wealth of sequence 

and interaction data available at this time but differs from the single-protein or single-

species approach traditionally employed by microbiologists. 
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The encoded PUFs and domains of unknown function (DUFs), despite their unexplained 

biological roles, are not simply dispensable. Many of the genes in these regions code 

for proteins essential to life in numerous bacterial species (Goodacre et al. 2013). If 

these genes are found to interact with phage proteins, we may reverse-engineer the 

interactions as novel methods for controlling bacterial pathogens.

This work is unique among computational biology studies in that I have included all of its 

resulting data tables, the code I used to produce the data, and guides to re-using the 

code. It is unfortunately not yet common practice to provide all three of these features. It 

is my hope that these contributions will maximize this work's potential for long-term re-

use.

1.5 Broader impact

Bacteria and their proteins pose a quandary for human health. Growing resistance to 

the usual antibiotic therapies threatens thousands of lives each year; as of 2013, 

approximately 23,000 deaths could be directly connected to antibiotic-resistant 

infections each year in the United States alone (Centers for Disease Control and 

Prevention 2013). Staphylococcus aureus, the canonical example of antibiotic resistant 

pathogenesis, has been evading antibiotic treatments since at least the 1950's 

(Shanson 1981) and is associated with between 60,000 to 320,000 deaths each year in 

the United States (van Hal et al. 2012). Antibiotic resistance also has the potential to 

allow treatable infections such as those from foodborne Salmonella (Helms et al. 2004; 
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Helke et al. 2016), opportunistic Klebsiella pneumoniae (Holt et al. 2015) to become 

chronic diseases with dangerous consequences. Even when infections are not life-

threatening, antibiotic resistance can increase their duration, as has been observed with 

ear infections (Sillanpää et al. 2016). We have also found that a scorched-earth, all-or-

nothing approach to antibacterials is ineffective and often lethal: eliminating bacterial 

pathogens in human patients with broad-spectrum antibiotics is known to eliminate the 

commensal microbiome as well, increasing the incidence of infections by enterobacteria 

and other opportunistic species. It is clear that more targeted approaches are necessary 

to control bacterial infections.

An element of this work concerns bacteriophage vs. bacterial interactions. These 

interactions are relevant to global ecology as their sheer scope creates global 

phenomena. Viral lysis in the oceans, for example, may directly mediate sequestration 

of more than 3 gigatons of carbon every year (Suttle 2007). Phages have been found in 

Antarctic desert soil, Pacific deep sea vents, California's hypersaline Mono Lake, and - 

though a decidedly less extreme environment - silty Delaware soil (Srinivasiah 2008). 

Phage life cycles may have significant impacts on ecosystems of every size (reviewed 

in Díaz-Muñoz and Koskella 2014). In the broadest sense, this area of my study 

concerns the most common yet least-understood protein interactions on Earth.

Work such as that presented here offers numerous opportunities for drug development 

and other approaches to combating bacteria. The cross-species approach I employ is 

26



representative of that necessary to consider the secondary impact of an antimicrobial: a 

targeted drug should ideally be very specific to the pathogen in question as killing non-

target species may cause dysbiosis. Opportunistic Clostridium difficile infections provide 

a clear example of the danger of such a phenomenon (Abt et al. 2016). A network 

approach offers the opportunity to not only observe weak points in a bacterial protein 

interaction network (and, crucially, the proteins and processes most suitable as drug 

targets) but also permits rapid observation of interactors several steps away in the 

network.
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Chapter 2 - Conservation of Proteins in Bacterial Protein Complexes

Significant portions of this work have been published in the following papers:

Caufield, J.H., Abreu, M., Wimble, C., & Uetz, P. (2015). Protein complexes in Bacteria. 

PLoS Computational Biology, 11(2), e1004107. 

doi:10.1371/journal.pcbi.1004107. 

Rajagopala, S. V., Sikorski, P., Caufield, J.H., Tovchigrechko, A., & Uetz, P. (2012). 

Studying protein complexes by the yeast two-hybrid system. Methods, 58(4), 

392–399. doi:10.1016/j.ymeth.2012.07.015.

Marco Abreu and Christopher Wimble assisted with initial versions of some analyses 

presented here and are thanked in figure legends.

2.1 Abstract

Large-scale analyses of protein complexes have recently become available for the 

model bacterial species Escherichia coli (Hu et al. 2009) and Mycoplasma pneumoniae 

(Kühner et al. 2009), yielding 443 and 116 heteromultimeric protein complexes, 

respectively. I have coupled the results of these mass spectrometry-characterized 

protein complexes with the 285 “gold standard” protein complexes identified by the 

EcoCyc database. A comparison with databases of gene orthology, conservation, and 

essentiality identified proteins conserved or lost in complexes of other species. For 

instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully 

conserved among a set of 7 more distantly-related bacterial species. Expanding the 
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comparison to 894 distinct bacterial genomes illustrates fractional conservation and the 

limits of co-conservation among components of protein complexes: just 14 out of 285 

model protein complexes are perfectly conserved across 95% of the genomes used, yet 

I predict more than 180 may be partially conserved across at least half of the genomes. 

No clear relationship between gene essentiality and protein complex conservation is 

observed, as even poorly conserved complexes contain a significant number of 

essential proteins. I have identified 183 complexes containing well-conserved 

components and uncharacterized proteins which will be interesting targets for future 

experimental studies. Finally, I have assembled a cross-complex protein interaction 

network, underscoring the surprising extent of interactions between bacterial protein 

complexes.

2.2 Introduction

2.2.1 The challenge of plentiful protein interaction data

Abundant genome sequencing data have revealed astounding diversity among bacterial 

genomes. Even species inhabiting the same environment may share only a fraction of 

their genes, raising the question of how these organisms have adapted to their 

environments in seemingly independent ways. Here, I investigate the protein 

complements across bacterial genomes, how proteins are combined into protein 

complexes across species, and whether these complexes have been conserved across 

diverse branches on the bacterial branch of the tree of life.
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Numerous studies of protein-protein interactions have revealed the organization of 

proteomes into networks of interactions. Though much of this field of study focuses on 

individual biological pathways or protein complexes at a time, some studies have 

attempted to map entire interactomes of every protein-protein interaction among the 

members of a proteome (See Table 1-A for a selection of relevant studies). Few studies 

have included systematic surveys of protein complexes alone. Just few bacterial 

species, namely E. coli (Arifuzzaman et al. 2006; Hu et al. 2009) and Mycoplasma 

pneumoniae (Kühner et al. 2009) have been the topics of such projects. Studies of 

protein complexes and those of interactomes are, in theory, complementary: 

interactomes provide raw, generally unbiased sets of biomolecular interactions, while 

protein complex sets provide context for interactions (though both approaches make 

numerous methodological assumptions about protein relationships, of course). In 

practice, the limited number of data sets and the inherent differences across different 

species render interaction data sets difficult to interpret. 

Previous research has compared the protein interaction networks of S. cerevisiae, S. 

pombe and E. coli and has found notable differences in their structure and content 

(Ryan et al. 2012; Dixon et al. 2009; Wuchty and Uetz 2014). Components of interaction 

networks also appear to vary in biological importance across species: a comparison of 

S. cerevisiae and S. pombe found numerous essential genes in one species were not 

essential in the other and vice-versa (Ryan et al. 2013). This phenomenon may be a 

result of methodological differences but may also reveal functional redundancy (that is, 
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one species may tolerate gene deletion better than another if the gene’s function can be 

replaced by another) or species-specific adaptations (e.g., gene deletion may disrupt a 

crucial metabolic pathway but may have a less deleterious effect if the metabolite can 

be obtained from the environment). Though not specifically concerned with protein 

complexes, these studies have a relevant, major finding: protein interactions can be 

modular with respect to biological processes.

I sought to enhance the usefulness of existing protein complex sets using a multi-

pronged computational strategy. I first investigated whether the complexes found in a 

few model organisms are sufficient to reconstruct homologous protein complexes in 

other species. This is a particular challenge with members of the Eubacteria as the 

genomes of most species are highly divergent from the few model species used here.  

However, E. coli and Mycoplasma pneumoniae provide two important paradigms: E. coli 

is a generalist capable of living in a variety of environmental conditions while M. 

pneumoniae is a specialized parasite with a reduced genome and a reliance on its host 

cell - usually a human respiratory tract cell. With ~4,300 and ~700 genes in their 

respective genomes, these bacterial species represent medium-sized as well as 

minimal genomes. Most crucially, and as noted above, both species have been subjects 

of protein complex surveys.

Existing studies comparing sets of interactome data have generally limited their 

comparisons to a few well-characterized protein-protein interaction networks, such as 
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comparisons of S. cerevisiae, S. pombe and E. coli (de Matos Simoes et al. 2013; Wiles 

et al. 2010; Dixon et al. 2009; Sharan et al. 2005). Methodological frameworks for 

predicting co-evolution on the basis of gene presence/absence (Ryan et al. 2012; 

Cohen et al. 2013) may also be employed to predict novel interactions in other species. 

Here, I initially use eight distinct bacterial species as models. Seven of these species 

have been subjects of gene essentiality screens and two have comprehensive, affinity 

purification/mass spectrometry derived protein complex surveys available. I then 

expand the focus to a set of 894 bacterial genomes in order to predict patterns of 

protein complex evolution across the entire tree of known bacterial life.

2.2.2 Extending interaction analysis across species

Few studies have investigated the evolution and diversity of protein complexes across a 

wide range of taxa. We may now perform such studies much more easily than in 

previous decades due to the prevalence of large experimental studies and a wealth of 

bacterial genome sequences. The number of publicly-available, sequenced bacterial 

genomes increased more than one hundredfold - from just two genomes to three 

hundred - between 1995 and 2006 and increased another hundredfold by 2015. Last 

year, NCBI Genbank reached a total of more than 30,000 bacterial genome sequences 

(Land et al. 2015), and as of September 2016 had – as mentioned above in Chapter 1 – 

entries for more than 70 thousand bacterial genomes at various stages of completion. 

Even individually, these sequences permit integrative analyses with proteomic data 

sets, yet we can specifically use these sequences together to evaluate the extent to 
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which protein complexes are likely to be conserved across microbial species. 

Furthermore, we can evaluate the biological role of proteins and complexes of unknown 

function across many species.

I began comparing well-characterized protein complexes across species (in this case, 

comparing model eukaryotes) to determine the extent of their conservation (Rajagopala 

et al. 2012). Protein complex conservation in this context is more of a function of 

observed interactions than of the presence or absence of complex components, 

especially due to my initial choice to focus on well-conserved complexes; I operated 

under the assumption that one version of the complex is a good model for other 

species. I specifically focused on the proteasome, the protein complex responsible for 

proteolytic breakdown of unnecessary proteins in the cells of all eukaryote and archaea 

species.  The pore-like structure of the proteasome appears to rely on numerous protein 

interactions (Fig. 2-A-A, see also Lasker et al. 2012). No single study in any species 

captures all interactions seen in any other study, though taken together, the interaction 

results provide a nearly complete set of interactions as per the complex structure (Fig. 

2-A-B). This combined interaction approach suggests that protein complexes and other 

sets of protein interactions are best studied using multiple methods (or even, when 

possible, using proteins from different species). Worryingly, these results also imply that 

small biological differences may remain difficult to observe between species, especially 

when results fail to capture expected interactions.
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Fig. 2-A. Structure of the proteasome and interactions across five non-bacterial species. (A) 
Structure of the 26S proteasome from Schizosaccharomyces pombe as determined by cryo-EM density 
map (adapted from Lasker et al. 2012). The core particle is shown in red, the AAA-ATPase hexamer in 
blue and the Rpn subunits in gold. (B) Interactions among proteasome subunits as determined by Y2H 
and cross-linking assays (‘‘X-link’’). Four interactions between 19S proteins and beta subunit proteins are 
omitted for clarity (α3-Rpt2, α4-Rpt2, α6-Rpt5, α7-Rpt5). Y2H results are derived from 3 independent 
studies on the proteasomes of three different species (yeast, as per Cagney et al. (2001); C. elegans, as 
per Davy et al. (2001); and human, as per Chen et al. (2008)), crosslinking has been carried out in two 
yeast species (Saccharomyces cerevisiae and Schizosaccharomyces pombe) (Guerrero et al. (2006) and 
Lasker et al. (2012)). Structural and modeling results are derived from cryo-EM mapping, X-ray 
crystallography, and molecular modeling and used as ‘‘gold-standard’’ interactions, shown as grey bars 
(Lasker et al. (2012); Wolf and Hilt (2004)). Figure originally published in Rajagopala et al. (2012).
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In order to compare genomes and protein complexes across species, I coupled the 

results of mass spectrometry-characterized protein complexes (Hu et al. 2009, Kühner 

et al. 2009) with databases of gene orthology (Powell et al. 2012) and essentiality (Luo 

et al. 2014) to characterize interaction conservation within protein complexes. 

Furthermore, I use the perspective of genome reduction to evaluate patterns across 

levels of protein conservation. Comparing sets of protein complexes from divergent 

bacterial species (in this case, E. coli and M. pneumoniae) alleviates some of the bias 

inherent in using a single species as a universal model. Rather, observing which protein 

complexes and their components are present in two otherwise distinct species allows us 

to draw conclusions about how crucial these components are to bacterial life.

2.3 Experimental methods

2.3.1 Scripts

I developed a software package for the analysis of clusters of orthologous groups 

originally defined by version 3 of the eggNOG project (Powell et al. 2012). This software 

package, spicednog, is available online at http  ://  github  .  com  /  caufieldjh  /  spicednog. See 

Appendix I for a full guide to spicednog. Given a species name or taxonomic identifier, 

the software performs two primary functions: it retrieves lists of genetic loci (as genes 

and OGs) and the number of times they are found in each genome from a given set, 

and determines average locus and OG conservation across the same set of species. 

The software includes a module for converting Uniprot protein identifiers into three 
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different levels of OG identifiers used by eggNOG v.3 (a feature later rendered partially 

redundant by updates to both Uniprot and eggNOG, though useful for batch ID 

conversion) and a module for specifying which genomes and taxonomic IDs from a 

given set contain an OG, a feature not explicitly provided by updates to eggNOG. 

Spicednog includes helper functions for determining conservation of protein complex 

components as well. See Appendix I and the Github  repository mentioned above for 

full code and details regarding the use of spicednog.

Data visualization was performed using R base packages and heatmap.2 from the 

gplots package (Warnes et al. 2015). Statistical calculations, including distance and 

principal component/coordinate analysis, were performed using R base packages and 

the vegan package (Oksanen et al. 2013).

2.3.2 Genome and complex data sources

The full set of protein complexes from Escherichia coli K-12 W3110 as defined by Hu et 

al. (Hu et al. 2009) was assigned membership in orthologous groups (OGs) from 

version 3 of the eggNOG database (Powell et al. 2012) such that each protein in a 

complex was assigned to a single OG. The remaining loci were referred to using their 

original locus identifiers (in this case, their b-codes) and were retained for all further 

analysis. The process was repeated for all protein complexes isolated by Kühner et al. 

(Kühner et al. 2009) from Mycoplasma pneumoniae M129 and for E. coli protein 

complexes defined by the EcoCyc database (Keseler et al. 2013). A representative set 
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of six other species (Table 2-A) for which whole-genome gene essentiality data was 

available was selected for in-depth analysis. This species set is referred to as the 

focused set. Lists of all protein-coding loci for each species were obtained using the 

respective full proteome sets from UniProt (see Appendix Table III-A for taxonomy IDs 

corresponding to all genomes used). Essentiality data was collected from the Database 

of Essential Genes (Luo et al. 2014). Protein structures were obtained from the Protein 

Data Bank (www  .  rcsb  .  org, Rose et al. 2013) and are referenced where used.

Table 2-A. Core set of bacterial species and strains with published essentiality screen results.

Species and Strain Name Citation for Essentiality Screen

Bacillus subtilis 168 Kobayashi et al. (2003)

Caulobacter crescentus Christen et al. (2011)

Escherichia coli MG1655 Baba et al. (2006)

Helicobacter pylori 26695 Salama et al. (2004)

Mycoplasma genitalium G37 Glass et al. (2006)

Pseudomonas aeruginosa UCBPP-PA14 Liberati et al. (2006)

Streptococcus sanguinis SK36 Xu et al. (2011)

A set of 894 genomes, referred to as the large set (Appendix Table III-A), was also 

prepared using every bacterial species present in eggNOG v.3. The full set of bacterial 

genomes used in this version of eggNOG includes 943 unique entries, though a subset 

of these genomes (49 in total) were removed as they were not present in the NCBI 

Taxonomy database (Federhen 2012) or were determined to differ by less than 1% in 

sequence. The trees shown in the figures in this chapter are cladograms intended to 

show the general relationship between species within context of consensus taxonomy.

2.3.3 Orthologous groups
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Each locus in each genome was assigned to a single orthologous group (OG) as in 

eggNOG v.3 (Powell et al. 2012), such that all loci were assigned to a COG, a NOG, or 

a bactNOG, depending upon the most widely-conserved group assignment available. 

See Powell et al. 2012 for details regarding OG levels; in short, COGs are the most 

broadly-defined orthologous groups, based on a last universal common ancestor 

(LUCA) of all species in the database. COGs are defined in a similar manner to 

methods described by Tatusov et al. 1997 and Kristensen et al. 2010. 

2.3.4 Comparative proteome and complexome analysis

The general scheme for data analysis was as follows: 

1. A list of all orthologous groups (OGs) was produced for each of 894 bacterial 

genomes found in the large set defined above in section 2.3.2.

2. Occurrence of each OG was counted in each genome, providing the locus count. 

Averaging this count over the set of all genomes provided the locus conservation 

fraction for each OG.

3. Presence or absence of each OG was counted in each genome, such that an OG 

was counted only once if present in a genome. This provided the OG count. 

Averaging this count over the set of all genomes provided the OG conservation 

fraction for each OG.

4. The list from step 1 was used to map OGs to the components of three sets of protein 

complexes. The complexes were compared to search for cross-data set complex 

matches. Gene essentiality was also mapped to each OG in a species-dependent 
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basis. 5. A list of 8 taxonomically-divergent species was selected and used to define 

fractional conservation and fractional essentiality of each protein complex.

The presence of each locus was determined across the entire set of bacterial species 

using an automated approach. For each locus and each species, presence of a locus 

was defined as presence of any instance of the OG containing the locus. Each locus 

was assigned a fractional conservation value: e.g., a locus seen in half of all bacterial 

species would be assigned a conservation value of 0.5 (see Fig. 2-B for an additional 

conceptual example). This presence was averaged across all loci to generate a value 

for average locus conservation for each genome. This value was adjusted based on 

locus coverage in eggNOG (e.g., if only 70 percent of the loci in a genome mapped to 

eggNOG OGs, the average value was reduced by 30 percent.) An identical set of 

comparisons were performed for all loci with predicted paralogs (that is, loci with the 

same OG assignment) removed prior to comparison. Subsets of selected species were 

also prepared such that they included only loci with the same orthologous groups as 

those seen in the Hu et al., EcoCyc, or Kühner et al. protein complex sets. Genome 

sizes were retrieved from NCBI GenBank and KEGG GENOME (Kanehisa and Goto 

2000).
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Fig. 2-B. Example of fractional conservation value assignment. Each circle denotes a unique 
bacterial genome. Loci are shown as filled boxes; boxes differing in outline color represent different OG 
assignments while fill color denotes different genes (i.e., genes with the same OG assignment in a 
genome are likely paralogous). Absence of a box from a genome in a location where one is present in 
another genome indicates absence of the locus.
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OGs were used as the basis of comparison for similarity between data sets. Complex 

size was defined as the number of unique proteins isolated from a complex; e.g. a 

complex may contain 3 unique OGs but 4 distinct protein components, yielding a 

complex size of 4 (see Fig. 2-C for an example). For each complex, the presence of 

each OG within the complex was assayed in the full proteome sets of the seven other 

representative species. The resulting binary presence/absence values were combined 

to produce a value for the percent complex conservation. This value intentionally 

disregards any gene context similarity (that is, an OG may be present in two genomes 

even if neighboring genes differ between the genomes) and simply expresses the 

fraction of complex components which a specific genome may code for. When a target 

proteome did contain a specified complex component, the number of paralogs of the 

component-coding gene was determined as the number of proteins in the list mapping 

to the same OG. While further verification may be necessary to define any of these 

protein-coding genes as true paralogs, I simply used the OGs (including paralogs) as 

determined by eggNOG.
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Fig. 2-C. Example of protein complex size determination. The E. coli multidrug efflux pump MdtABC-
TolC, a transmembrane protein complex, is shown abstracted on the left (adapted from Nagakubo et al. 
2002; Andersen et al. 2015). The complex is abstracted further as shown on the right, where each protein 
is shown as a circle. This complex involves four distinct proteins and three OGs, as indicated by the color 
of the outline around each circle, indicating that two of the proteins are very similar in sequence. The 
complex size is determined by the number of proteins rather than the number of OGs. OM, outer 
membrane; IM, inner membrane.
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All protein complex components were also assigned binary essentiality values using 

published assays specific to the species listed above. These values were used to define 

the essentiality fraction of each potentially conserved complex, e.g. an E. coli complex 

for which 80% of the components appear to be conserved in M. pneumoniae but only 

60% of the components may be essential in the latter species.

A broader comparison was prepared using the list of 894 species as defined above. 

Genome sizes for each species were retrieved from the KEGG GENOME Database 

(http  ://  www  .  genome  .  jp  /  kegg  /  genome  .  html, Kanehisa and Goto 2000). For each species, 

the total number of OG-mapped protein-coding loci was divided by the total number of 

loci to produce a value for percentage mapped. Using the list of all OGs in the species, 

each OG was compared with all other species to determine its conservation across 

Eubacteria. Adjusted average locus conservation for a particular genome, CAAL(g), was 

calculated as:

where CL is the number of genomes in which the locus is present, L(g) is the number of 

loci in the genome, N is the total number of genomes, and m is the percentage of loci 

mapped by eggNOG v.3. Values are adjusted using the fraction of loci actually mapped 

so unmapped loci lower the effective conservation.
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An identical list of values, but with repeated OGs reduced to a single occurrence, was 

averaged to produce average OG conservation. This modification removes the effect of 

counting loci more than once when they share OGs, as may happen when two or more 

loci are paralogous. Adjusted average OG conservation for a particular genome, 

CAAO(g), was calculated as:

where CL is the number of genomes in which the locus is present, O(g) is the number of 

unique OGs in the genome, N is the total number of genomes, and m is the percentage 

of loci mapped by eggNOG v.3.

The large set of bacterial genomes, as defined above in section 2.3.2, was used. 

Genomes were sorted by size in bases and compared to the average conservation 

values. For a subset of species, the Average Locus and Average OG Conservation 

values were calculated using only OGs found in published protein complex data sets.

Mapping of fractional complex conservation across species was performed as follows 

for both the focused set (8 species) and the large set. A cladogram of all species in the 

set was prepared using the Interactive Tree of Life (iTOL, Letunic and Bork 2011) 

project as per NCBI taxonomy. All protein components were mapped to eggNOG v.3 
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OGs and complex size was determined as defined above. Conservation fraction of each 

complex in each species was defined as the number of complex component OGs 

shared between the model (an E. coli complex) and the target genome over the size of 

the model complex. Heatmaps were prepared using the R heatmap.2 function in the 

gplots package. Randomized models of the large set heatmaps retaining the same 

species order but with a randomized distribution of conservation fractions were 

prepared using the R function randomizeMatrix (in the picante package, Kembel et al. 

2010) and the ‘richness’ null model to respect overall conservation levels.

Complex functions were assigned to each complex in the EcoCyc set manually, using a 

combination of EcoCyc annotations and the GO terms associated with each complex 

component. This was performed only for heteromer complexes (that is, complexes 

containing proteins of at least two different sequences rather than multimers of single 

proteins). These functional categories are intended to be sufficiently ambiguous to cover 

the wide range of potential functions of a particular complex. The functional categories 

are listed below in Table 2-B.

Table 2-B. List of general functional categories used to describe protein complex function.

Complex Functional Category Corresponding OG 
Functional Categories

Cell Division D, M

Chaperone, Protein Assembly, or Modification O

Defense/Survival/Stress Response V

DNA Replication, Repair, or Modification L

Metabolism C, G, E, F, H, I, P, Q

Motility/Chemotaxis N
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RNA Modification A

Transcription or Transcriptional Regulation K

Translation or Translational Regulation J

Transport T, U

Unknown R, S
Complex Functional Categories are those used in this study. Corresponding OG Functional Categories 
are those defined by Tatusov et al. (2003) and later adapted by eggNOG (Powell et al. 2012). OG 
Functional Categories not applicable to bacterial biology (e.g., nuclear structure) are not included.

2.3.5 Protein complex interaction network assembly

A graph of interactions among protein complexes was constructed using a set of 

protein interactions specific to E. coli. Interactions were obtained from the IntAct 

database of molecular interactions and are identical to those used in Chapter 3, 

though filtered specifically to any strain of E. coli. For this reason, the interactions 

extend beyond any single E. coli interactome (e.g., Rajagopala et al. 2014). Each 

protein interactor was assigned a UniProt identifier and assigned to one or more 

protein complexes as defined by the EcoCyc set described above. Individual proteins 

were also assigned bacteria-level orthologous groups (bactNOGs) from eggNOG v.4 

(Huerta-Cepas et al. 2015). Complexes were assigned general functional categories 

as described above. The interaction graph was assembled in Cytoscape (Shannon et 

al. 2003) 3.4.0 using only interactions between or within heteromer protein complexes. 

Repeated interactions and self-interactions were removed from the final graph.

2.4 Results and discussion

2.4.1 Conservation of proteins across bacterial genomes
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I begin with the broadest possible view of protein conservation across a representative 

sample of all bacterial species (Figure 2-D, see also Appendix Table III-A). Here, the 

genome of each bacterial species is a point on a plot of genome size vs. average 

conservation of the genes in that genome, with predicted paralogs (average locus 

conservation, in orange) and without (average OG conservation, in blue). Average gene 

conservation is the average of the fractional gene conservation of all genes in the 

genome (e.g., a very minimal genome of 100 genes in which 50 genes appear to have 

orthologs in all other species – yielding a conservation value of 100% - and 50 genes 

fully unique to that genome and those of 9 related species – yielding a conservation 

value of 10 out of 894 or about 1.1% – would have an average gene conservation of 

about 50.5%).
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The distribution of gene conservation values appears to follow a logarithmic regression. 

This trend is especially noticeable for two reasons, both of which may have been 

missed in a survey of a smaller range of genome sizes. First, average gene 

conservation of species with genomes smaller than 1 Mb can be as much as double 

that of species with genomes of 3 to 4 Mb or greater. Additionally, there is a gradual but 

consistent decrease in average gene conservation as genome size increases. The first 

of these observations does not appear to be impacted by including potential paralogs; 

this is not surprising as smaller bacterial genomes like Mycoplasma genitalium tend to 

contain fewer paralogs. In some cases, these minimal genomes may contain 

multifunctional predecessors or alternatives to otherwise paralogous genes, as per 

Mushegian and Koonin 1996; Glass et al. 2006 found that M. genitalium in particular 

has only 6% of its genes in paralogous gene families, vs. the average of 26% seen for 

other bacterial species. For the second observation, omitting paralogs from the analysis 

reduces average gene conservation values and renders them more consistent. This 

result suggests that genes with numerous paralogs, and hence major contributions to 

genome size, are also highly conserved across other bacterial species rather than 

usually resulting from isolated instances of rapid gene duplication in small taxonomic 

groups.

All average gene conservation values were proportionally adjusted to account for lack of 

orthology assignments. If just half of a genome's genes have corresponding orthologous 
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groups, for example, its average gene conservation was reduced by half. This 

adjustment is essentially equivalent to reducing the individual contribution in gene 

conservation of each gene without orthology assignment to zero. This adjustment is the 

best option to account for a lack of orthology assignment as a lack of OG membership 

generally indicates a gene sequence with little to no similarity to any other sequence. 

The sequence is therefore poorly-conserved by definition. In all but a few cases, 

orthology assignment is above 80%, suggesting that the distributions presented here 

are not simply the effect of differences in annotation or group assignment.

The extremes of the range of genomes presented in Fig. 2-D provide interesting 

examples of bacterial diversity with respect to gene conservation. The smallest genome 

shown here, that of Hodgkinia cicadicola Dsem, is just below 144 kb in size. Like other 

bacterial species with very small genomes, H. cicadicola is a symbiote – specifically, an 

α-proteobacterial species found only in cicadas (McCutcheon et al. 2009). Though likely 

enriched for highly-conserved genes essential to basic life functions, H. cicadicola is 

also a genetic outlier, with a much higher GC content than most sequenced symbiote 

genomes – more than 50% vs. 30% or lower – and a tendency toward alternative 

genetic codes (descibed by McCutcheon et al. 2009 in extensive detail). Within this 

same range of genome sizes is Mycoplasma genitalium, also a bacterial species only 

seen in a eukarote host, though in this case the host is Homo sapiens rather than 

cicadas. It should be noted that, of all bacterial species in this data set with genomes 

smaller than 1 Mb, all appear to be symbiotic or parasitic. 
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The other end of the bacterial genome size spectrum provides examples of species with 

lower overall gene conservation. The largest genome in this set is that of Sorangium 

cellulosum strain So ce56, a delta-proteobacterial isolate containing a genome of more 

than 13 Mb (Schneiker et al. 2007). The genome of this primarily soil-dwelling species 

contains numerous duplications, horizontally-transferred sequences, and complex 

regulatory sequences, potentially as a result of extensive environmental adaptation 

(Han et al. 2013). This and related species therefore provide an excellent example of 

bacterial genomes enriched for unique sequences.

Though average gene conservation appears to be related to genome size, gene 

conservation is generally more consistent across the orthologous components of protein 

complexes. This is the expected result: most bacterial protein complexes are expected 

to perform similar functions irrespective of species and many of these functions are 

crucial to essential processes. Figure 2-D displays the average OG conservation of 

protein complex components, using sets of complexes from Mycoplasma pneumoniae 

and E. coli as models, among the components conserved in the given species. This 

caveat is crucial: as discussed extensively here in subsequent sections, neither protein 

complexes nor their individual components are perfectly conserved across all bacterial 

species. The results shown here highlight the impact of genome reduction on protein 

complexes: out of all M. pneumoniae protein complex components, those conserved in 

other representative bacterial species are, on average, present in more than 80 percent 
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of other bacterial species. By comparison, E. coli complex components demonstrate 

more variable conservation across species.

2.4.2 The protein complexomes of E. coli and Mycoplasma pneumoniae

In this study, I use the literature-curated set of EcoCyc E. coli protein complexes and

the protein complexes isolated by Hu et al. (Hu et al. 2009) as a set of experimentally-

determined complexes for E. coli (Figure 2-E-A). The set of experimentally-determined 

Mycoplasma pneumoniae complexes identified by Kühner et al. (Kühner et al. 2009) is  

also included in the comparison as a distantly-related, minimal set. Though these 

datasets differ in content and approach, both E. coli data sets contain about 300 

complexes. Most complexes in the EcoCyc set contain from 2 to 4 unique proteins while 

the Hu set contains a comparatively higher number of complexes (more than 30) 

containing 5 or more unique protein components (i.e, unique proteins mapping to 

different orthologous groups). Note that some of the Hu et al. complexes appear to 

represent subsets of full complexes (i.e., the full ribosome constitutes a single complex 

in EcoCyc but is represented by several complexes in Hu et al.). Also, the EcoCyc set is 

partially redundant (i.e., each RNA polymerase holoenzyme is represented as a 

different protein complex, as are the F1 and FO subregions of ATP synthase).

The size of the complexes within the data set produced by Kühner et al appears to differ

in distribution from those characterized by Hu et al (Figure 2-E-A). Specifically, most M.

pneumoniae complexes with two or more unique members contain just those two

unique proteins. The cross-species discrepancy may also result from methodology,

52



though Kühner et al. suggest it is representative of authentic biological differences

between the two species. M. pneumoniae contains fewer unique proteins than E. coli

does and this difference limits the number of unique proteins seen in any single 

complex.
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Fig. 2-E. Protein complex data sets vary in composition. (A) Count of complexes in two E. coli 
complex datasets (Hu et al. (2009); EcoCyc (Keseler et al. 2013)) and one M. pneumoniae dataset 
(Kühner et al. 2009), by size (in number of unique protein components). Multimers of single proteins (i.e., 
homodimers) are not included. (B) Examples of complex matching across data sets. Once mapped to an 
orthologous group (OG), the components of a complex are directly comparable to those in other complex 
sets yet perfect matches are rare. In some instances, an OG in one complex may not be present in its 
best matching complex but the OG may be present elsewhere in a different complex. In other cases, the 
matched complex may contain components (OGs) not seen in the query complex (as is the case with 
topoisomerase IV). (C) Summary of matching complex quality across data sets. EcoCyc complexes were 
used as the set of query complexes while the two experimental data sets were used as the search space. 
Here, a poor match requires just one matching component, while a good match requires at least half of 
the components in the query complex to be present in the matching complex. The number of complexes 
in each category is shown; complex size is as in part A.
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The exact protein complexes defined by each data set differ. Pairwise comparision of

presence or absence of proteins in each complex is improved by mapping components

to orthologous groups but few complexes appear to be present in an identical form

across all three data sets. Figure 2-E-B provides four examples of the types of complex

matches seen across the data sets. For instance, the DNA polymerase III holoenzyme

(EcoCyc: CPLX0-3803) contains 9 unique proteins as per EcoCyc but its closest match

in the Hu set contains 7, including two proteins not found in any EcoCyc complex. The

“missing” proteins from the EcoCyc complex are found in other Hu complexes. The

Hsp70 chaperone complex (EcoCyc: HSP70-CPLX) provides another example: The M.

pneumoniae complexes provide a better match for the EcoCyc complex than the Hu set

does. Topoisomerase IV (EcoCyc: CPLX0-2424) has a good match in all three data sets

though the representative Hu complex contains an additional protein (this addition 

appears to be the molybdenum cofactor biosynthesis protein MoaB, suggesting a 

potential role for this protein in providing alternative cofactors for the magnesium cation 

usually required by topoisomerase; see Sissi and Palumbo 2009). Lastly, RecBCD 

serves as an example of a good E. coli-specific match with no components present 

among the M. pneumoniae complexes.

In the aggregate, most EcoCyc complexes do not have reliable matches in the other

experimental sets (Figure 2-E-C). Using all 285 EcoCyc complexes as a guide, their 

best matches in the other sets are classified as “good” if they contain at least half of the
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same unique proteins (as members of orthologous groups) or “poor” if they contain a

match of less than half of the EcoCyc complex’s components. No complex of a size

greater than 4 unique proteins has a good match in both the Hu et al. and Kühner et al.

complex sets. 28 complexes (9.8%) out of those of size 4 or less have good matches in 

both sets, and out of these, most matches are of complexes of size 2. The majority of 

the complexes in this size class (153 out of 246) contained at least one matching 

component in the Hu E. coli complexes but no match among the Kühner et al. M. 

pneumoniae complexes.

The overall lack of apparent similarity between complex sets is likely a combination of 

differences in experimental results and biological factors. It is likely that In some cases, 

a protein complex defined by EcoCyc may have been found in other sets as fragments, 

ensuring a poor match at best. This may be especially relevant to large complexes such 

as the GspC-O type II secretion complex (EcoCyc: CPLX0-3382) which has no matches 

in either of the two experimental complex sets. Hu et al. specifically mention they were 

unable to detect 469 E. coli proteins, about a third of which are membrane-associated. 

Kühner et al. also noted that membrane proteins were underrepresented in their 

complex set. In some cases, as with the topoisomerase discussed above, the 

complexes present in all three data sets may truly reflect high complex conservation 

across species, especially as these complexes include those involved in crucial 

functions (Figure 2-E-B).
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2.4.3 Using protein complexomes to predict complexes conserved in other 
species

The set of M. pneumoniae complexes serves as a rough model for the complexes most

commonly found across bacterial species. (See Appendix Table III-I for the full set of 

M. pneumoniae complexes and their conservation.) It is an imperfect model: out of 116

complexes, only 28 are fully conserved (that is, each of their components are present as

orthologs) in the 7 other model species in this study (Fig. 2-F). On average, 54 M. 

pneumoniae complexes appear to share at least 2/3 of their components with all the 

other species and 81 complexes share at least half. As this value is an average, it does 

not take into account the differences between individual species in terms of complex 

conservation. For some complexes, such as complex 12 in this set (containing three 

enzymes: an aldolase, a glyceraldehyde-3-phosphate dehydrogenase, and a pyruvate 

kinase) all components appear to be present in all 7 other species with the exception of 

H. pylori, which does not appear to code for an orthologous kinase. The missing 

component in H. pylori may be replaced by a different protein or the entire complex may 

be an artifact of how broadly-conserved its apparent components are (that is, what 

seems like complex component conservation is simply broad conservation of individual 

proteins). Other complexes clearly reflect differences in species: Out of the four 

components of complex 33, all are conserved in M. genitalium but just three are 

conserved in the 6 other species. The protein specific to the Mycoplasma in this 

complex is Mpn642 (Uniprot: P75155), an uncharacterized lipoprotein.
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Fig. 2-F. Histogram of Kühner et al. M. pneumoniae complexes and average conservation 
fractions. Labels indicate number of complexes in each bin of average conservation fraction.
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Just two complexes contain components entirely specific to M. pneumoniae: complex 

81, composed of proteins Mpn100 and Mpn650 (Uniprot: P75592 and P75147), and 

complex 87, composed of proteins Mpn036 and Mpn676 (UniProt: P75078 and 

P75116). These two complexes and their components are uncharacterized. Due to the 

small number of complexes conserved in other species, the Kühner et al. M. 

pneumoniae set is not included in the majority of the subsequent analyses presented 

here.

The variability between the EcoCyc and Hu datasets has a direct impact on the

usefulness of these complexomes as models for other bacterial species. In any case,

the EcoCyc and Hu complex sets provide the most comprehensive complex set

currently available for E. coli. The intersection of the two sets (Figure 2-G-A) is indeed

limited: among all 1,521 unique orthologous groups seen across the two sets, just 576 

OGs are shared between them. Only 132 complexes appear to be “good” matches 

between the sets; each set contains more complexes unique to itself than the total 

number of complexes shared between both sets. Using these 132 complexes as a 

model for those in P. aeruginosa shows that up to 120 of the complexes may be 

conserved based on orthologous components present in the P. aeruginosa genome. If

the yet-uncharacterized P. aeruginosa complexome contains roughly the same number

of complexes as those for E. coli then this prediction method misses more than half

(that is, around 150) of the potential complexes unless I also use the unique

complexes of each set. I used these results as evidence that the data sets should be
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used as independent models rather than as an intersecting set: losing more than half of

the potential model complexes simply due to inconsistencies across data sets may be

too limiting for a broad cross-species comparison.
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Fig. 2-G. Protein complex sets vary in conservation across bacteria.
(A) Overlap between literature-curated (EcoCyc) and experimentally-observed (Hu et al.) E. coli complex 
sets is limited. Each data set contains unique proteins, even when all are mapped to orthologous groups 
(far left). Each complex in one of the two E. coli complex sets may or may not appear to be shared in the 
other complex set (middle; a potentially shared complex must have at least half of its components in at 
least one complex in both sets). Using just the set of complexes shared between the two E. coli sets as a 
model for predicting complexomes in other species (far right; in this case, P. aeruginosa is used as an 
example) may be limiting. 12 complexes from the shared set appear to be conserved in P. aeruginosa but 
roughly an additional 150 complexes may be expected based on those seen in E. coli. (B) Each box plot 
displays the range of conservation fractions of E. coli protein complexes from the literature curated 
(EcoCyc) and experimental (Hu et al.) sets with respect to a species other than E. coli. The upper and 
lower edges of each box correspond to the first and third quartile of conservation fraction values, 
respectively. The upper whisker corresponds to the highest value within 1.5 times the inter-quartile range 
(IQR) while the lower whisker corresponds to the lowest value within the same range. Data points outside 
1.5 times IQR are represented by single data points. Marco Abreu assisted with this analysis.
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Fig. 2-G-B displays distributions of protein complex conservation across four bacterial 

species other than E. coli. (M. pneumoniae complexes are not included in this

comparison.) These plots provide the median and interquartile range of protein complex

conservation fractions in each species, using either EcoCyc or Hu et al. complexes as a

model of the complex set. A comprehensive set of protein complexes has not been

identified for any of these species as of yet. Following the results shown in Fig. 2-D,

however, I may predict that most bacterial protein complex component sets should

share at least half of their OGs with all other bacterial genomes, on average. Basic

biology also plays a role here: we generally expect a subset of crucial protein 

complexes like polymerases to be well-conserved across all species. The set of all 

EcoCyc complexes appears to be highly-conserved in P. aeruginosa (the entire 

interquartile range lies between full and 75% complex conservation, showing the 

average EcoCyc complex is well-represented in P. aeruginosa) but shows a greater 

range of conservation across the three other species. This difference in conservation 

patterns likely reflects differing levels of conservation between different protein 

complexes, with some complexes demonstrating much higher conservation than others 

across evolutionary distances. For studies of P. aeruginosa, specifically, using E. coli 

protein complexes – and preferably litature-curated complexes – as a model the 

bacterial complex set may be realistic.
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The Hu complexes show lower complex conservation median values than EcoCyc for all 

but H. pylori and lower variability for all but P. aeruginosa. Here, the median values are 

not as useful as the conservation ranges: the distance between the highest and lowest 

values includes every possibility from 0 to 100% conservation using either model of E. 

coli complexes.  The two species most closely related to E. coli in this set – P. 

aeruginosa and C. crescentus – produce different median values and interquartile 

ranges between the sets across all protein complexes. Components of complexes in the 

two E. coli sets, used as models, are clearly conserved differently across bacterial 

species. A higher-resolution comparison is necessary to determine which complexes are 

highly conserved.

2.4.4 Protein complexes and their essentiality are poorly conserved in bacteria

Although the size distribution is different in E. coli and Mycoplasma, I hypothesized

that homologous complexes should be very similar, both in size and composition.

However, this is not true: few complexes share even half of their components across the

data sets (Fig. 2-E). The majority of complexes shows less than 50% overlap

between the two E. coli sets of EcoCyc and Hu et al. and between Hu et al. and the 

Mycoplasma complex set. This suggests that there are both technical (E. coli vs. E. coli) 

but also biological reasons (E. coli vs. Mycoplasma) for these differences. 

To get a more global yet more detailed picture of protein complex conservation, we

compared conservation across 8 bacterial species, including the two species for which
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full protein complex sets exist. The EcoCyc complex set was used as a standard to

which all other species were compared. Fig. 2-H provides three examples of the ways 

protein complexes may or may not be conserved across species. Conservation of

protein complexes may be roughly grouped into three categories: well-conserved

complexes, complexes with a core set of proteins conserved, and those in which no

core set appears to be consistently conserved. As conservation and essentiality may be

related to paralogy, I also compare the components of these complexes on the

presence or absence of paralogs.
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Fig. 2-H. Examples of protein complex conservation across bacteria.
Complexes are identified using a common name and an EcoCyc ID. Each complex subunit has been 
assigned a COG ID. Grey areas indicate OG presence, white areas indicate OG absence, and blue areas 
indicate essentiality in a species-specific screen (see Methods for references). Numerical values within 
grids indicate the presence of potential paralogs in the corresponding species; proteins without specified 
values have no clear paralogs. Complex structures are available in PDB: ATP synthase F1, 3OAA; 
succinate dehydrogenase, 1NEN; Outer membrane protein assembly complex, (2KM7, 3TGO, 3TGO, 
4K3C, 2YH3). Species are arranged by their taxonomy (see Methods for details) with E. coli and 
Mycoplasma pneumoniae / Mycoplasma genitalium serving as the most distant taxons. Marco Abreu 
assisted with these analyses.
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It is commonly assumed that highly conserved proteins must be important and thus

should be essential in many cases. Interestingly, this is often not true (Figure 2-H). For

example, the well-conserved succinate dehydrogenase components are essential in

only 3 of the species shown. The four components of this complex (as defined by the

default structure in E. coli) are present only in Pseudomonas aeruginosa and

Caulobacter crescentus. Helicobacter pylori and Bacillus subtilis encode 3 out of 4

components and the other 3 species appear to have lost the entire complex. Similarly,

the Bam outer membrane protein assembly complex (EcoCyc: CPLX0-3933) shows

partial essentiality across the complex in 4 species though its components are well

conserved in only 3 species. This complex has a similarly patchy pattern of

conservation, with any number from zero to all 5 components conserved. In the case of

H. pylori Bam complex, what initially seems like a lack of conservation may be the result

of component replacement by functionally similar proteins (Keseler et al. 2013). By 

contrast, F1 ATP synthase is conserved in all species examined. These examples show 

that most complexes are less well conserved than their often important functions 

indicate (as measured by the presence of essential proteins in these complexes).

Fig. 2-I-A displays all EcoCyc E. coli complexes with at least one component present in 

M. pneumoniae. In this case, fraction of essentiality (the number of protein components 

found to be essential out of all protein components present) is shown. Fig. 2-I-B 

displays conservation fractions of all E. coli complexes with at least one protein 
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conserved in M. pneumoniae, though not necessarily present in a M. pneumoniae 

complex. A complete survey of all EcoCyc complexes across these species in terms of 

conservation and essentiality is provided in Figures 2-I-C and 2-I-D, respectively.
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Fig. 2-I. Fractional essentiality and conservation of protein complexes across species.
(A) Each column represents one protein complex (as defined in EcoCyc for E. coli) and its fraction of 
essentiality within the species shown at left. This subset of complexes are those in which at least one 
component is predicted to be conserved in M. pneumoniae. Two example complexes not predicted to be 
present in M. pneumoniae are also shown at the far right of the complex list. See Appendix Table III-D 
for key to complexes. For species other than E. coli, complexes are predicted using orthologous groups 
(OGs). Colors indicate the fraction of essentiality: blue—conserved components are essential at the 
fraction specified at right, grey—no components are conserved or all conserved components are not 
essential. (B) Conservation of complexes as shown in (A). Colors indicate the fraction of conservation 
ranging from dark green (all proteins are present) to red (no protein is present). General functional group 
assignments were manually assigned based on EcoCyc annotations. Columns in panels A and B 
correspond to the same complexes. (C) As in part A, but for the full set of EcoCyc E. coli complexes; each 
column is a single complex. An extended version of this heat map is provided in Fig. 2-J. (D) As in part B, 
but for the full set of EcoCyc E. coli complexes; each column is a single complex. The order of complexes 
is identical to that in (C). An extended version of this heat map is provided in Fig. 2-K. Columns in panels 
C and D correspond to the same complexes.
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Fig. 2-J. All EcoCyc complexes and their fractional conservation in selected bacterial species. An 
extended version of Figure 2-I-D. Names in blue indicate example complexes shown in Figure 2-I.
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Fig 2-K. All EcoCyc complexes and their fractional essentiality in selected bacterial species. An 
extended version of Figure 2-I-C. Names in blue indicate example complexes shown in Figure 2-I.
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Conservation fraction was established as the fraction of unique proteins in a defined 

complex present in the target species. Notably, proteins of only 21 complete EcoCyc 

complexes are fully conserved across all 8 species, or just 15 complexes when

subunits and alternate forms (e.g., RNA polymerase with different sigma factors) are

removed. An additional 19 complexes are fully conserved across all species but the two

Mycoplasma species, suggesting that the mycoplasmal ancestry eliminated these 

complexes entirely. The remaining complexes vary extensively in their degree and 

extent of conservation. A number of complexes are well conserved across E. coli, P.

aeruginosa, C, crescentus, H. pylori, and B. subtilis but not S. sanguinis or the

Mycoplasma (e.g. succinate dehydrogenase, EcoCyc: SUCC-DEHASE). Overall, of the

176 EcoCyc complexes of 3 or more unique proteins, 128 appear to have lost at least 

one unique protein component in one or more species. This demonstrates that protein 

complexes are far more flexible in evolutionary terms than previously

assumed.

E. coli complexes serve as a “gold standard” for protein complexes across bacteria only

in cases where most or all of the components of a complex are broadly conserved. This

property is true of just a small fraction of complexes. Figure 2-E-D displays 

conservation fractions for all 285 E. coli complexes in the EcoCyc set, clustered by 

similarity of their conservation patterns across the 7 other species used in this study. 

Just 21 complexes appear to be fully conserved (that is, orthologs of each of their 

components are present) in all other species. This is a broad taxonomic range, so a 
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more relaxed cutoff may be appropriate to predict a complex is conserved; even so, 

only 28 complexes contain at least 2/3 of the E. coli components across all species. 

Lowering the cutoff to conservation of at least half of the E. coli components in each 

complex still yields only 34 complexes. The lack of broad conservation is not, however, 

a matter of full complex presence or absence across species. Rather, many complex 

components appear to be conserved independently from other members of their 

complex. Similarly patchy conservation can be seen for essentiality (Fig. 2-K), as the 

most broadly well-conserved complexes (far left) generally retain essentiality across 

species but less consistently-conserved complexes do not, though they may retain 

essentiality while appearing to lose complex components.

Protein complex function varies in a similar way as conservation (Fig. 2-J). As

expected, many of the most highly conserved complexes are directly involved in DNA

replication, transcription, or translation. Many protein complexes of varying conservation

fractions are transport complexes – as bacterial membrane structures vary across

species, some degree of transporter component evolution is also expected. At least six

distinct complexes involved in DNA modification or repair demonstrate less than perfect

conservation.

2.4.5 The E. coli protein complexome as a model for other species

E. coli is frequently used as a model organism for bacteria in general. Using the 

literature-curated set of protein complexes from EcoCyc, I sought to determine how well 
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this protein complexome serves as a model for complexes in other bacterial species. A 

comparison of the fractional conservation of each EcoCyc complex across

894 different bacterial genomes was the result (Fig. 2-L). The genomes in this 

comparison were arranged as per NCBI taxonomy definitions, revealing patterns in 

complex conservation closely corresponding to numerous taxonomic boundaries. 

Hierarchical clustering of each E. coli model complex (specifically, UPGMA) on the 

basis of its fractional conservation across all other species reveals groups of complexes 

with similar patterns of predicted conservation.
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Fig 2-L. E. coli complex conservation across Bacteria corresponds to taxonomic boundaries. The 
heat map displays fractional conservation of EcoCyc protein complexes as in Fig. 2-E, though in this case 
across all 285 complexes in the set and across 894 different bacterial genomes as indicated on the tree at 
left. See Materials and Methods for taxonomic details. Tree follows NCBI taxonomy. Complexes 
(columns) have been clustered on the basis of the distance between their average fractional 
conservations (using average linkage).
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The species with the most overall conservation of the E. coli complexes are, 

unsurprisingly, those most closely related to E. coli. Roughly a third of the complex set 

is conserved across all species with the minimal Rickettsia and Mycoplasma genomes, 

among others, serving as notable exceptions. This is a crucial distinction between the 

data shown in Fig. 2-L and that in Fig. 2-I: the small set of representative species fails 

to highlight the full range of bacterial genome diversity and therefore does not capture 

complex conservation in numerous species (e.g., all Clostridia and Actinobacteria). The 

middle third shows the most difference in conservation between the Proteobacteria and 

all other species. The Lactobacillales show the most difference in conservation among 

these complexes, to the degree that they resemble Cyanobacteria more closely among 

this subset. The last third (far right of Fig. 2-L) of the complexes demonstrate the most 

variable conservation across all species. 

Many of these complexes are missing or partially conserved among the Proteobacteria 

yet are fully present in many Firmicutes species and even in extremophiles like 

Thermus or Thermotoga species. Overall, out of 285 EcoCyc complexes, 12 (~4%) 

have at least one component present in all 894 bacterial genomes in the set. None are 

perfectly conserved across all genomes but 14 complexes appear to be conserved 

across at least 95% of the genomes. This level of conservation is consistent with the 

traditional view of some complexes (e.g., ribosomes) as static in composition and 

function. If potential complex conservation is generously defined as conservation of at 

least half of the complex components, 3 EcoCyc complexes are potentially conserved 
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across all 894 genomes, 25 are potentially conserved across 95% of the genomes, and 

186 are potentially conserved across at least half of the genomes. Variance across the 

full set of complex conservation fractions is 0.189. Because conservation of these 

complexes follows the existing taxonomy well, some generally well-conserved 

complexes like RNA polymerases may be missing from entire genera.

The experimentally-determined protein complexes identified by Hu et al. were also used 

as a model of the E. coli complexome (Fig. 2-M). Few members of the Hu et al. set 

appear to have clear matches in the EcoCyc set (see Table 2-C), potentially 

demonstrating the variability inherent to experimental results, but also suggesting the 

Hu et al. set may contain complexes not included in EcoCyc. Most complexes appear to 

have partial conservation across nearly all species using this model. Distinctions are still 

seen among the minimal genomes of the Rickettsiales as well as the Mycoplasma and 

the genomes of related species. Out of 310 Hu et al. complexes, 16 (~5%) have at least 

one component present in all 894 bacterial genomes in the set. As with the EcoCyc 

complexes, none are perfectly conserved across all genomes but a single complex 

(complex 271) appears to be conserved across at least 95% of the genomes. Using the 

same 50% cutoff for potential complex conservation as used above, no Hu complexes 

appear to be conserved in all 894 genomes, 10 are potentially conserved across 95% of 

the genomes, and 182 are potentially conserved across at least half of the genomes. 

Though these Hu et al. complex values appear similar to those for the Ecocyc 

complexes, variance across the full set of Hu complex conservation fractions is 0.097, 
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indicating less variability among the values than that seen for the EcoCyc complexes. 

This lesser variance can also be seen in the surprising consistency across taxonomic 

lines (Fig. 2-M).

Table 2-C. Hu et al. (2009) E. coli protein complexes and the best matches among EcoCyc E. coli 
protein complexes.
Hu et al. complex Best match complex in EcoCyc Coverage
2 RUVABC-CPLX 0.67
8 CPLX0-1923 0.67
10 RNAP54-CPLX, RNAPS-CPLX, RNAP32-CPLX, RNAP70-CPLX, APORNAP-CPLX 1
16 CPLX0-240, CPLX0-241 1
19 CPLX0-7852, PC00084 1
31 CPLX0-7986 1
38 3-ISOPROPYLMALISOM-CPLX 1
42 CPLX0-7910 1
43 NITRATREDUCTA-CPLXN, NITRATREDUCTZ-CPLX 0.67
44 ALPHA-SUBUNIT-CPLX,DIMESULFREDUCT-CPLX, FORMATEDEHYDROGO-CPLX 0.67
46 SUCCCOASYN 1
47 CPLX0-7935 0.8
48 CPLX0-3958 1
50 2OXOGLUTARATEDEH-CPLX 0.67
56 ALPHA-SUBUNIT-CPLX,DIMESULFREDUCT-CPLX, FORMATEDEHYDROGO-CPLX 0.67
58 CPLX0-3801 0.67
59 CPLX0-2121, CPLX0-2161 0.67
71 ACETYL-COA-CARBOXYLTRANSFER-CPLX 1
78 SULFITE-REDUCT-CPLX 1
92 CPLX0-3361 1
98 CPLX0-1668, FAO-CPLX 1
99 FORMHYDROGI-CPLX 0.67
122 CPLX0-7942 1
154 NRDACTMULTI-CPLX 0.67
191 ABC-12-CPLX 0.67
208 CPLX0-2424, CPLX0-2425 1
231 CPLX0-2502 1
241 RECBCD 1
289 GLUTAMATESYN-DIMER, GLUTAMATESYN-CPLX 1
299 ABC-6-CPLX 1
309 CPLX0-2982 0.67
Coverage is the fraction of components of the Hu et al. complex present in the EcoCyc complex. All 
matches shown here are those with a coverage fraction of at least 2/3. Complexes may have more than 
one match if the matching complexes share components (e.g., with RNA polymerase forms such as 
RNAPE-CPLX).
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Fig. 2-M. E. coli experimentally-observed complex conservation across bacteria corresponds to 
taxonomic boundaries. Using the Hu et al. set of protein complexes as a model, each column is a single 
complex from the set and each row is a distinct bacterial genome. 310 complexes and 894 genomes are 
shown in total. See Methods for taxonomic details. Tree follows NCBI taxonomy. Complexes (columns) 
have been clustered on the basis of the distance between their average fractional conservations (using 
average linkage).
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Both the literature-curated EcoCyc model and the Hu et al.-based experimental model 

were evaluated by comparision to a randomized version of their respective components. 

For the literature-curated model, Pearson correlation was 0.185, while for the 

experimental model, Pearson correlation was 0.293. The higher correlation value for the 

experimental model indicates it is closer to a random distribution of complex correlation 

fractions across the species set. I do not expect complexes to be conserved in a 

random pattern so this may indicate the Hu et al. complex set is less useful than the 

EcoCyc complex set for prediction across this wide range of genomes.

2.4.6 Essentiality of proteins in complexes and the impact of paralogy

Mycoplasma species have highly reduced genomes and it is generally assumed that 

they have retained mostly essential proteins. In fact, the fraction of conserved essential 

proteins is much higher when comparing Mycoplasma pneumoniae to E. coli than vice-

versa (Fig. 2-N). In these comparisons, all complex components are searched for in full 

genomes and essentiality is assigned based on the target species. Among the full set of 

Hu et al. E. coli complexes, complexes have an average conservation fraction of 

0.198±0.230 and an average essentiality fraction of 0.122±0.196 in M. pneumoniae. 

High variability in conservation among complexes is expected as complex components, 

like single proteins, are subject to a broad variety of evolutionary pressures. Among the 

53% of complexes with at least one component present in M. pneumoniae, the average 

fractions increase to 0.375±0.184 and 0.231±0.218, respectively. Among the full set of 

Kühner et al. M. pneumoniae complexes, complexes have an average conservation 
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fraction of 0.716±0.292 and an average essentiality fraction of 0.32±0.332 in E. coli. 

Among the 95% of complexes with at least one component present in E. coli, the 

average fractions increase to 0.755±0.245 and 0.337±0.332, respectively. Overall, 

Mycoplasma protein complex components are more likely to be present and essential in 

E. coli than E. coli protein complex components are in Mycoplasma.
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Fig. 2-N. Conserved complex components are enriched for essential proteins. This correlation is  
more pronounced in Mycoplasma pneumoniae (blue). Protein complexes of E. coli (Hu et al. 2009) are 
compared to complexes of M. pneumoniae (Kühner et al. 2009) and vice versa. Fraction of conservation 
and fraction of essentiality are calculated as described in Methods. Each node represents a single protein 
complex with relative size corresponding to the size of the complex in number of components. Kühner 
complex 50 and its corresponding Hu complex 77 are indicated as an example complex match.
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One possible explanation for the lower fraction of conserved essential proteins in E. coli  

is the presence of paralogs that renders duplicate genes non-essential, given the 

presence of an additional copy with a redundant function. I performed comparisons of 

the fraction of conservation of each complex and its sum of paralogy (that is, the total 

number of all copies of all genes coding for the complex components in the target 

species, as determined by shared OG membership). As the number of paralogs for 

each gene is broadly defined, these numbers are considered maximum possible values 

rather than specific counts of known paralogous regions. 

There is an inverse trend between E. coli complexes vs. M. pneumoniae (Fig. 2-O-A) 

and vice versa (Fig. 2-O-B): the more paralogs they have in E. coli the less conserved 

these proteins were in M. pneumoniae and vice versa. More specifically, E. coli 

complexes with a conservation fraction greater than 0.6 in M. pneumoniae all had total 

paralogy sums lower than 40 though more poorly-conserved complexes had paralogy 

sums between 2 and about 100. M. pneumoniae complexes with a conservation fraction 

greater than 0.6 in E. coli had a range of sums of paralogy between 2 and nearly 80. 

The more poorly-conserved complexes all had paralogy sums of 60 or less. Pearson 

anti-correlation for E. coli complexes vs. M. pneumoniae (Fig. 2-O-A) was -0.04 and 

Pearson correlation for M. pneumoniae complexes as a model for E. coli (Fig. 2-O-B) 

was 0.05, indicating limited to no overall correlation in either full comparison. As is the 

case with conservation of complexes across all species (Fig. 2-L), correlation is likely 

case-specific. The simplest explanation for this observation may be that complexes with 
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extensive paralogy (that is, their components have sequences with similarity to other 

proteins encoded elsewhere in the genome) represent evolutionary flexibility. A complex 

may be more tolerant of the loss of an individual component if a similar, redundant 

protein may take its place. Such redundancy does not appear to be present in the M. 

pneumoniae genome.
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Fig. 2-O. Cross-species conservation of experimentally-observed protein complexes and the sums 
of the counts of potential paralogs of their components. (A) Proteins in E. coli complexes (Hu et al. 
2009) tend to have more paralogs if the complexes are less conserved. (B) By contrast, in M. 
pneumoniae complexes (Kühner et al. 2009) more conserved complexes tend to have more paralogous 
proteins. Fraction of conservation and sum of paralogy are calculated as described in Methods. Each 
node represents a single protein complex with relative size corresponding to the size of the complex in 
number of components. E. coli complexes as defined by Hu et al. were compared to the full M. 
pneumoniae proteome while M. pneumoniae complexes were compared to the full E. coli proteome; all 
cross-species comparison are done using predicted orthologs as described in Methods.
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The fraction of essential components in protein complexes is non-random and may be 

greater than expected, depending upon the complexes compared (Fig. 2-L). When 

compared to random assortment (that is, a condition with no enrichment), Hu et al. E. 

coli complexes have more essential proteins than expected (Fig. 2-P-A). A Spearman 

anti-correlation of -0.25 was found for this set. E. coli complexes from EcoCyc (Fig. 2-P-

B) demonstrate similar trends, with a Spearman anti-correlation of -0.22. M. 

pneumoniae complexes from Kühner et al. (Fig. 2-P-C) show a trend of declining 

essentiality compared to randomized essentiality fractions of 0.6–08. A Spearman anti-

correlation of -0.03 was found for this M. pneumoniae complex set. Both E. coli anti-

correlations show a weak relationship.
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Fig. 2-P. Essentiality of proteins in 
complexes. Distribution of essential 
genes among those from  (A) E. coli 
(Hu et al. 2009) and (B) E. coli 
(EcoCyc), and (C) M. pneumoniae. 
The fraction of essential genes within 
protein complexes was determined 
for each complex set. In E. coli, 
essential protein complexes are 
enriched for essential proteins. By 
contrast, complexes with non-
essential proteins are over-
represented in the genome-reduced 
Mycoplasma pneumoniae. Each 
distribution is expressed as binned 
log2 ratios of observed over 
expected frequency. Values indicate 
observed frequency above or below 
random results (= 1), respectively. 
Marco Abreu assisted with these 
analyses.
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2.4.7 Proteins of unknown function

Protein complexes are attractive targets for functional analysis, given that proteins are

embedded in a functional context. This is especially true for proteins of unknown

function that are part of a complex (Fig. 2-Q-A, B). Here, conservation is defined as

greater than 0.5 conservation fraction and essential complexes are those with at least

one essential component in the target species. Among the highly conserved

components, many are essential in 4 or more of the 8 species. Using more than one

species reduces the effect of noise and inconsistency across essentiality screens.

Starting with 39 EcoCyc-defined complexes containing unknown proteins, at least 15

appear to be conserved in five other species shown here other than the Mycoplasma 

representatives.
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Fig. 2-Q. Protein complexes are rich in highly-conserved proteins of unknown function. (A) The list 
of EcoCyc E. coli protein complexes was compared on the basis of component presence vs. absence 
across seven other species in this study. Conserved complexes, in this figure, are those in which at least 
one orthologous component is present in the target species. Similarly, essential complexes include at 
least one component found to be essential in both E. coli and in the target species. (B) As in (A), but 
within the subset of EcoCyc complexes containing at least one protein of unknown or unclear function. In 
these instances, the complex itself may have a known function though the roles of its components may 
remain unclear. (C) Examples of experimentally-observed protein complexes containing proteins of 
unknown function. E. coli complex examples from Hu et al. are shown at left, M. pneumoniae complexes 
from Kühner et al. are shown at right. Complexes are labeled with the identifier used in their 
corresponding study.
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Fig. 2-Q-C displays example complexes for the Hu (E. coli) and Kühner (Mycoplasma 

pneumoniae) complexes, respectively. Each complex contains at least one component 

of unknown or unclear function, whether in the context of the protein complex or broader 

cellular function. For instance, complex 66 from Hu et al. (Fig. 2-Q-C) consists of 6 

unique proteins of which 3 are of unknown function (or remain without annotation). Of 

the 6 proteins, 3 are highly conserved and 1 of those three is frequently essential. The 

E. coli protein MraZ, present in Hu complex 149, is shown here as a protein of unknown 

function but was recently found to be a transcriptional regulator involved in multiple 

pathways (Liechti et al. 2012; Eraso et al. 2014). More than 149 Hu et al. E. coli 

complexes and 34 Kühner et al. Mycoplasma pneumoniae (183 in total) complexes 

contain at least one component of unknown function. Of these, 109 Hu et al. E. coli 

complexes and 19 Kühner et al. M. pneumoniae complexes contain components highly 

conserved as essential proteins.

2.4.7 The E. coli protein complex interactome

Interactors in this network are protein complexes from the EcoCyc set, filtered to 

remove all homomer complexes (that is, complexes only involving multiple copies of the 

same protein). The full set of complexes, with homomers, is 781 complexes; selecting 

only heteromers reduces the list to 285 complexes, as seen in the previous sections. 

These complexes were placed into one of eleven general functional categories (see 

Methods for details) based on their EcoCyc annotation. 
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With protein complexes serving as nodes of a network, we may then define interactions 

between complexes using the interactions between protein components of the 

complexes. Doing so yields a network of 217 nodes and 1,709 interactions. 68 

complexes have not been observed to participate in cross-complex interactions as per 

available data and are not present in the network. The 801 interactions in the resulting 

network are filtered further by removing 908 self-interactions and 323 duplicate 

interactions (here, a duplicate indicates that two different protein pairs interact between 

the complexes), yielding a network of 210 complexes and 478 cross-complex 

interactions (Fig. 2-R, see also Appendix Table III-L for all interactions).
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Fig. 2-R. Interaction network of E. coli protein complexes. Each node in this network is a single 
protein complex from E. coli as defined by EcoCyc. Interactions between complexes, denoted by edges, 
indicate that at least one protein component of the source complex has been observed in a protein-
protein interaction with at least one protein component of the target complex, as per IntAct. Node color 
indicates general complex function. Edges have been bundled for clarity. Dotted line edges indicate 
orthology-based predicted interactions; all other interactions are based off direct interactions. Self-
interactions are not shown.  
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The network contains one primary component with 206 of the 210 complexes and two 

separate components of one interacting complex pair each (including, specifically, the 

cytochrome bd-I and bd-II terminal oxidases). The network contains both direct 

interactions between E. coli proteins and those predicted from orthology (i.e., if two 

proteins are found to interact then all other proteins in their respective orthologous 

groups are predicted to participate in similar interactions). The overall network has a 

clustering coefficient of 0.172, a diameter of 7, and a density of 0.022. Each node has 

an average of 4.552 neighbors and the highest degree node (complex CPLX0-3934, the 

GroEL-GroES chaperonin complex) has a degree of 88, followed by the core RNA 

polymerase enzyme (complex APORNAP-CPLX) with a degree of 30.

2.4.8 Flexibility of protein complexes

The essential “core” components of protein complexes may be conserved across

taxonomic levels while “accessory” components may not (Ryan et al. 2012). Given their 

multiple interactions, proteins within protein complexes should not only be more highly

conserved than “un-complexed” ones, but should retain their essential roles if their

fellow complex members are present (Hart et al. 2007; Wang and Marcotte 2010).

Components of protein complexes are, on average, more likely to be present in other

bacterial species than proteins not in complexes (Ryan et al. 2012). This is a result of 

high conservation among sets of large, essential complexes. 128 out of 285 literature-

verified E. coli protein complexes appear to have all components conserved in B. 

subtilis, 30 of which also appear to be present in the M. genitalium genome. For 
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instance, all components of the ATP synthase complex (EcoCyc: ATPSYN-CPLX) are 

present in all species examined, though they do vary in essentiality. B. subtilis 

essentiality screens found no essential genes in ATP synthase, while those for M. 

pneumoniae found all but one component to be essential. Other complexes – 

predominantly those with transmembrane domains and/or transporter functions – are 

more variable in both conservation and essentiality, though they provide examples of 

how dispensable accessory proteins may be.

Some protein complexes with essential functions in E. coli may not be present in other

species. The lipopolysaccharide transport complex (EcoCyc: CPLX0-7992) serves as

an excellent example: all seven of the Lpt proteins in this complex have been found to

be essential in E. coli though their conservation is limited to other Gram-negative

species including C. crescentus and P. aeruginosa. I found that most transmembrane

protein complexes follow this pattern, likely reflecting the link between speciation and 

environmental conditions as transmembrane transport complexes are necessary for 

obtaining resources from the environment. Interestingly, species with partial complex

component conservation vs. E. coli may highlight situations in which core elements of a

complex are conserved but have been modified to carry out other functions or adapted

to special physiological circumstances. For example, 3 out of 4 of the succinate

dehydrogenase complex (EcoCyc: SUCC-DEHASE) components in E. coli are also

present in B. subtilis but not at all in S. sanguinis. This is an especially interesting
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example as two of the components, SdhC and SdhD, are inner membrane proteins, 

though only SdhC is present in the three-component B. subtilis succinate

dehydrogenase. I conclude that membrane proteins and their complexes are

particularly malleable, given their role in signaling and transport which reflects

adaptations to specific environments and the nutrients present in them.

Surprisingly, many essential proteins are poorly conserved and essentiality itself is often

not conserved across species (Fig. 2-I). This suggests that many functions

can be replaced by non-homologous displacement (Kelkar and Ochman 2013) and that 

genomes are more malleable in evolutionary terms than previously expected. Clearly, 

this evolutionary flexibility has contributed much to the success of microbes to populate 

all possible environments on the planet. Variability in complex conservation highlights a 

limitation with this study: I am unavoidably limited by the availability of sequenced 

bacterial genomes. Newly-characterized genomes may reveal additional variation or 

consistency among protein complexes even if they are highly reduced in other respects.

As with their protein components, individual complexes reveal underlying evolutionary

processes (Fig. 2-L). The most highly-conserved complexes are those with functions 

critical to microbial life, including transcription, translation, and transcript degradation. 

Though different RNA polymerase (RNAP) holoenzymes (that is, RNA polymerases with 

different sigma factors) were considered as distinct complexes in this study, all bacterial 

species unsurprisingly retained at least one type of RNAP. The ribosome (EcoCyc: 
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CPLX0-3964) is also well-conserved though its size and high level of conservation may 

obscure cross-species differences.

Variable conservation of some complexes is visible even among the Escherichia

genomes (Fig. 2-S). CPLX0-7909 (the RnlA-RnlB toxin-antitoxin complex) only appears 

to be present in K-12 E. coli but also in single species of Shewanella and 

Photobacterium. This toxin-antitoxin system has a role in bacteriophage resistance in E. 

coli (Koonin et al. 1996) but it is unclear if this function may be retained in distantly 

related bacteria. CPLX0-2001 (the ferric dicitrate transport system) provides an example 

of more gradual change. This complex spans the membrane, suggesting its 

conservation should be membrane-dependent. This appears to be the case as it is well 

conserved across most Proteobacteria (except the Rickettsiales and Buchnera species) 

yet is poorly-conserved across most of the species traditionally considered Gram 

positive. A subset of complexes, including CPLX0-1163 (HslVU protease) and ABC-56-

CPLX (aliphaticsulfonate ABC transporter), fit a strict co-conservation model: these 

complexes are almost always present in their full form rather than as a fraction of the E. 

coli model complex. These complexes are exceptions rather than the rule. Using E. coli 

as a model, few complexes are conserved perfectly across a wide range of species; in 

fact, most complexes are fractionally conserved.
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Fig 2-S. All EcoCyc complexes and their fractional 
conservation in selected strains of E. coli and 
Shigella. Figure continues on next page.
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A complex-centric approach to cross-species gene and protein conservation need not 

be restricted to E. coli. Rather, such an approach would benefit from expansion into 

other bacterial species as it may reveal novel evolutionary patterns and avoid the bias 

inherent in focusing on well-studied model bacterial species. The approach also offers a 

way to type potential bacterial pathogens: by comparing pathogenic strains with each 

other or those of other species, researchers may quickly identify not only the protein 

complexes implicated in pathogenesis (that is, those already suspected to be 

pathogenicity factors) but also unexpected gain or loss of other protein complexes or 

their components. Predicted protein complexes of H. pylori provide examples of 

conserved and missing protein complexes (Fig. 2-T). More than two thirds of the 1,180 

distinct H. pylori orthologous groups encoded by its genome are present in E. coli as 

well (Fig. 2-T-A) suggesting that complex conservation should be similar (M. 

pneumoniae is included for comparison with a species distantly related to both H. pylori 

and E. coli). Reflecting both the evolutionary distance and difference in membrane 

structure between the two species, some E. coli protein complexes appear to be fully or 

mostly conserved (e.g., the OppBCDFMppA and DdpABCDF complexes) while others, 

such as the Bam outer membrane protein complex, are poorly conserved (Fig. 2-T-B). 

Unlike individual proteins, most protein complexes appear to be poorly-conserved from 

E. coli to H. pylori (Fig. 2-T-C).
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Fig 2-T. Predicted protein complexes in H. pylori. (A) Similary of the proteomes of E. coli, H. pylori, 
and M. pneumoniae in terms of homologous proteins. (B) Selected protein complexes showing the variety 
of complex conservation. Dotted circles indicate proteins present in the model E. coli complex but 
predicted to be missing in H. pylori. Stoichiometry of complex subunits is noted where more than 1 protein 
component or multimer is present. (C) Similarity of predicted complexes when compared to E. coli and M. 
pneumoniae, the two other proteomes for which comprehensive protein complex information is available. 
Only complexes of 20 or fewer unique components are shown. 
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2.4.9 Further discussion

The substantial variation among protein complexes across species supports the notion 

that these complexes are much more malleable than previously thought. A possible 

explanation of this is that the function of a complex is more important than its content. 

Complexes can serve the same role yet contain different proteins and when one 

function is lost, others can fill in the gap. Other studies have found that functional 

redundancy can lead to variation and that there is little overlap in terms of protein 

interaction among species (Dixon et al. 2009; Ryan et al. 2013). While mutational 

change in a protein complex may have catastrophic potential, complexes are not 

immutable. In fact, several complexes that are essential in some species have varying 

composition in other species. For instance, 5 out of 9 components of the E. coli Sec 

translocation complex (EcoCyc: SEC-SECRETION-CPLX) are well-conserved across 

species from P. aeruginosa to M. genitalium. One of these components, SecA, has been 

found to be essential in all species focused on in this work with the exception of S. 

sanguinis; orthologs of this protein are present in all 894 bacterial genomes examined. 

The remaining 4 E. coli components are more variable in conservation across species. 

For instance, YajC is present in 727 out of the same 894 genomes. Strong selection 

pressure seems to avoid mutations that render the entire complex ineffectual. This may 

explain why I have observed a higher level of conservation for protein complex 

components than for proteins in general (Fig. 2-D).
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Components of protein complexes are, on average, more likely to be present in other 

bacterial species than proteins not in complexes. The essential “core” components of 

protein complexes may be conserved across taxonomic levels while “accessory” 

components may not (Ryan et al. 2012). Given their multiple interactions, proteins within 

protein complexes should not only be more highly conserved than “un-complexed” 

ones, but should retain their essential roles if their fellow complex members are present 

(Hart et al. 2007; Wang et al. 2010). The amount of conservation is a result of high 

conservation among sets of large, essential complexes. 128 out of 285 literature-verified 

E. coli protein complexes are fully present in B. subtilis, 30 of which are also completely 

present in M. genitalium. For instance, all components of the ATP synthase complex 

(EcoCyc: ATPSYN-CPLX) are present in all species examined, though they do vary in 

essentiality. B. subtilis essentiality screens found no essential genes in ATP synthase, 

while those for M. pneumoniae found all but one component to be essential. Other 

complexes—predominantly those with transmembrane domains and/or transporter 

functions—are more variable in both conservation and essentiality, though they provide 

examples of how dispensable accessory proteins may be.

Some protein complexes with essential functions in E. coli may not be present in other 

species. The lipopolysaccharide transport complex (EcoCyc: CPLX0–7992) serves as 

an excellent example: all seven of the Lpt proteins in this complex have been found to 

be essential in E. coli though their conservation is limited to other Gram-negative 

species including C. crescentus and P. aeruginosa. I find that most transmembrane 
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protein complexes follow this pattern. Interestingly, species with partial complex 

component conservation vs. E. coli may highlight situations in which core elements of a 

complex are conserved but have been modified to carry out other functions or adapted 

to special physiological circumstances. For example, 3 out of 4 of the succinate 

dehydrogenase complex (EcoCyc: SUCC-DEHASE) components in E. coli are also 

present in B. subtilis but not at all in S. sanguinis. This is an especially interesting 

example as two of the components, SdhC and SdhD, are inner membrane proteins, 

though only SdhC is present in the three-component B. subtilis succinate 

dehydrogenase. I conclude that membrane proteins and their complexes are particularly 

malleable, given their role in signaling and transport which reflects adaptations to 

specific environments and the nutrients present in them.

Smaller and more reduced bacterial genomes (that is, relative to E. coli) appear to code 

for a greater fraction of highly-conserved protein complexes. This conservation is 

evident in comparisons of the Mycoplasma pneumoniae protein complexes. In an 

examination of these protein complex components across more than 800 bacterial 

genomes, I find that species such as M. pneumoniae offer a better model of the protein 

complexes most critical to bacterial life, though they lack the predictive power of protein 

complexes from E. coli. Protein complexes observed in M. pneumoniae may not only 

have retained a core set of functions but may also reflect a higher degree of 

multifunctionality among metabolic enzymes (Yus et al. 2009; Kelkar and Ochman 

2013). In short, they may distribute more functions among fewer complexes. A truly all-

104



encompassing comparison of protein complexes should therefore incorporate multiple 

complex functions. In the absence of this data, however, model protein complex sets 

provide useful context for the relationships between diverse bacterial species. 
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Chapter 3 - Conservation of Protein-Protein Interactions among Bacteria

Significant portions of this chapter have been published or are in preparation for 

submission:

Caufield, J.H., Sakhawalkar, N., Uetz, P. (2012). A comparison and optimization of yeast 

two-hybrid systems. Methods, 58(4), 317–324. doi:10.1016/j.ymeth.2012.12.001.

Caufield, J.H., Wimble, C., Abreu, M., Shary, S., Wuchty, S., Uetz, P. (2016). Bacterial 

protein meta-interaction networks reveal consistencies among interactomes. 

Manuscript submitted.

3.1 Abstract

Proteome-wide interactomes can offer compelling evidence for protein function. The 

protein interactomes of several bacterial species have been completed, including 

several from prominent human pathogens. In this study, I use more than 52,000 unique 

protein-protein interactions (PPIs) across 349 different bacterial species to determine 

their conservation across data sets and taxonomic groups. When proteins are collapsed 

into orthologous groups (OGs) the resulting meta-interactome still includes more than 

43,000 interactions, about 14,000 of which involve proteins of unknown function. While 

conserved interactions provide support for protein function in their respective species 

data, I found only 429 PPIs conserved in two or more species. The meta-interactome 

serves as a model for predicting interactions, protein functions, and even full 

interactome sizes for species with limited to no experimentally observed PPI, including 

Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 
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31,000 PPIs, respectively. Such conserved interactions should provide evidence for 

important but yet-uncharacterized aspects of bacterial physiology and may provide 

targets for anti-microbial therapies.

3.2 Introduction

Our understanding of a protein's role in a biological system strongly depends on its 

placement in a network of protein-protein interactions, or interactome. Recently, 

interactome data sets involving proteins from various microbial species have been 

constructed using experimental and inferred data (Table 3-A) while numerous 

databases have been created to store and disseminate this information (Kerrien et al. 

2012, Chatr-Aryamontri et al. 2015, Szklarczyk et al. 2015). Bacterial proteomes are 

particularly attractive subjects for interactome analysis due to their manageable size. 

The proteomes of many bacterial species include only a few thousand proteins, 

suggesting that they are about an order of magnitude smaller than their counterparts in 

many animals and plants. Therefore, most bacterial species provide more tractable 

interactomes compared to the human genome that has more than 20,000 protein coding 

genes (ENCODE Project Consortium 2012) and more than 650,000 predicted protein 

interactions (Stumpf et al. 2008).

Table 3-A. Experimental microbial interactome sizes.

Species Name

Experimental 
interactome 
size (PPIs)

Proteins (and 
unique OGs) in 

proteome

Proteins in 
published 

interactome
Interactome ref.

Campylobacter jejuni 11,687 1,623 (1,523) 1,321 (Parrish et al. 2007)
Escherichia coli 2,234 4,306 (2,563) 1,269 (Rajagopala et al. 2014)
Helicobacter pylori 3,004 1,553 (1,280) 739 (Häuser et al. 2014)
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Mesorhizobium loti 3,121 7,272 (2,981) 1,804 (Shimoda et al. 2008)
Synechocystis sp.  PCC 
6803 3,236 3,575 (2,246) 1,920

(Sato et al. 2007)

Treponema pallidum 3,649 1,036 (736) 726 (Titz et al. 2008)

Saccharomyces 
cerevisiae 957 - 37,600* 6,721 (4,794) ~1,004 - 3,000

(Uetz et al. 2000; Ito et al. 2001; 
Yu et  al.  2008;  Sambourg  and 
Thierry-Mieg 2010)

Yeast (Saccharomyces cerevisiae) interactome sizes provided for comparison.
* Sambourg and Thierry-Mieg (2010) estimated the yeast interactome size to be ~37,000 PPIs, based on 3,042 PPIs  
among well-studied proteins curated from the literature.

Nearly all published bacterial interactomes have been created using either the yeast two 

hybrid (Y2H) system or affinity purification followed by mass spectrometry analysis 

(AP/MS). Although E. coli is the only bacterial species with a comprehensive 

interactome that has been studied by both Y2H (Rajagopala et al. 2014) and AP/MS (Hu 

et al. 2009) methodologies a comparison of both methods surprisingly showed largely 

non-overlapping interaction data sets. In the Y2H data set of 2,234 E. coli protein-

protein interactions, 1,800 were found outside of known protein complexes (Rajagopala 

et al. 2014). Similarly, only a third of ~1,500 interactions that are thought to occur in 

protein complexes were detected by the Y2H approach, indicating that existing 

methodologies in isolation produce incomplete datasets (Rajagopala et al. 2014).

A way to overcome such problems is to combine not only different datasets from the 

same species but also data from different species. Although cross-species interactome 

approaches have been recently presented for human and yeast protein sets (Zhong et 

al. 2016) no comprehensive comparison of bacterial interactomes currently exists. While 
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the majority of reports focus on one interactome (Fig. 3-A), far fewer include data from 

more than one set of interactions, and just two recent reports have investigated more 

than 5 out of 11 available large-scale bacterial interactome studies. One of these 

studies provides an analysis of bacterial genomes in terms of their predicted functional 

complexity rather than the exact interactions in their interactomes (Kelkar and Ochman 

2013). Other studies dealt with four or five published interactomes (see a complete list 

in Appendix Table IV-A), presenting only a general discussion of the evolution of 

protein networks (Ratmann et al. 2009) or a review of ways to to mine high-throughput 

experimental data to link gene and function (Blaby-Haas and de Crecy-Lagard 2011).
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Fig. 3-A. Analysis of citations of bacterial protein interactome literature. Publications are any 
individual scholarly works indexed in PubMed Central with a reference to at least one of eleven large-
scale bacterial interactome studies. Publications count is on a log scale. See Methods for details of 

citation analysis. Christopher Wimble assisted with this analysis.
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One of the most promising applications of interactomics is in the analysis of protein 

function. In a “guilt by association” approach (Schauer and Stingl 2009), protein 

interactions provide context to proteins by considering functional roles of their known 

interaction partners. For example, a protein that interacts predominantly with proteins 

that participate in metabolic activities putatively has such functions as well. This method 

has been applied as part of the analysis of interactomics data (Titz et al. 2008, Hu et al. 

2009, Song and Singh 2009) and is a major focus of interaction databases such as 

STRING (Szklarczyk et al. 2015) and BioGRID (Chatr-Aryamontri et al. 2015). 

As part of a guilt-by-association approach, proteins within interaction networks may be 

compared by defining them as members of orthologous groups (OGs). The concept of 

OGs began with clusters of orthologous groups as defined by Tatusov et al. (1997) for 

the explicit purpose of allowing functional information about one member of a COG to 

apply to all other members of the cluster. Assembling these groups on the basis of 

sequence alone permits them to be used to infer functional contexts for gene and 

protein sequences without experimental characterization. The basic concepts defined 

by Tatusov et al. (1997) and other work by the Koonin group (Tatusov et al. 2003; 

Kristensen et al. 2010) have since been improved upon by databases such as eggNOG  

(Huerta-Cepas et al. 2016). The OGs in eggNOG (also referred to as NOGs, or Non-

supervised orthologous groups) are defined through non-supervised, taxonomy-limited 

methods and (as of v.4.5, the most recent release) incorporate sequences from more 

than 1,600 prokaryote genomes. In this work, I use eggNOG OGs to reduce the 
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complexity of interaction networks by joining proteins of similar sequence and likely 

similar function. 

An orthology-based approach may be species-independent and can allow interaction 

networks of different species to be used to predict uncharacterized, conserved 

interactions. Conserved, cross-species interactions may be referred to as “interologs” 

(Matthews et al. 2001). Comparing interactions derived from multiple screens and 

species can also provide an evolutionary basis for the reasons an interaction may or 

may not be present. Analyses of conserved networks have been performed (Matthews 

et al. 2001; Sharan et al. 2005; Liang et al. 2006; Wiles et al. 2010; Ryan et al. 2012), in 

some cases alongside interactome studies (Wang et al. 2010). Several studies have 

also attempted to assemble comprehensive interaction networks using orthology-based 

predictions (Brown and Jurisca 2005; Lee et al. 2008; Gu et al. 2011) or predictions 

based on physical protein properties (Zhang et al. 2012; Kotlyar et al. 2014). Few of 

these studies – with the exceptions of Sharan et al. (2005) Zhang et al. (2012) – have 

incorporated interaction data from bacteria and none have incorporated data from as 

many species as those used in this work. Most of this previous work has also been 

limited by low proteome coverage in the underlying interactomes or relies upon gene 

essentiality data which, as shown in Chapter 2, is frequently inconsistent across 

different species. 
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Here, I combine experimentally-derived, previously published protein-protein 

interactions from 349 bacterial species to form a consensus meta-interactome. This 

approach uses orthologous groups (OG) of proteins to combine all known interactions 

into a single network. Notably, I observe that such a network shares characteristics of 

single species interactomes. Furthermore, the augmentation of single species 

interaction networks with a bacterial meta-interactome boosts its ability to predict 

functions of the underlying proteins, given its dramatically increased information 

content. Finally, I use such a bacterial meta-interactome to predict interactome sizes of 

species for which only incomplete interaction data is available.

3.3 Experimental methods

3.3.1 PPI detection assay comparisons

Prior to much of the work presented in this chapter, I compared the results from several 

variations on protein-protein interaction screens to determine the extent to which 

methodological differences impacted interaction detection. These analyses are available 

in Caufield et al. (2012); the comparison methods are as follows.

I used three primary datasets for analysis. The interactions among human proteins used 

by Braun et al. (2009) were originally selected from detailed small-scale studies and 

subsequently systematically retested (Chen et al. 2010). Here, I reanalyzed the raw 

data from the Chen dataset, finding slightly different numbers than were originally 

reported (here, I counted all yeast colonies that grew to above background levels in at 
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least two of four colonies per plate and on at least one of the two plates used). The 

interactions of both Varicella Zoster Virus (Stellberger et al. 2010) and phage lambda 

(Rajagopala et al. 2011) proteins were also included in this analysis as published. 

Unlike many other sets of published protein–protein interactions, these datasets have 

been systematically generated by use of four different Y2H vectors, as detailed by 

Stellberger et al. (2010).

The aggregate results from each method used by Braun et al. and Chen et al. were 

compared by clustering to determine how similar the detected subsets of the reference 

set are. The results of all assays from both studies were treated as an array of 92 

weighted values. Each result for a specific PPI within the positive reference set (PRS) 

and random reference set (RRS), both as defined by Braun et al. (2009), was treated as 

a single value with positive results holding a maximum value of 1 and negative results 

holding a value of 0. All PPIs reported by Braun et al. were assigned a value of 1, as the 

exact number of replicates performed in these assays is unclear. All PPIs observed in 

the Chen et al. dataset were assigned a weighted value as follows: if a PPI was 

observed for all replicates at a 3-AT concentration of 0, 3, or 10 mM, they were assigned 

a value of 0.1, 0.4, or 0.5, respectively. PPI observed in only 1 of 2 replicates at the 

same 3-AT concentrations were assigned half of the full values, for 0.05, 0.2, or 0.25, 

respectively. The weighted values for all three 3-AT concentrations were added for each 

PPI in the PRS and RRS, such that the results for each vector combination could be 
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treated as an aggregate of stringency and replication, with greater values for PPI 

observed at multiple stringency levels and in multiple replicates.

All results arrays were aligned and clustered using the PermutMatrix graphical data 

analysis package (Caraux and Pinloche 2005). Hierarchical clustering was performed 

by unweighted pair group method with arithmetic mean (UPGMA) and Euclidean 

distance to reflect similarities within the assay data.

3.3.2 Literature mining for citation analysis

The initial stages of this project required assessment of whether comparisons of 

bacterial protein-protein interactomes were common in the interactome literature. A list 

of 11 publications, each describing a single bacterial protein-protein interactome, was 

assembled as a representative set of the bacterial protein-protein interactome literature. 

The publications and their corresponding foci are listed in Table 3-B. 

Table 3-B. Set of comprehensive bacterial protein interactome studies used for citation analysis.

Reference Species of Focus

Cherkasov et al. (2011) Staphylococcus aureus

Häuser et al. (2014) Helicobacter pylori

Hu et al. (2009) Escherichia coli

Kühner et al. (2009) Mycoplasma pneumoniae

Parrish et al. (2007) Campylobacter jejuni

Rain et al. (2001) Helicobacter pylori

Rajagopala et al. (2014) Escherichia coli

Sato et al. (2007) Synechocystis sp. PCC6803

Shimoda et al. (2008) Mesorhizobium loti
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Titz et al. (2008) Treponema pallidum

Wang et al. (2010) Mycobacterium tuberculosis

The full list of citations from each paper was retrieved from PubMed Central in XML 

format in August 2015. All citation lists were combined to determine citations shared by 

multiple publications in the set. Publications citing multiple representative interactome 

publications are those with potential for cross-interactome comparisons. See Appendix 

Table IV-A for full citations for each publication in the set.

3.3.3 Protein interaction data sets

Protein interaction sets were obtained and filtered using an in-house Python program, 

Network_umbra (available at http://github.com/caufieldjh/network-umbra). This program 

parses interaction data files in PSI-MI TAB 2.7 format (MITAB27; a format used by 

protein-protein interaction databases; developed by the HUPO Proteomics Standards 

Initiative and described in detail at 

https://code.google.com/p/psimi/wiki/PsimiTab27Format) and facilitates all further 

methods described in this study.

The full set of interactions was obtained from the IntAct database (Kerrien et al., 2011; 

http://www.ebi.ac.uk/intact/) on September 25, 2015. To produce the data set used in 

this study, the full set of IntAct interactions was filtered by Uniprot taxonomy to include 

only protein-protein interactions (PPI) from bacterial sources (species:"taxid:2"). Prior to 

further filtering, this interaction set includes 63,421 interactions across all interaction 
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types. All interactions without Uniprot identifiers (i.e., interactions involving ChEBI 

chemicals) were removed, as were interactions with erroneous annotation (i.e., 

interactions involving bacterial proteins vs. eukaryote proteins). The set of IntAct 

interactions was appended with the protein interactome of Mesorhizobium loti (Shimoda 

et al. 2008). Where possible, proteins were assigned membership in orthologous groups 

(OGs) using eggNOG v.4 NOGs (Powell et al., 2014, Huerta-Cepas et al. 2015); 

proteins without OG annotation are treated as single-member OGs and referred to using 

their UniprotAC identifiers. All protein-protein interactions are retained in the data set 

regardless of experimental observation method; interactions derived from spoke-

expansion models are treated identically to those defined as “direct” interactions.

3.3.4 Construction of meta-interactome networks

The full set of protein interactions sourced from IntAct as described above constitutes 

the starting data set for meta-interactome construction. In this study, I define a meta-

interactome as a set of protein-protein interactions where similar proteins and the 

interactions among those proteins are merged into single interactor groups and 

interactions (Fig. 3-B). Interactions among proteins of the same group are considered a 

self-interaction, though all interactions retain properties of the source interaction 

network, including the count of protein interactions and count of unique source species 

contributing to the interaction. Meta-interactome groups are defined by eggNOG v.4 

NOGs as noted above. Because annotations for interactions involving similar proteins 

from closely-related species may differ, the species and strains corresponding to each 
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interaction were labeled using NCBI Taxonomy identifiers and identifiers sharing a 

parent or a child were merged. All interactions were compressed using OG-annotated 

proteins such that each OG-OG interaction appears in each data set only once per 

species, though a protein may belong to multiple OGs (in these cases, the resulting OG 

name includes both identifiers separated by a comma, e.g. "COG1100,COG4886").
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Fig. 3-B. Concept and construction of the meta-interactome. The set of interactions between proteins 
in different bacteria is defined by a meta-interactome. The meta-interactome is constructed by joining 
interactions between proteins from multiple species such that single proteins in shared orthologous 

groups (OGs) are treated as single nodes in the meta-interactome network. The meta-interactome is 
compressed further into a consensus meta-interactome by treating all proteins as OGs, even when 

multiple proteins from the same species share an OG. As shown in this figure by edge thickness between 
nodes, interactions seen in multiple species provide a weighted value to interactions in the meta-

interactome networks.
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The full meta-interactome is provided in Appendix Table IV-B in PSI-MI TAB 2.7 format, 

with the addition of orthologous groups in the final two columns (corresponding to 

interactors A and B, respectively). This interactome contains 52,734 interactions among 

12,706 unique proteins, 1,805 (3.4%) of which fail to map to an orthologous group. 

Treated as a network of OGs, this network contains 8,521 unique interactors.

A further subset of the meta-interactome was prepared such that this set merged all 

interactions on the basis of shared interactors (see Appendix Table IV-C). For 

example, two different interactions between proteins in OG1 and proteins in OG2 are 

considered a single interaction. Furthermore, each OG-OG interaction is counted as a 

single interaction across any number of species. I refer to this set as the consensus 

meta-interactome. This network contains 8,475 unique interactors and 43,545 

interactions.

Network construction, visualization, and analysis was performed using Cytoscape 

(Shannon et al., 2003) v.3.  

3.3.5 Interactome size prediction

The program Network-umbra is a set of Python scripts that uses the consensus meta-

interactome of OG-OG interactions to generate predicted interactomes for a given 

bacterial species. See Appendix II for a full guide to this software. Given a list of 
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UniprotAC identifiers, Network-umbra assigns each to an OG and constructs a set of 

interactions among those OGs based on their presence in the consensus network. In 

most cases, predictions are general and unverified: if a pair of OGs is present in the 

consensus network they are predicted to interact in any context. Reference proteomes 

used for interactome size prediction were retrieved from Uniprot on July 20, 2016 and 

are listed in Table 3-C.

Table 3-C. Reference proteomes used for interactome size prediction.

Species and Strain NCBI Taxonomy ID

Bacillus subtilis str. 168 224308

Caulobacter crescentus CB15 190650

Escherichia coli K-12 83333

Helicobacter pylori 26695 85962

Mesorhizobium loti MAFF303099 266835

Mycoplasma genitalium G37 243273

Pseudomonas aeruginosa PAO1 208964

Salmonella enterica subsp. enterica serovar Typhi 90370

Staphylococcus aureus subsp. aureus NCTC 8325 93061

Synechocystis sp. PCC 6803 substr. Kazusa 1111708

Treponema pallidum subsp. pallidum str. Nichols 243276

3.3.6 Functional annotation

Interactors in the meta-interactome are annotated using the functional categories 

originally used by Tatusov et al. (1997) for the COG project and by eggNOG (Huerta-

Cepas et al. 2015). They are listed in Table 3-D.

Table 3-D. Functional categories used to describe orthologous groups of bacterial proteins.

Category Letter Category

A RNA processing and modification 

C Energy production and conversion

D Cell cycle control, cell division, chromosome partitioning 
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E Amino acid transport and metabolism 

F Nucleotide transport and metabolism 

G Carbohydrate transport and metabolism 

H Coenzyme transport and metabolism 

I Lipid transport and metabolism 

J Translation, ribosomal structure and biogenesis 

K Transcription 

L Replication, recombination and repair 

M Cell wall/membrane/envelope biogenesis 

N Cell motility 

O Posttranslational modification, protein turnover, chaperones 

P Inorganic ion transport and metabolism 

Q Secondary metabolites biosynthesis, transport and catabolism 

T Signal transduction mechanisms 

U Intracellular trafficking, secretion, and vesicular transport 

V Defense mechanisms 

W Extracellular structures 

S Function unknown

3.4 Results and discussion

3.4.1 The bacterial meta-interactome resembles individual interactomes in 
structure

A direct comparison of interologous protein-protein interactions benefits from increasing 

the amount of data used. Though complete interactome sets are ideal for this purpose, 

even a  comprehensive, proteome-wide interactome does not contain every biologically-

relevant PPI. In the case that the missing PPIs are not present for methodological or 

sequence-related reasons (i.e., if two proteins conserved across multiple species 

produce a detectable interaction in just one species) data sets produced using different 
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methods and/or proteomes will complement each other. I constructed a meta-

interactome of individual bacterial protein interactomes to address these concerns and 

to determine how useful such a data aggregate could be.

To compare interactions across multiple species, I first mapped proteins to orthologous 

groups (OGs; for details see Materials and Methods). As a source of information about 

OGs, I used the EggNOG database (Huerta-Cepas et al. 2016), expanding the idea of 

clusters of orthologous groups (Tatusov et al. 2000) constructed from numerous 

organisms. As a source of protein interactions in bacteria I used the IntAct database 

(Kerrien et al. 2012). Furthermore, I included the protein interactome of Mesorhizobium 

loti (Shimoda et al. 2008), a protein interaction data set not available in the IntAct 

database at the time. Accounting for all experimental sources of protein interactions, I 

found that the majority of interactions (> 60%) have been found in E. coli and C. jejuni 

(Fig. 3-C). Based on the total set of roughly 52,000 interactions between proteins in the 

underlying organisms, I connected interactors sharing OGs and used the number of 

species found to share an interaction as weighting value for each interaction.

In total, I obtained a consensus meta-interactome of 8,475 orthologous groups 

embedded in web of 43,545 weighted links, covering 349 distinct bacterial species (Fig. 

3-D-A, B; see Appendix Table IV-B for details). Such a network consists of 205 

connected components and includes 1,352 self-connected nodes. Moreover, the largest 

component pooled 88.9% of all nodes. I observe that the majority of OGs in the meta-
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interactome correspond to a single protein interactor while the majority of links is 

composed of one interaction. As the average weight of links is 1.0 ± 0.1, I can consider 

the network to be largely unweighted. As a consequence, I find that the average path 

length in the unweighted network is 3.7 ± 0.9 while the diameter of the network is 

roughly 15, indicating small world network characteristics (Gallos et al. 2012). The 

average number of neighbors is 10.2 ± 23.9; this average is likely influenced by the 

presence of several broadly-defined OGs. (I interpret interactors with a shared OG to be 

potential paralogs due to their sequence similarity, so true paralogs participating in 

similar interactions will likely be present in the same group). Demonstrating the scale-

free tendency of many similar networks (Reed 2008), I found that the distribution of the 

number of neighbors decays as a power-law (Fig. 3-E).
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Fig. 3-C. Composition of the meta-interactome.  A breakdown of source species of the meta-
interactome. Protein interactions in E. coli and C. jejuni contributed to more than half of the total set of 

interactions in the meta-interactome.
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Fig. 3-D. Overall structure of the main component of the consensus meta-interactome.  A) All interactions of the main component of the consensus 
meta-interactome are shown. This segment of the network includes 7,373 nodes and 42,098 edges, or 86.9% of all interactors and 96.7% of interactions 
in the network. Interactions with more than two PPIs contributing to their interaction in this network are highlighted in green; these include 986 nodes and 
1,186 edges. In this component, each node has an average of 11.138 neighbors. The average count of of interactions contributing to each edge shown 

here is 1.18 +/- 0.922. B) The network subset of interactions highlighted in part A. The main component of this subset, including 499 nodes and 784 
edges, is shown, with all other interactions omitted for clarity. This subset is composed of edges derived from the most frequently observed types of 
interactions in the meta-interactome. In the full subset, including interactions not shown here, each node has an average of 2.004 neighbors and the 

average count of interactions contributing to each edge is 4.77 +/- 3.80.
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Fig. 3-E. Properties of the consensus meta-interactome. The number of neighboring OGs decays 
according to a power law (R2 = 0.907) in the consensus meta-interactome.
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At this point, OGs serve as nodes and any interaction between proteins of one OG and 

those of another provides an edge between nodes. The network contains 8,475 nodes 

and 43,545 edges, with 349 distinct bacterial taxids contributing interactions. There are 

168 unconnected nodes as well as 1,352 self-connected nodes. The average path 

length is 3.828 and the average number of neighbors is 9.957. This number is 

significantly larger that the average of ~3.8 interactions per protein across the six 

experimental bacterial interactomes (Table 3-A). Even the two networks with arguably 

the highest number of false positives, C. jejuni and T. pallidum, have average degrees 

of 8.8 and 5.0, respectively, much less than those with the lowest value, about 1.7, in 

Synechocystis, Mesorhizobium, and E. coli (Table 3-A).

The meta-interactome has a network diameter of 15 which indicates that it is a small 

world network (Gallos et al. 2012). The majority (~88.9%) of the nodes in this network 

form a single, interconnected component (Fig. 3-D) though most nodes are connected 

by just a single interaction. Though, as mentioned above, the degree distribution follows 

a power law – demonstrating the scale-free tendency of many similar networks (Reed 

2008) – in this case the distribution may be the result of nodes representing just a single 

protein. In biological terms, this signals a limited potential for interaction compared to 

those OGs containing many proteins.   
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The majority of the interactions in the consensus meta-interactome are contributed by a 

small set of species. More than half of the interactions are found in either Escherichia 

coli or Campylobacter jejuni (16,276 interactions and 11,308 interactions, respectively, 

or more than 63% of the interactome in total, though some interactions are seen in both 

species). An additional five species (Treponema pallidum, Synechocystis sp. PCC 6803, 

Mesorhizobium loti, Helicobacter pylori, and Bacillus subtilis) each contribute more than 

a thousand additional interactions. Each of these species, with the exception of B. 

subtilis, has been the subject of a comprehensive protein-protein interactome study. 

While all of these species are also well-studied, their contributions to the meta-

interactome are a combination of data from single interactomes and those from smaller, 

more focused studies.

3.4.2 Functional annotation of orthologous groups and their conservation

Single interactomes are known to have many gaps, i.e. interactions that went 

undetected in experimental studies (Friedel and Zimmer 2006, Guimera and Sales-

Pardo 2009). Since a missed interaction in one study may be found in an independent 

study through evolutionary conservation of the corresponding proteins, a meta-

interactome network potentially reveals such gaps. As such, I assume that links 

between orthologous groups in the consensus meta-interactome may be indicative of 

undetermined interactions between orthologs in the corresponding organisms. Counting 

the number of bacteria a given interaction was observed in, I found that relatively few 

interactions appear in multiple bacterial species (Fig. 3-F). In particular, I found 43,116 
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interactions occurred only in a single species, 361 appeared in two species while only 

68 interactions occurred in three or more species. 
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Fig. 3-F. Conserved interactions in the consensus meta-interactome. Counts of interactions in the 
consensus meta-interactome network. Nspecies indicates the number of distinct bacterial species 

contributing the interaction; a value of 1 denotes an interaction observed for a single species only. For 
each count, subsets denote how many interactions involve two, one, or zero interactors of known function 

(as both, one, and none, respectively).
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Any single bacterial proteome may contain hundreds or even thousands of proteins of  

unknown or unclear function. Out of more than 43,000 interactions, fewer than 10,000 

involve two interactors of unknown or unclear function (Fig. 3-F). Due to limited cross-

species overlap, just a small subset of fewer than 100 interactions is observed in more  

than one species and involves one or more interactors of unknown function. The limited 

extent  of  cross-species  overlap  between  interactions  appears  to  signal  lack  of 

observation rather than truly missing protein-protein interactions, suggesting that OGs 

should retain interactions across species even if their interactions have been observed 

in just one species.

Certain functional groups contribute more extensively to the meta-interactome than 

others, potentially reflecting the occurrence of more common types of protein-protein 

interactions across bacteria in general. In Fig. 3-G, I determined the overrepresentation 

of functional crosstalk between orthologous groups based on the underlying interactions 

between different proteins in the consensus meta-interactome. Unsurprisingly, the 

dominant category of interactor functions is “poorly characterized” (category S). Proteins 

with roles in translation or translational regulation (category J) also figure prominently, 

especially in interactions with poorly characterized groups.
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Fig. 3-G. Cross-functional interactions in the consensus meta-interactome. Here, raw counts of 
interactions within the consensus meta-interactome are categorized based on the functional category of 

each interactor, highlighting the incidence of cross-functional activity. See Methods for full key to 
functional categories. While most interactions appear between the same functional classes, I also 
observe that most functional cross-talk originates from OGs with translational or translation-related 

functions (category J) and with poorly characterized proteins (category S).
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3.4.3 The meta-interactome predicts interactomes and their size

The construction of a meta-interactome as described above can be used to predict the 

interactome of any species with or without interaction data. I used the consensus meta-

interactome as a model to predict any potential interactions in a given proteome 

independently of the availability of protein interactions in the underlying organism. In 

particular, I considered all interactions between OGs of a given proteome of an 

underlying organism. As such, I consider all proteins of the given proteome as 

interactors if I find their corresponding OGs interacting. As such, the interactome of a 

well-studied species such as E. coli can be improved by predicting yet undetected PPIs 

using data from a related but distinct species. 

This simple prediction method was used with all protein-coding genes from each of 

several representative bacterial species of varied genome and proteome size (Table 3-

E). Out of all eleven bacterial species shown, six have had comprehensive protein 

interactomes published, and the data is reflected in the total number of proteins 

participating in PPI with experimental evidence. To obtain a starting point for predictions, 

I used the interactome size estimation methods developed by Stumpf et al. (2008). 

These methods primarily depend upon the number of interactors and interactions in an 

experimental interactome to predict the true interactome size and therefore account for 

interactions not detected in the interactome (see Fig 1-A for the conceptual example). 

Here, I used the Stumpf et al. methods with three different counts of interactors and 

interactions: those from each of the six published interactomes, the larger counts found 
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in the meta-interactome, and the fraction of the interactome derived from experimental 

data. In cases where a given species has been the subject of just one comprehensive 

interactome study (e.g., with Synechocystis), the counts provided by the first option are 

very similar to the third.

Table 3-E. Predicted bacterial interactome sizes.

Species and 
Strain Name

Predicted 
interactome 
size in PPIs 
(this study)

Predicted 
interactome* size, 

from published 
interactome, in 

PPIs1

Predicted 
interactome size, 

from meta-
interactome, in 

PPIs1

Predicted 
interactome size, 

from meta-
interactome 

(experimental PPI 
only), in PPIs1

Proteins in 
proteome (vs. 

proteins in 
meta-

interactome)

Bacillus subtilis 
str. 168 17146 N/A 117229 67921 4175 (1597)
Caulobacter 
crescentus 
CB15 25792 N/A 177318 1580788 3885 (1482)
Escherichia coli  
K-12 43702

25736
62770 30087 4306 (3593)

Helicobacter 
pylori 26695 10576 13275 14271 5455 1553 (1337)
Mesorhizobium 
loti 
MAFF303099 57905 50735 256414 50838 7272 (3456)
Mycoplasma 
genitalium G37 718 N/A 7331 N/A 475 (149)
Pseudomonas 
aeruginosa 
PAO1 47815 N/A 88143 7073281 5892 (2488)
Salmonella 
enterica subsp. 
enterica 
serovar Typhi 30788 N/A 268219 554147 4607 (2723)
Staphylococcus 
aureus NCTC 
8325 9339 N/A 59233 650299 2767 (1099)
Synechocystis 
sp. PCC 6803 27816 11221 66575 11811 3575 (2311)
Treponema 
pallidum str. 
Nichols 6722 7433 10350 7762 1036 (835)

1 As per method of Stumpf et al. (2008).
* Published interactomes are those specified in Table 3-C.
The interactome size prediction methods in  this  study are the results of  predicting that  two different 
orthologous group members will  interact as long as members of the two groups have been observed 
interacting in  any bacterial  species.  The resulting totals  are  shown in  the second column (Predicted 
interactome size from meta-interactome (this study)). Results from the interactome size prediction method 
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used by Stumpf  et  al.  (2008)  are  shown here  for  comparison:  where  possible,  these are used  with  
interaction and interactor totals from published interactomes (third column). Two hybrid approaches are  
also presented, with the input  for the Stumpf method provided by the total  counts of interactors and 
interactions predicted by the interactome (fourth column) or by the experimentally-observed interactions in 
the  meta-interactome  only  (fifth  column).  The  final  column  provides  the  count  of  proteins  in  each 
respective proteome along with the fraction of those proteins present in the meta-interactome, including 
all proteins involved in functional predictions.

Considering a set of reference proteomes (Table 3-C), I found that interactome sizes 

thus obtained appear to increase linearly with the proteome size of the underlying 

bacterial species (Fig. 3-H).  For example, the E. coli genome codes for more than 

4,000 unique proteins, and more than 3,000 of which have been found to participate in 

at least one PPI in one or more studies. The B. subtilis genome codes for roughly the 

same number of unique proteins but fewer than 1,000 of these proteins have been 

found to participate in PPIs. However, B. subtilis has also been studied much less 

extensively, hence these numbers do not reflect the true number of interactions in a cell.
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Fig. 3-H. Predictions of maximal interactome size. Based on the consensus meta-interactome, I show 
the upper bounds of predicted interactome size (in number of protein-protein interactions, or PPI) as a 
function of proteome size. Each point corresponds to the Uniprot reference proteome of a single species 
and strain. The Saccharomyces cerevisiae interactome size predicted by Sambourg and Thierry-Mieg 
(2010) is provided for comparison and shown in red.
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The more interactions are detected, the fewer are left to be predicted. As a result, 

unstudied or incomplete interactomes have the largest potential for prediction. For 

instance, there are very few PPIs known from Streptococcus pneumoniae: just 63 of the 

2,030 proteins coded for in the S. pneumoniae R6 genome have experimental 

interactions in IntAct. My predicted interactome for this protein set increases that total to 

850 proteins. Similar results are seen for B. subtilis and for Mycobacterium tuberculosis. 

3.4.4 Biological differences vs. technical differences in interactomes

Published interactomes vary in size and composition across different studies and 

species, rendering them difficult to compare. In the case of Campylobacter jejuni, a 

genome of 1,654 ORFs yielded an interactome of more than 11,000 distinct PPIs from 

yeast two hybrid (Y2H)  screens using ~90% of the ORFs, or 1,477 in total (Parrish et 

al. 2007). By contrast, the interactome of M. loti as reported by Shimoda et al. (2008) 

includes just over 3,100 PPI though its proteome contains 7,281 predicted proteins. 

These discrepancies are clearly determined by different coverage: in the case of the M. 

loti interactome, the full genome was used as yeast two hybrid preys but only 1,542 of 

7,281 genes were used as baits. This subset was selected as per the goals of the study 

and therefore represents a conscious technical difference between interactomes.

The comparison of interactomes also reveals unavoidable methodological 

discrepancies. More than half of the PPIs contributing to the meta-interactome were 

observed using two hybrid methods, offering some methodological consistency, yet 

these methods may vary in technical implementation details such as protein expression 
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conditions, growth conditions, or even the exact yeast or bacterial strains used. As I 

have shown previously, even when exactly the same protein pairs are tested by Y2H 

assays, small differences in the experimental protocol can yield dramatically different 

results (Chen et al. 2010; Caufield et al. 2012). Inclusion of affinity purification and mass 

spectrometry (AP/MS) approaches introduces another concern: AP/MS methods 

typically infer interactions from co-purification through a spoke model approach (that is, 

that a single bait is assumed to interact with all of its co-purified proteins) (Abu-Farha et 

al. 2008) while two hybrid methods generally screen for binary interactions only. 

Previous work has estimated that the spoke-model approach over-estimates the 

number of PPIs by about 3-fold (Rajagopala et al. 2014). 

In this study, I have attempted to reduce the impact of technical differences between 

interaction studies by focusing on the subset of interactions observed in multiple 

species. This approach is especially effective for minimizing the influence of potentially 

erroneous spoke model interactions, as the bulk of these interactions in the meta-

interactome are from just two species (E. coli and M. pneumoniae, both of which have 

been subjects of full protein complex surveys). Even after interaction screens are 

completed, however, filtering conditions determine the line between raw and final data 

and hence the data deposited in databases such as IntAct.  With less frequently studied 

bacterial species like Synechocystis (Sato et al. 2007), researchers may observe too 

many PPIs among proteins of unknown function to accurately determine false positive 

interactions. It is crucial that all experimental details are documented with as much 

detail as possible, not only to ensure reproducibility, but to improve our ability to 
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understand differences between species. In the meantime, I believe a cross-species 

approach is helpful for identifying expected PPI in interactomes.

The cross-species approach employed here takes advantage of similarities in protein 

interactor sequence and similarities in interaction data to account for the impact of 

technical differences. As seen in Fig. 3-F, fewer than one thousand OG vs. OG 

interactions in the meta-interactome have been observed in more than one bacterial 

species, yet more interactions should be conserved across any two pairs of bacterial 

species.

Finally, some differences among interactomes may be due to real distinctions in 

genetics and physiology. Many processes show considerable genetic variation in 

bacteria, even when they are traditionally considered to be highly conserved. For 

instance, ribosomes are surprisingly malleable (Shoji et al. 2011, Wilson and Nierhaus 

2005) as are flagella (Titz et al. 2008), cell division proteins (Margolin 2009) or protein 

complexes in general (Caufield et al 2015, see also Chapter 2 of this work). A more 

complete meta-interactome should therefore shed light on the biological differences 

between species.

3.4.5 Meta-interactomes reveal broadly-conserved interactions involving proteins 
of unknown function

Of all OG-OG interactions involving OGs of unknown or unclear function (UF OGs), 

fewer than 10 are seen in more than 2 different species (Fig. 3-F). Highly conserved 

PPIs are thought to serve more fundamental processes in a cell (e.g. Häuser et al. 
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2012, Rajagopala et al. 2014), hence I identified well-conserved interactions for function 

prediction. Some of the most frequently observed PPIs (specifically, OG-OG 

interactions) across species are interactions among enzyme subunits, e.g. the alpha 

and beta subunits of tryptophan synthase (Table 3-F).

Table 3-F. Conserved interactions involving selected OGs of unclear function.

Interactor A Interactor B Functional 
Category and 
Function (A)

Functional 
Category and 
Function (B)

Species

ENOG4105W16 ENOG4105W16 S - Blue light 
sensor protein

S - Blue light 
sensor protein

Synechocystis sp. PCC 
6803, 
Thermosynechococcus 
elongatus

ENOG4105CXV ENOG4108XPN S - Gliding 
motility protein

S - Roadblock 
lc7 family protein

Thermus thermophilus,  
Myxococcus xanthus

ENOG4108WXF ENOG4108WXF S - KaiA , 
Component of 
the KaiABC 
clock protein 
complex

S - KaiA , 
Component of 
the KaiABC 
clock protein 
complex

Thermosynechococcus 
elongatus, 
Synechococcus 
elongatus

ENOG4105K7D ENOG4108UKE S - Ribosome 
maturation factor 
RimP

J - 30S 
ribosomal 
protein S12

Campylobacter jejuni,  
Helicobacter pylori

ENOG4105ZRE ENOG4108YZA S - Protein of 
unknown 
function 
(DUF3539)

E - GlnB, 
Nitrogen 
regulatory 
protein P-II

Nostoc sp. PCC 7120,  
Synechococcus 
elongatus

ENOG4105QDU ENOG4108V9G S - 
Uncharacterized 
protein

S - 
Uncharacterized 
protein

Campylobacter jejuni,  
Helicobacter pylori

ENOG4108SDW ENOG4107QMP S - 
recombination 
protein RecO

L - DNA 
polymerase III 
gamma and tau 
subunits 

Campylobacter jejuni,  
Helicobacter pylori

All interactions in this table have been observed in at least 4 PPI across bacterial species of at least two 
different genera, with species identified in the Species column. The full list of interactions in this set is  
provided in Appendix Table IV-D.

This list omits broadly-conserved self-interactions, such as those among histidine 

kinases (ENOG4105BZU). An orthology-based approach is more informative when used 
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with interactions among proteins in different groups (in this case, different OGs) than 

with interactions among proteins of the same OG as individual protein identities are 

ignored in the consensus meta-interactome. I have made the assumption that cross-OG 

interactions are more likely to indicate cross-function interactions and are therefore of 

great relevance to functional context.

MdaB (ENOG4105NF4) proteins figure prominently in the meta-interactome. MdaB was 

first identified as modulator of drug activity (Chatterjee et al. 1995) and is still annotated 

as such in most databases. Later, Wang et al. (2004) characterized it as a novel 

antioxidant protein similar to NADPH nitroreductases which play an important role in 

managing oxidative stress essential for successful colonization of H. pylori in its host 

(Wang et al. 2004). Its mutants are unable to colonize human host cells (Wang et al. 

2004). However, the MdaB interaction network indicates another unrelated function as it 

interacts with three motility related proteins in three different species: a chemotaxis 

protein (UniprotKB: O25152) from H. pylori, flagellin C (UniprotKB: P96747) from C. 

jejuni, and chemotaxis protein CheW (UniprotKB: P0A964) from E. coli K-12. The 

colonization phenotype may be related to motility rather than oxidative stress. In fact, 

motility is critical for initial colonization of H. pylori in its host cells (Ottemann and 

Lowenthal 2002). FlaC in particular is well characterized as an important factor for host 

cell invasion in C. jejuni (Song et al. 2004).
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Interactions between components of a protein complex can be reconstructed from the 

meta-interactome interactions. The cyanobacterial NDH-1 membrane protein complexes 

provide a good example: these proteins belong to widely-conserved family of energy 

converting NAD(P)H: Quinone oxidoreductases which are unique to organisms capable 

of photosynthesis. Many distinct NDH-1 complexes may coexist in cyanobacteria to 

carry out different functions like respiration, cyclic electron transfer and CO2 uptake 

(Zhang et al. 2005, Battchikova et al. 2011, Korste et al. 2015). At least four NDH-1 

complexes are predicted in cyanobacteria in Synechocystis 6803 (L, L’, MS, MS’). Each 

complex is composed of a basal complex (NdhA-C, NdhE,G-K, NdhL-O) associated 

with variable subcomplexes of Ndh and Cup subunits (Fig. 3-I-A, B). Each complex has 

a different function: for example, NDH-1L and L’ are responsible for respiration and 

cyclic electron flow and NDH-1MS/MS’ for CO2 uptake. The multitude of functionality of 

cyanobacteria is possible due to the presence of a great diversity of ndhD (D1-D6) and 

ndhF (F1, F3 and F4) gene families. It is possible that with sudden changes in 

CO2 levels, cyanobacteria can flexibly use the NDH-1M basal subcomplex and change 

contents of its variable subcomplex to form MS and L complexes (Korste et al. 2015).
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  A

  B

Fig.  3-I.  The  NDH-1  complex  as  an  example  of  conserved  interactions.  (A)  A NDH component 
interaction network from multiple species. Each node in this network corresponds to a single orthologous 
group and is labeled with its eggNOG identifier and most common protein name(s). Groups colored in 
orange are known components of the E. coli NDH-1 complex, the CupA protein group is shown in gray, 
and likely accessory proteins are colored in blue. Interactions between any proteins in two groups are  
shown  as  edges;  edge  width  corresponds  to  the  total  count  of  protein  interactions  in  the  meta-
interactome.  Except  where  noted,  all  interactions  in  this  network  were  experimentally  observed  with 
proteins from Synechocystis sp. PCC6803 and from Thermosynechococcus elongatus. (B) A model of the 
NDH-1MS complex in  cyanobacteria.  Each box corresponds to a protein  or group of  proteins;  those 
labeled with a single letter are Ndh proteins. Figure adapted from He et al. (2016).
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An example of the NDH-1MS (NDH-1M, NdhD/F/CupA/CupS) network in Synechocystis 

6803 and T. elongatus BP-1 is shown in Fig. 3-I-A. Only one similar interaction (NuoD 

and NuoB) is observed in E. coli. CupA (ENOG4107YAI) has been found to interact with 

NdhF (ENOG4106TXZ), NdhD1-D4 (ENOG4105C8S), and an unknown protein 

(ENOG410906A) to form the NDH-IS (NdhD/F/CupA/CupS) sub-complex.  

ENOG410906A, though a protein of unknown function, has sequence similarity to 

Fasciclin superfamily proteins associated with cell adhesion in plants amd algae 

species. This protein is 133 amino acids with a predicted molecular weight of 13 kDa. 

Korste et al (2015) found a similar protein (UniprotKB: P73392) in Synechocystis 6803 

and Q8DMA1 in T. elongatus BP-1 and designated it as CupS, a small subunit of the 

NDH-1MS complex. The NMR studies, showed that though the protein was structurally 

similar to Fasciclin superfamily, but was not associated with adhesion, contrary to 

Fasciclin superfamily proteins due to its intracellular location. Though, CupS has been 

shown to interact with NdhD/NdhF/CupA, its function is still unknown. This network data 

not only provides clarity about the interaction of NDH-1 complex proteins but also 

predicts a probable function of this unknown protein ENOG410906A in respiration. 

Cyanobacterial meta-interactome networks (Fig. 3-I-A) clearly show that the NdhH 

subunit interacts directly with all associated subunits, a point which had been in missing 

in all predicted structures of NDH-I.

3.4.6 Interactomes are impacted by high-throughput experimental methods
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The data in the meta-interactome is the result of a variety of methods and therefore is 

directly influenced by variations in the methods. As shown in Fig. 3-J, the majority of the 

PPI contributing to this data set are the result of two hybrid screens. It is therefore 

valuable to ascertain how much of the meta-interactome content is potentially the result 

of methodological variation.
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Fig. 3-J. Composition of the meta-interactome by interaction detection method. Each box 
represents 1,000 protein-protein interactions (PPI). Counts in parentheses are total PPI. Two hybrid  

includes interactions annotated as either “two hybrid” or “two hybrid array”.
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Here, I use a clustering approach to compare all methods that have been applied to the 

Braun et al. (2009) gold-standard dataset (Fig. 3-K). Two methods may detect similar 

interactions yet these methods detect different subsets of the total set of all possible 

interactions. Clustering provides the benefit of going beyond sums of interaction results 

in that it compares the patterns of results, revealing further differences between 

experimental methods. There is one distinct caveat regarding these methods: the Braun 

et al. positive reference set includes only human proteins rather than bacterial proteins. 

Some methods presented here, such as MAPPIT (Tavernier et al. 2002), are designed 

specifically to detect mammalian PPIs. It is possible that distinctions between bacterial 

proteins may create even more complications with regard to methodological differences 

as their expression conditions may differ more from nature (e.g., with bacterial proteins 

expressed in yeast vs. human proteins expressed under the same conditions).
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Fig. 3-K. A comparison of high-throughput yeast two hybrid screens. The assays used to detect each protein pair in the (A) positive reference set 
(PRS) and (B) random reference set (RRS), as defined by Braun et al. (2009), are clustered by the number and similarity of the interactions detected 
across the respective reference set. For Braun et al. assays (indicated by red labels at left), columns denote whether a specific protein interaction was 

reported. For all other assays, values are weighted values as described in the Methods, with increasing brightness indicating greater value. Black spaces 
indicate that no interaction was detected. Reference set numbers and exact methods have been omitted for clarity; see Caufield et al. (2012) for further 

details. Figure adapted from Caufield et al. (2012).
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When the available positive reference set data is reduced to binary decisions regarding 

whether an interaction is visible (i.e. without considering 3-AT concentrations), the 

results are striking: the Y2H results and the Braun results each cluster together very 

consistently except for the pDEST vectors (which were also used by Braun et al.). Not 

surprisingly, the Braun Y2H assays with the same vectors – but different reporters – 

clustered together, with the two-reporter assays simply producing fewer interactions 

(Braun et al. 2009). The Y2H assays were notable as bait/prey swaps (that is, switching 

the vectors used to express bait and prey protein fusions) typically clustered together 

too, e.g. in the pDEST, pGBGT7–pGADT7, and pGBGT7–pGADC assays, but not in the 

pGBKC–pGADC/pGADT7 cases (Fig. 3-K). This is surprising, as even bait/prey swaps 

usually result in distinctly different interaction patterns, and this result is not immediately 

obvious when examining the raw data. Overall, these results indicate that each method 

may detect different subsets of interactions within the same set of protein pairs, 

especially when multiple sets of Y2H results are compared.

These comparisons hold implications for the total number of interactions in the meta-

interactome. Out of the 23,740 PPIs in the set identified using yeast two hybrid methods 

in particular, if I assume that at least 10% of biologically-relevant PPIs are not captured 

by these methods in some way (as indicated by the inability of even the least stringent 

of some yeast two hybrid methods to detect members of the PRS; Fig. 3-K-A), then the 

total number of PPIs in the meta-interactome could increase by more than 2,000 

interactions. If, out of a set of 100 potential PPI, some methods may only detect 25 to 

30 interactions, then there are likely numerous additional PPIs existing in nature but not 

covered by the meta-interactome. Starting with about 13,000 PPIs not identified through 



yeast two hybrid or pull down methods, these missing counts may include as many as 

9,750 additional PPI among all bacterial interactors. 



3.4.7 Further discussion

If I assume that the average degree of a protein remains the same, independent of the 

proteome, then interactomes should grow linearly with proteome size and thus with 

genome size (Fig. 3-H). However, bias in the available data is likely creating distorted 

predictions: the E. coli data point (at the top of the figure) does not fit the trend and most 

of the PPI predictions I can make originate with E. coli data. Additionally, predicted 

interactome sizes are limited by the number of unannotated or highly unusual genes in 

a genome. In the case of the largest genomes in this set (P. aeruginosa and M. loti have 

genomes larger than 6 Mb), both contain at least 300 genes without orthology 

predictions (P. aeruginosa contains ~310 while M. loti contains 737). Further annotation 

of these genes or interactions among their products may allow for interaction predictions 

more like those for other species.

Proteome size is likely just one trait contributing to the overall complexity of a species 

(Schad, Tompa, and Hegyi 2009) and the interactome of that species may represent just 

one facet of its complexity. Some methods used to estimate interactome size were 

intended for use with human or yeast proteins (Venkatesan et al. 2009, Sambourg and 

Thierry-Mieg 2010) and should likely work for bacteria but may abstract or even ignore 

bacteria-specific physiological phenomena in the process. The methods employed by 

Venkatesan et al., for example, rely upon estimates of the false positive rate when 

screening human proteins for interactions; this rate is inconsistent between methods, 

species, and even subsets of proteins from a given species. Another confounding factor 

is that false positives are likely to grow exponentially with increasing proteome size, e.g. 

because a fraction of proteins interact non-specifically with hydrophobic surfaces.



In the cases of some interactions with proteins of unknown function, the lack of 

functional characterization may be a lack of understanding both proteins' role in a larger 

complex. In these cases, better functional characterization may require an 

understanding of the complex's biological role. From the reverse perspective, however, 

if these protein components are involved in PPI outside of their usual complex, the 

additional interactions may reveal properties shared by other complex components. 

Some commonly observed interactions involve poorly-understood groups of proteins: 

proteins in NOG12793 are known to be calcium ion binding (56,354 proteins in 1,123 

species map to this OG) but no other property can be defined for the entire group 

though it consistently includes hyalin domains (these domains are generally associated 

with cellular adhesion, as per Callebaut et al. 2000, though they may have a variety of 

roles).

The  meta-interactome  approach  is  an  intentional  abstraction.  It  is  intended  to 

underscore  the  bacterial  cross-species  commonality  and  conservation  of  protein 

interactions among currently  available interaction data.  As a result,  this approach is 

limited by at least three main factors: limitations of protein-protein interaction screens, 

limitations  of  publicly-available  data,  and  constraints  on  orthology  prediction.  All 

experimental interactomes are inherently incomplete and may include numerous false 

positives and otherwise erroneous results. The authors of these studies employ different 

filtering approaches and likely interpret their results based on expectations (e.g., some 

interactome studies eliminate frequently-interacting proteins like chaperones from their 

screens). Most of the available interaction data for bacterial proteins has focused on just  

a handful of species. Additional screens of proteins from more diverse sources across 



the bacterial tree of life will reveal a universe of yet unknown functions, just as gene 

sequences did for genetic diversity.



Chapter 4 – Assessing Bacterial Protein Function using Bacteriophage Proteins

Portions of this chapter have been published as:

Mehla, J., Dedrick, R.M., Caufield, J.H., Siefring, R., Mair, M., Johnson, A., Hatfull, G. F., 

Uetz, P. (2015). The protein interactome of mycobacteriophage Giles predicts 

functions for unknown proteins. J Bacteriol, 197(15), 2508–2516. 

doi:10.1128/JB.00164-15.

4.1 Abstract

Bacteriophage infections are likely the most common type of biological interaction on 

Earth. Any comprehensive study of microbial evolution must therefore consider 

interactions between bacteriophages and their bacterial hosts. Here, I have assembled 

and curated a set of experimentally-verified interactions between proteins from 10 

bacterial species and 29 bacteriophages, sourced from 48 different studies. Unlike 

previous studies of phage vs. host interactions, I have specifically focused on direct 

protein-protein interactions rather than indirect mutational comparisons or predicted 

impacts on phage infectivity. I have used this new resource to further analyze the most 

frequently observed types of protein interactions between bacteria and their viruses. 

These resources will ideally serve as a basis for further study into bacteria vs. 

bacteriophage interactions, bacterial protein function, and potential targets for 

antibacterial or bacteriostatic phage therapy.
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4.2 Introduction

4.2.1 Microbiology in the context of bacteriophage interactions

The bacterial occupants of a microbiome exist alongside those of a viriome, or the set of 

all viruses in the biological niche. The viruses infecting bacteria in particular are 

collectively referred to as bacteriophages. Considered at a global scale, the number of 

bacteriophages present on Earth is staggering: starting with a rough population estimate 

of 1030 bacterial cells on the planet – mostly in the oceans – various estimates have 

suggested as much as a 100-fold greater population of bacteriophages (Wommack and 

Colwell 2000, Rowher 2003, Clokie et al. 2011). 

These viruses serve as a massive and constant source of new genetic variation, both as 

the result of phage-mediated genetic transfer (that is, transduction) and through the 

perpetual battle between the viruses and their hosts. Bacteriophage must constantly 

develop new methods to infect, control, and eventually lyse bacteria, while bacteria 

must defend against these lethal results through systems like CRISPR (Barrangou et al. 

2007) or quorum-sensing dependent defenses (Høyland-Kroghsbo et al. 2013). 

Bacteriophages have served as ideal models for much of the history of molecular 

biology, but unfortunately this favored status has not smoothly translated into the 

genomic age. For decades, researchers studying phages used mutational analysis-

based techniques they knew would get results. They lacked easy methods to observe 

direct, protein vs. protein interactions and focused on more easily observable 
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interactions at the membrane surface (i.e., the interactions most crucial to a phage's 

infection of its host). Many current studies of phage biology continue to use similar 

methods: work by Washizaki et al. (2016) on bacteriophage T4 tail fibers primarily 

employed phage mutants and plaque assays, for example. The consistent use of 

reductionist methods focused on easily observable phenomena (i.e., numbers of 

infected bacteria and of replicating phages) lends noticeable consistency to the field but 

fails to address the potential secondary effects of mutations. In a potentially counter-

intuitive way, in order for the field of phage-host interactions to adapt to a systems 

biology perspective, it must focus more closely on the interactions between individual 

proteins rather than disruption of entire systems at a time.

4.2.2 Extending interaction analysis to viral proteins

Protein-protein interactions between phage and their hosts are, with a few exceptions 

(Roucourt and Lavigne 2009, Blasche et al. 2013), largely unexplored. Some 

researchers have developed databases specifically for the curation of virus vs. host 

protein interactions: VirHostNet (Guirimand et al. 2014) and VirusMentha (Calderone et 

al. 2015). Of these two databases, VirHostNet contains just two phage vs. host 

interactions (involving Myoviridae, specifically)  Due to the intimate relationships 

between bacteria and viruses, I chose to use these interactions as a novel venue for 

exploring bacterial genes of unknown function.
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I elected to explore the current state of the field of phage-host protein interactions for 

two primary reasons. First, while phage biology remains an active area of research, its 

findings are not always clear in the broader context of microbiology. This is potentially 

the result of researchers not wishing to overstate their findings. Each interaction 

identified between a host and viral protein may offer new insights into this common type 

of biological relationship, especially when considering the vast assemblage of gene 

sequences observed only in bacteriophage genomes. This variety is my second 

motivation for focusing on previously-studied phage-host interactions: even the 

genomes of well-studied bacteriophages contain sequences without known functions. I 

therefore hypothesized that an integrative approach to phage-host interaction data 

could reveal overall patterns relevant to phage-host relations. 

4.3 Experimental methods

4.3.1 Data curation and data set assembly

Sets of interactions between proteins derived from bacteriophages (that is, having a 

sequence identical to that of a translated bacteriophage gene) and those from bacteria 

were curated from the literature over a period between March 2015 and September 

2016. Literature was first selected from papers cited by Häuser et al. (2012) in their 

review of bacteriophage protein interactions and supplemented with works associated 

with interactions present in the IntAct (Kerrien et al. 2012), DIP (Xenarios et al. 2002), 

MINT (Licata et al. 2011) and BIND (Alfarano et al. 2005) databases. (The majority of 

the interactions in these databases is now available through IntAct.) The VirusMentha 
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project (Calderone et al. 2015) was also used to identify publications with a virus vs. 

host focus. Interactions were extracted from databases, supplementary materials, or 

directly from text. An interaction was narrowly defined as a direct interaction between 

two proteins, though this interaction may have been observed through an indirect 

phenotype change (e.g., two hybrid methods), affinity purification-based methods, or co-

crystallization. This definition distinguishes the records in this data set from indirect 

interactions, e.g. those inferred from mutational analysis or phage plaque screens.

See Table IV-A in the Appendix for the full data set. The data set contains the following 

values, with each line referring to a single interaction reported by a single study (for this 

reason, an interaction may appear multiple times in the set if it has been observed in 

multiple studies).

Phage_Interactor The protein name of the phage interactor.

Phage The name of the bacteriophage source of the phage interactor.

Phage_UPID The Uniprot entry ID of the phage interactor.

Phage_Alt_ID An alternate ID for the phage interactor if a Uniprot ID is not 

available. Otherwise, this is identical to Phage_UPID.

Phage_OG An eggNOG v.4.5 orthologous group assignment for the phage 

interactor, if available. Otherwise, this is identical to Phage_Alt_ID.

Host_Interactor The protein name of the host interactor.

Host The species name of the bacterial host and source of the host 

interactor. Different strain identities are ignored in this data set.
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Host_UPID The Uniprot entry ID of the host interactor.

Host_Alt_ID An alternate ID for the host interactor if a Uniprot ID is not available. 

Otherwise, this is identical to Host_UPID.

Host_OG An eggNOG v.4.5 orthologous group assignment for the host 

interactor, if available. Otherwise, this is identical to Host_Alt_ID.

ExpMethod The experimental method used to observe the interaction, as one of 

the methods defined by the PSI MI 2.5 methods ontology; see also 

Hermjakob et al. (2004).

ExpMethodID The ontology ID for the experimental method. Details about all 

ontologies may be found through 

http://www.ebi.ac.uk/ols/ontologies/mi.

InfMethod "Spoke" if the reported interaction is the product of a spoke 

expansion model. "-" if otherwise.

Source The first author and publication year of the source of the reported 

interaction.

SourceID An NCBI PubMed ID for the source.

Database The source database, if present in a database of protein 

interactions, or a review article including a collection of interactions.

Incidence_Phage_OG Total count of times the OG corresponding to the phage 

protein interactor is present in this table.

Incidence_Host_OG Total count of times the OG corresponding to the host 

protein interactor is present in this table.
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4.3.2 Mycobacteriophage Giles protein-protein interactome

Methods in this section refer to those performed by Mehla et al. (2015). Briefly, 74 of 77 

ORFs in the genome of Mycobacteriophage Giles were cloned into each of four vectors 

and screened in high throughput using the yeast two hybrid method. Each bait (DBD-X) 

was mated with each prey (AD-Y) on rich medium (YPD plus adenine) in a 384-colony 

format for 36 to 48 h at 30°C. Diploid cells were selected for by pinning cultures from 

mating plates onto selective agar plates (−Leu −Trp) and growing them for 2 to 3 days. 

The diploids were then screened for interacting pairs by pinning them onto selective 

screening medium (−Leu −Trp −His) and incubating at 30°C for another 4 to 7 days. All 

baits (including self-activating baits) were screened on −Leu −Trp −His plates containing 

3-AT to suppress nonspecific background; at least two different 3-AT concentrations 

between 1 and 100 mM were used for each screen to avoid elimination of true positives. 

The plates were monitored each day and positive colonies were evaluated with respect 

to the background growth on each plate.

I filtered out nonspecific raw Y2H data on the basis of prey count, with a few exceptions. 

Prey count is defined as the number of times a defined prey protein is found to be an 

interacting partner for any other bait in the tested set. The preys found to interact with 

12 or more baits (an arbitrarily defined value specific to the raw data set only) were 

predicted to be the result of nonspecific interactions and were, with some exceptions, 

not included in the retest Y2H data set. A sticky prey was included in the retest data set 
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if it was found to interact specifically and strongly at a 3-AT concentration with no 

background growth visible on the same plate.

I used the filtered set of raw protein-protein interactions to form a retest set. These 

interactions were tested as described above in a 384-colony format in quadruplicate 

(each colony was plated four times on each plate) for each bait-and-prey combination in 

all different vector configurations. Fresh bait-and-prey arrays were prepared specifically 

for these retests. All protein-protein interactions were quantitatively titrated against 

background using a series of different concentrations of 3-AT between 0 and 50 mM.

A score, % 3-ATS, was calculated for each interacting bait-prey pair using the formula % 

3-ATS = (CPPI − CB/CPPI) × 100, where % 3-ATS is the % 3-AT score calculated for each 

PPI, CPPI is the highest concentration of 3-AT at which a PPI was scored, and CB is the 

concentration of 3-AT at which background was observed. Thus, each interacting pair 

was assessed quantitatively and assigned a % 3-ATS which was used to calculate an 

overall interaction score (% IScore). Once all PPIs had been retested, the % IScore was 

used to select high-confidence PPIs. The % IScore was calculated as IScore = 3-ATS+ 

∑wk, where 3-ATS is the 3-AT score assigned to each PPI as described above and ∑wk 

= w1 + w2 + w3, where w1 is the weight value for PPIs detected in multiple vectors, 

directly proportional to the IScore (w1 = 0 if a PPI was detected by only a single vector 

or 33 if detected by at least 2 vectors), w2 is the weight value for reciprocal interactions, 

also directly proportional to the IScore (w2 = 0 if not found in a reciprocal set of 

162



interactions [e.g., A-B and B-A] or 50 if it is a reciprocal interaction), and w3 is the weight 

value for the prey count, inversely proportional to the IScore (w3 = 0, −5, −10, −15, −20, 

−25, or −30 for prey counts of 1, 2 to 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, or 26 to 30, 

respectively). Then, % IScore = (actual IScore for a given interacting pair/highest IScore 

observed for any interacting pair) × 100.

Giles protein properties were investigated further by R. Dedrick. Each Giles protein was 

assigned an essentiality value based on that determined by Dedrick et al. (2013). All 

proteins determined to be likely essential for the phage lytic cycle, whether by 

experimental observation or by their role as phage structural components, were 

designated “essential.” All other gene products were designated “nonessential.” For 

mass spectrometry (MS) analysis, wild-type Mycobacterium smegmatis mc2155 was 

infected with mycobacteriophage Giles at a multiplicity of infection (MOI) of 3. At 30 min 

and 2.5 h postinfection, a 1-ml aliquot was centrifuged, the supernatant removed, and 

the cell pellet immediately frozen. A high-titer lysate of the bacteriophage cultured in M. 

smegmatis was cesium chloride band purified twice and then submitted for mass 

spectrometry (MS) analysis along with the samples from the 30-min and 2.5-h 

postinfection time points. The mass spectrometry was performed by the University of 

California at Davis Proteomics Core on an LC-MS/MS Q-Exactive as described by Pope 

et al. (2014). This study refers to three MS fractions: an early fraction (30 min 

postinfection), a late fraction (2.5 h postinfection), and the phage particle (whole virion 

only). Individual proteins may be present in more than one MS fraction.
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4.3.3 Data analysis

Protein interactors were annotated in a semi-automated way with eggNOG v.4.5 

orthologous groups. This version of the eggNOG database incorporates a partial list of 

virus-based OGs (Huerta-Cepas et al. 2015). In cases of unclear or unannotated 

orthology, the online sequence mapping tool and hidden Markov models provided by 

eggNOG were used to search the eggNOG Bacteria sequence database to find the best 

match for the protein sequence across all bacteria-level NOGs. In cases where proteins 

remained without a clear NOG match – primarily for bacteriophage proteins – individual 

BLAST (Altschul et al. 1997) tblastn searches (with default parameters, with the 

exception of a word size of 3 instead of 6) were performed for a subset of protein 

sequences to identify potential domain-level matches.

Network analysis was performed using Cytoscape v.3.4 (Shannon et al. 2003). Sets of 

protein complexes are identical to those used in Chapter 2 but filtered to include only 

protein components found to interact with bacteriophage proteins. Sequence alignments 

were prepared using Clustal Omega (Sievers et al. 2011) and visualized using Jalview 

(Waterhouse et al. 2009).

4.4 Results and discussion

4.4.1 An example of phage protein interactions from Mycobacteriophage Giles
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As viruses, bacteriophages have life cycles which are inherently dependent upon 

interactions with their potential hosts. The same is true of the functions of the proteins 

involved in this process. Not every phage protein is directly involved in host interactions, 

however, as phages must also encode the components of their structure and perhaps 

even those providing functions we remain unaware of. From this perspective, it is 

therefore helpful to incorporate the interactions among bacteriophage proteins into the 

analysis of interactions between phage and host proteins.

Mycobacteriophage Giles provides a model for phage protein interactions and the 

potential for novel protein functions. Originally investigated by the Hatfull lab at the 

University of Pittsburgh, Giles is a phage known to infect Mycobacterium smegmatis, 

contains a genome of about 53 Kb and 77 predicted protein-coding genes, and is a 

genetic oddity among mycobacteriophages: more than half of the genes in the Giles 

genome appear to have little sequence similarity to any other mycobacteriophage genes 

(Morris et al. 2008).  At least 35 of its genes are necessary for lytic growth (Dedrick et 

al. 2013). Giles therefore presented an excellent opportunity to discover functional roles 

of novel proteins necessary to a particular phage's life cycle. Using yeast two hybrid 

screening methods and mass spectrometry analysis, my lab defined a protein-protein 

interactome for this bacteriophage (Mehla et al. 2015; Fig. 4-A). As expected, some of 

the strongest reactions were those between the phage's structural components. Some 

proteins of unknown function, including Gp56, Gp57, and Gp60, strongly and 

consistently interacted with the predicted DNA methylase Gp62.
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Fig. 4-A. The mycobacteriophage Giles interactome. A) Each node in this network refers to a specific 
gene product (Gp) coded for by the mycobacteriophage Giles genome. Interactions, shown as edges, are 
those identified by yeast two hybrid screens.  Interaction Iscore is a measurement of interaction strength 
and is described in the Methods. Essential refers to essentiality of the protein-coding gene to the Giles 

lytic cycle as determined by Dedrick et al. (2013). MS, mass spectrometry; same fraction refers to 
observation of the protein in one of three fractions as described in the Methods. Figure adapted from 

Mehla et al. (2015). B) Interactions involving Giles Gp61 (DnaQ) and proteins observed in the same MS 
fraction.
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One interactor in particular, Gp61 (Uniprot: A8WA49), is a protein with sequence 

similarity to the E. coli DNA polymerase III epsilon subunit (DnaQ; Uniprot: P03007). 

Among all mycobacterial genomes, the Giles Gp61 sequence appears to be most 

similar to a sequence found in M. canariasense, though only a draft sequence of this 

species' genome has been published thus far (Katahira et al. 2016). It is therefore 

difficult to determine if the bacterial sequence is a host protein or a phage-derived 

sequence. In any context, the overall sequence similarities indicate the protein likely has 

an exonuclease functionality. Gp61 was found to strongly and consistently interact with 

several other Giles proteins (Figure 4-A-B), three of which have structural/assembly 

roles. These associations suggest several possibilities: Gp61 may also have a role in 

phage structure or assembly, the similarity to a bacterial protein may cause Gp61 

interactors to interact with host proteins as well, and/or this protein interferes with host 

functions to mediate the phage life cycle.

At this point, I was left with two questions: what can a phage interactome like that of 

Giles tell us about phage vs. host interactions, and what can the other phage vs. host 

interactions in the curated set provide context for on their own? Out of all Giles proteins, 

we may expect those most likely to interact with host proteins are those with similarity to 

previously observed phage vs. host interactors and proteins not participating in strong 

phage vs. phage PPI. We would, however, expect potential phage vs. host interactors to 

be present in MS fractions isolated from an in vivo phage infection. As per the  
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interactome, the proteins fitting this criteria include Gp40, Gp53, Gp55, all proteins of 

unknown function, as well as the predicted head assembly protein Gp9.

Similarity between Giles protein sequences and that of other phages is surprisingly 

minimal. A sequence identical to that of Giles Gp40 appears in the related 

mycobacteriophages Evanesce, OBUPride, Kinbote, and HH92, but nowhere else 

apparent.  There is some similarity between lambda NinD (p65) and the Giles gp9 

capsid though overall sequence alignment is poor. Despite containing just 57 amino 

acids, lambda NinD was found by Blasche et al. (2013) to participate in at least 19 

different PPI with E. coli proteins. This domain could be a promiscuous interactor, at 

least. Similarly, a region of phage T4 gp56, a 171 amino acid dCTPase, shares some 

sequence similarity with the Giles gp25 virion protein.

Structural phage proteins appear frequently among the set of phage-host interactions. 

Capsid proteins, including Gp62 of Pseudomonas phage LUZ24, GP32 of 

Pseudomonas phage LUZ19, G8P of Pseudomonas phage Pf3, Gp10 of Enterobacteria 

phage T7, and Gp5 of Enterobacteria phage T7 have all been experimentally observed 

to interact with chaperones (e.g., GroEL), membrane-bound proteins (e.g., YidC), or 

DNA-binding proteins (e.g., Pseudomonas MvaT; or the DNA polymerase beta subunit, 

DnaN). Though these interactions do not involve orthologs of the same one or two 

proteins, all of these host proteins have crucial roles in protein folding and transport, 

DNA replication, or transcriptional regulation (in the case of MvaT, this protein is a global 
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repressor associating with about 110 different chromosomal regions, as per Castang et 

al. (2008)).

As a general (yet, due to its involvement with a species beyond E. coli or P. aeruginosa,  

some what exotic) example, I have Corynephage BFK20 Gp41 helicase. Solteszova et 

al. (2015) found interactions between this protein and host proteins DnaZX, DnaN, 

Dnaδ, DnaG and SSB using bacterial two hybrid. The replication proteins are conserved 

in a variety of other species but this particular interaction may or not be preserved; 

Bacillus phage SPP1 G40P helicase was also found to interact with Bacillus DnaG by 

Wang et al. (2008) and by Ayora et al. (1998). This interaction holds importance for our 

understanding of the varied mechanisms of DNA replication. In phage terms, it 

establishes the types of host proteins most frequently involved in type 2 phage 

replication (that is, those encoding DNA polymerase components; this concept is 

reviewed in great detail by Weigel and Seitz (2006)). Phages are frequently used as 

models of DNA replication as far back as the establishment of the function of DNA and 

the proteins involved in this process have been well-studied but vary across phages. It 

is therefore crucial to have a baseline of exact protein-protein interactions to work with 

for consistency.

An integrative approach to interactomes of phage vs. phage and phage vs. host PPI is 

methodologically limited in certain critical ways. In some cases, such as with the Giles 

interactome, the protein sequences involved are simply too different from most known 
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sequences for more than speculative functional inference to be made about them. Giles 

was the first mycobacteriophage to be subject to full interactome screening, however, 

and it remains possible, that similar interaction patterns may emerge should even 

distantly related phages receive the same treatment. Perhaps more importantly, despite 

more than 50 years of excellent phage research, the field is only recently devoting focus 

to direct PPI between virus and host beyond those interactions most essential to 

infection. The vast genetic diversity within phage genomes will surely offer novel 

possibilities for informative interactions. 

4.4.2 A curated set of phage-host PPI

The set of curated bacteriophage vs. bacterial protein-protein interactions (see 

Appendix Table V-A) offers three immediate benefits. It provides a single compilation of 

the published, experimental observations of a specific class of common protein 

interactions. Though at least one review has pursued a similar goal (Häuser et al. 

2012), it offers a smaller set of direct, binary interactions and does not include the 

results of several large-scale phage vs. host interaction screens performed in the last 

several years. This specific qualifier of “binary” interactions is in contrast to the more 

generalized observations determined using mutational studies. While such studies 

continue to offer compelling data for biological phenomena, they leave open the 

possibility of secondary effects. Finally, application of orthology-driven methods for 

protein and interaction comparison (as seen in Chapters 2 and 3; see the Methods of 

each respective section for further details) allows the database to serve as a method for 
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comparing interactions. Rather than existing as isolated sets of protein interactions, 

relationships may be expressed as interactions between orthologous groups.

General properties of the set of phage-host interactions are provided in Table 4-A. The 

set contains 254 proteins of unique sequence in total, corresponding to representatives 

from 29 different phages and 10 different bacterial species (Table 4-A). In total, results 

from 48 publications (Appendix Table V-B)  are included in the set, or just over 6 

interactions for each study (though some studies contribute many more interactions 

than others, e.g. work by Van den Bossche et al. (2014) contributes 80 PPI and a study 

by Blasche et al. (2013) contributes 103 PPI). Some phage proteins (e.g., lambda G 

protein) also contribute many more interactions than others (in this case, 12 PPI involve 

lambda G), potentially due to their inclusion in large-scale studies with more 

opportunities to observe novel PPI.

Table 4-A. Descriptive statistics of the phage-host protein interaction data set.

Property Value

Unique proteins 254

Unique proteins, from phage 121

Unique proteins, from bacteria 133

Interactions 294

Unique phages 29

Unique bacterial species 10

Publications 48

Unique OGs, from phage* 120 (106)

Unique OGs, from bacteria* 126 (2)

Average interactions per phage 5.73 +/- 5.51
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protein

Average interactions per 
bacterial protein

6.00 +/- 6.84

* Number in parenthesis is proteins without OG annotation; these are counted as single-member OGs.

As with any set of combined biological data from experimental sources, the set of phage 

vs. host interactions is primarily defined by the most commonly studied subjects. Fig. 4-

B provides a breakdown of the data by bacterial species and by virus serving as a 

source of proteins found participating in interactions. Interactions with proteins from E. 

coli phages contribute ~47% of the interactions, particularly those from phage lambda 

(105 interactions, or ~36% of the interactions) (Fig. 4-B-A). The phages T4 and T7 

contribute another 13 and 11 PPI, respectively. Interestingly, the Pseudomonas phage 

YuA contributes 38 PPI, as many as Streptococcus phage Dp-1, though the 

Pseudomonas phage was screened with a much smaller set of host proteins than in the 

whole-host-genome screen performed by Mariano et al. (2016) with phage Dp-1. As 

expected, the host bacterial species contributing the most PPI is dominated by the hosts 

of the phages mentioned above: E. coli, Pseudomonas aeruginosa, and Streptococcus 

pneumoniae (Fig. 4-B-B). Just 18 PPI in the set involve proteins from other bacterial 

species.
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Fig. 4-B. Composition of the observed phage vs. host protein-protein interactions by phage or 
host. Each box represents a single protein-protein interaction. Counts in parentheses are protein-protein 
interactions. A) Contributions of interactors from specific phages. B) Contributions of interactors from 
specific bacterial species.
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4.4.3 A network and meta-network analysis of phage-host PPI

Fig. 4-C provides the full set of phage-host PPI as a network. This visualization reveals 

differences in structure between subsets of the data. The cluster of E. coli interactions 

seen at the left corresponds to phage lambda interactions. Phage lambda proteins have 

been observed (largely through the high-throughput yeast two hybrid screens by 

Blasche et al. (2013)) interacting with numerous host proteins. The Pseudomonas 

phage-host interactions in the neighboring cluster demonstrate a different pattern: here, 

a set of nine host proteins interacts with many more phage proteins, primarily reflecting 

the experimental design employed by Van den Bossche et al. (2014). Unlike the lambda 

vs. host screens, the Van den Bossche et al. Pseudomonas phage screens involved no 

host proteins beyond the nine screened.

Much of this network is fragmented. In most cases, bacteriophage proteins have not 

been observed interacting with host proteins from multiple bacterial species, though this 

is likely because the screens have not been performed. A single exception to the rule is 

shown with a phage protein interacting with proteins from both E. coli and 

Pseudomonas. This interaction is that of phage T4 AsiA; Dove and Hochschild (2001) 

found this protein to interact with RNA polymerase Sigma-70 from both bacterial 

species. Otherwise, most phage proteins have been found to interact with either one or 

two host proteins, though in some cases the same host protein has been found to 

interact with multiple phage proteins.
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Fig. 4-C. The network of phage vs. host protein-protein interactions. Here, all nodes are unique 
proteins and all edges indicate an interaction observed between two proteins; multiple edges between 
nodes indicate observation of an interaction by multiple methods and/or studies. Nodes representing 

bacterial proteins are colored by species of origin.
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Figure 4-D provides the same set of interactions as shown in Fig. 4-C, though in this 

case the protein interactors have been compressed into orthologous groups (OGs) 

wherever possible. As noted above in Table 4-A, this has the most effect on bacterial 

interactors, as just 14 of 120 phage interactors can be mapped to OGs. To maximize the 

impact of orthology-based comparisons, the construction of this network also filters out 

all interactors participating in only single interactions. This compression has the greatest 

impact on bacterial proteins as the viral protein interactors demonstrate much less 

sequence similarity and, as a general result, either do not map to OGs or do not share 

OG membership. Even so, this presentation of the network reveals novel consistencies 

among phage-host interactions.  In all, this network contains 268 interactions among 

194 interactors. Many interactions are compressed as a similar type of interaction was 

observed multiple times in the same data set. The cluster of interactions formerly 

dominated by Pseudomonas interactions is revealed to involve similar types of 

interactions in Brevibacterium flavum and E. coli. Similarly, many of the formerly single 

phage protein vs. single host protein interactions have now either been filtered out (as 

noted above, due to their participation in just one interaction and hence little value for 

interaction pattern prediction) or have been compressed into larger, more 

interconnected clusters, especially in the case of E. coli interactions.
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Fig. 4-D. The meta-network of multiple-incidence phage vs. host protein-protein interactions. Here, 
all nodes are unique OGs (here, this indicates either an eggNOG OG or treatment of a unique protein as 

a single-member OG, as is the case with most phage proteins) and all edges indicate an interaction 
observed between two OGs; multiple edges between nodes indicate observation of an interaction by 

multiple methods and/or studies. Edges are colored by bacterial species of origin of protein interactors. In 
this network, all interactions involve OGs participating in more than one interaction. 
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Some of the benefit of an OG-focused approach to PPI networks can be seen with 

individual data sets. Among the 102 PPI identified by Blasche et al. (2013) between 

lambda and E. coli proteins, for example, the 133 host proteins involved in these PPI 

can be compressed into 47 OGs. Some groups, such as ENOG4105FKG (an OG 

containing genes for phage-like Noh terminases and DNA packaging proteins) appear to 

be almost completely restricted to E. coli genomes. Other groups, such as 

ENOG4105CF7 (in E. coli, the uncharacterized transcriptional regulator YqhC) appear 

to be conserved across hundreds of other bacterial genomes (though in this case, 

primarily in the Proteobacteria). Converting the lambda proteins in these PPI to OGs 

does not reduce the total number of interactors – it remains 15 in both cases – but does 

allow for cross-phage comparisons with proteins not seen in the network, as with host 

proteins. The lambda protein NinD maps to ENOG411EP1E, for instance, an member of 

which is also present in the genome of fellow enterobacteria phage P22. Phage-host 

interaction screens have not been performed using phage P22, though interestingly, 

comparisons between lambda and P22 have revealed distinctive differences in phage 

genome construction (Gough and Levine 1968) yet enough similarity to allow the two 

viruses to hybridize with each other (albeit under carefully engineered conditions, see 

Botstein and Herskowitz 1974).

4.4.4 Phage-host PPI involve broadly-conserved protein complex components
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Perhaps the most striking consistency among the PPI in the set of phage-host 

interactions is the prevalence of interactions with protein complex components. As 

shown previously in Chapter 2, though E. coli protein complexes are a rough model for 

bacterial protein complexes as a whole, they provide a general concept of the potential 

secondary impacts of a PPI involving a protein complex component. Out of all 294 

phage-host interactions, 55 involve a host protein either present in an E. coli protein 

complex or with an ortholog in one. As these complexes do not fully capture the full 

extent of orthology, I may also include proteins of more distant sequence similarity in the 

set of protein complex components (e.g., Pseudomonas DNA polymerase components 

are not fully orthologous to those of E. coli but likely provide identical functions). With 

this adjustment, the number of phage-host PPI involving a protein complex component 

increases to 93.

Fig. 4-E provides a network of interactions predicted to occur between phages and 

protein complexes. Each interaction in this network is derived from at least one PPI 

between a phage protein and a host protein component in at least one pair of virus and 

host. Here, the protein complexes are defined by those in the EcoCyc set of literature-

curated E. coli complexes (see Chapter 3 Methods). As 24 of the 67 interactions shown 

in this network involve bacterial species other than E. coli, membership in the same OG 

or a homologous protein complex is considered sufficient for protein complex 

membership. For example, P. aeruginosa RpoD is a member of ENOG4105DG1, as is 

E. coli RpoD. All interactions involving ENOG4105DG1 are therefore considered to be 
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interactions with RNA polymerase (though, in this network, RNA polymerase is 

specifically the holoenzyme containing RpoD, while the holoenzyme containing the 

stationary phase sigma38 factor RpoS is defined separately). 
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Fig. 4-E. The meta-network of phage protein vs. host complex interactions. Here, all bacteriophage 
nodes are unique OGs (here, this indicates either an eggNOG OG or treatment of a unique protein as a 

single-member OG, as is the case with most phage proteins), all host nodes are unique protein 
complexes as defined by EcoCyc, and all edges indicate any interaction observed between two OGs in 
which one interactor is a protein complex component. Edges denote origin of bacteriophage interactor 

and are predicted interactions in those involving phages with hosts other than E. coli. Bacteriophage node 
labels partially omitted for clarity; see Appendix Table V-A for full set of interactions.
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At least 10 different phage proteins have been found to interact components of 

polymerases. In Pseudomonas phages, the interactors include 17 different proteins 

from phage YuA, two from phage φKZ, and one from phage PEV interacting with DNA 

polymerase components specifically. E. coli phage T4 AsiA has also been observed in 

interactions with polymerase subunits, though its role has been more closely studied: 

AsiA is a transcriptional inhibitor, actively weakens the interaction between host 

sigma70 and RNA polymerase (Lambert et al. 2004), and is necessary for T4 

transcription (Ouhammouch et al. 1994). Lambda N protein has also been found to 

interact with RpoD along with a variety of other proteins, including RpoS (Blasche et al. 

2013). These interactions may be biased with respect to other proteins as DnaX was 

specifically identified by Van den Bossche et al. (2014) as a likely interactor with 

Pseudomonas phage proteins, though the interaction likely holds biological relevance 

as DNA replication is a likely target during the phage life cycle, other host DNA 

replication proteins are implicated in PPI, and bacteriophages lacking their own 

polymerases are known to use the host proteins for their own replication (reviewed for 

phage lambda by Skalka 1977).

Perhaps the most noticeable result of a network analysis is the potential for cross-

functional interactions. Lambda NinD, in particular, appears to interact with different sets 

of host proteins, including the formate hydrogenlyase complex and the outer membrane 

protein assembly complex BamABCDE, and an uncharacterized amino acid transporter, 

YhdWXYZ. Lambda replication protein P appears to interact with yet a different set of 
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complexes, including part of ATP synthase, ethanolamine ammonia-lyase, and the 

primosome. 
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4.4.5 Additional discussion and future work

The concept of the interactome is compelling as it implies activity. Whereas a genome 

or a proteome is essentially a list or census of a cell's prospective parts, an interactome 

maps the potential for interplay between those parts. In this sense, an interactome 

attempts to comprehensively model biomolecular activity (or, at least, assumes protein-

protein interactions play a role) within a cell. A bacterial cell's existence is rarely static, 

however. It must respond to stressors and threats in its environment, or in the case of 

bacteriophage infection, threats within the confines of its own membranes. In this stage 

of my research, I have attempted to define the state of human knowledge of this type of 

relationship within the framework of interactomics.

 

Through careful curation and application of orthology comparisons, I assembled a set of 

more than 290 phage vs. host protein-protein interactions (PPI) and determined 

commonalties among these PPI. Nearly a third of these interactions involve protein 

complex components, often of complexes crucial to bacterial life and replication (e.g., 

RNA and DNA polymerases or ribosomal proteins). As a resource, this data set may be 

most useful when interpreted along with binary phage vs. phage protein interactions or 

even those from full bacterial interactomes. 

The data set provided here should ideally serve as a starting point for further study into 

phage-host protein interactions. As a resource, it not only provides a set of binary 

interactions specific to the field of phage vs. host interactions, but serves as a guide for 
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the interactions found in future interaction screens. These interactions are 

complementary to and improved by recently released bacteriophage protein orthology 

databases (Kristensen et al. 2013; Grazziotin et al. 2016). Researchers may use 

interactors and orthology-mapped interactions to rapidly determine whether they have 

duplicated previous findings in new interaction screens. Furthermore, such a resource 

allows for consistency in interpreting future interactomics studies, even those involving 

no viral proteins. Researchers studying bacterial PPIs and interactomes may consult 

this resource to gauge the likelihood that bacteriophage proteins may compete with host 

proteins in interactions. 

Future studies into phage vs. host interactions may offer some of the few chances to 

discover novel antibacterial treatments. The most effective strategies for controlling 

bacterial infections may already exist within a phage's genome. In order for a treatment 

to be truly effective against the assortment of pathogens present in an infection, 

however, such a treatment must be designed to target multiple species and should 

involve a cocktail of phage subtypes (Levin and Bull 2004, Chan et al. 2013, Mattila et 

al. 2015). The full set of potential protein interactions should be kept in mind.  An 

orthology-based, cross-species approach to phage-host PPIs should therefore become 

standard in all investigations of phage therapy.
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Chapter 5 – Conclusions

5.1 Protein complexes are irregularly conserved across divergent bacterial 
species

As part of the work presented here, I first coupled the results of mass spectrometry-

characterized protein complexes (Hu et al. 2009, Kühner et al. 2009) with databases of 

gene orthology (Powell et al. 2012) and essentiality (Luo et al. 2014) to characterize 

interaction conservation within protein complexes. Furthermore, I used the perspective 

of genome reduction to evaluate patterns across levels of protein conservation. 

Comparing sets of protein complexes from divergent bacterial species (in this case, E. 

coli and M. pneumoniae) alleviates some of the bias inherent in using a single species 

as a universal model. Rather, observing which protein complexes and their components 

are present in two otherwise distinct species allows us to draw conclusions about how 

crucial these components are to bacterial life.

5.2 A protein-protein meta-interactome provides context for conserved 
interactions

Next, I combined experimentally-derived, previously published protein-protein 

interactions from 349 bacterial species to form a consensus meta-interactome. This 

approach uses orthologous groups (OG) of proteins to combine all known interactions 

into a single network. Notably, I observed that such a network shares characteristics of 

single species interactomes. Furthermore, the augmentation of single species 

interaction networks with a bacterial meta-interactome improves its efficacy in predicting 
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functions of the underlying proteins, given its dramatically increased information 

content. Finally, I used such a bacterial meta-interactome to predict interactome sizes of 

species for which incomplete interaction data is available.

5.3 A curated set of phage-host protein interactions provides a starting point for 
phage-host interactome screens

Finally, I assembled and curated a set of experimentally-verified interactions between 

proteins from 10 bacterial species and 29 bacteriophages, sourced from 48 different 

studies. Unlike previous studies of phage vs. host interactions, I have specifically 

focused on direct protein-protein interactions rather than indirect mutational 

comparisons or predicted impacts on phage infectivity. I have used this new resource to 

further analyze the most frequently observed types of protein interactions between 

bacteria and their viruses. These resources will ideally serve as a basis for further study 

into bacteria vs. bacteriophage interactions, bacterial protein function, and potential 

targets for antibacterial or bacteriostatic phage therapy.

5.3 Future work

The work done for this project will be improved by making it more biologically relevant 

and by making it more researcher-relevant. The three foci of this work rely heavily upon 

orthology predictions and as a result are unavoidably biased by how orthologous groups 

are assembled. Currently, group definitions are based on full protein sequences, 

potentially creating false-positive group membership when sequences are similar but 

functions diverge. A domain-based approach in which groups are composed of proteins 

187



with shared domains and sequence motifs may better reveal interaction patterns. Such 

an approach may avoid the problem of assigning proteins with very common sequences 

(e.g., DNA binding domains) to the same groups but may still be subject to bias if some 

domains simply receive preference in annotation (Schnoes et al. 2013). It also remains 

difficult (but feasible, as shown by Oates et al. 2013) to ascertain when a domain will 

retain its structure, especially if the physiochemical context of its expression is not 

conducive to maintaining the domain's stability (Yegambaram et al. 2013).

In the longer term, more rigorous methods may noticeably improve the work presented 

here.  A machine learning approach to assigning orthology or gene cluster membership 

may be the best option to avoid the preferential annotation bias discussed above; such 

methods have been attempted, though generally with genes from no more than four 

bacterial species at a time (Tetko et al. 2007, Plaimas et al. 2010, Škunca et al. 2013). A 

perfect adherence to biological relevance will be pointless, however, if its results are 

inaccessible. This and similar projects would benefit noticeably from installation and 

maintenance on a publicly-available web server. At this time, all code and data tables 

produced as part of this project will be made available online, though I hope future 

researchers may be able to improve their accessiblity to others in the field of 

microbiology, interactomics, and beyond.

Approaching the large data sets now common among microbiology studies from a 

systems biology perspective may seem obvious. When faced with more genomes, 
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protein sequences, and protein interactions than one human could possibly interpret in 

a lifetime, the natural assumption is that combining data from disparate sources will 

naturally yield otherwise unclear correlations. As exemplified from this work, such 

ventures go beyond providing immediate insights: they provide conceptual paradigms 

and usable data for future analyses. Our understanding of the protein interactions 

crucial to bacterial live will undoubtedly be essential to understanding the ongoing 

relationship between humans and the many microbial inhabitants of our world.
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APPENDIX I

Guide to spicednog

I.I. User’s guide to spicednog

Spicednog (SPecIfic Conservation for Every DamN Orthologous Group) is a set of 
Python scripts intended for parsing and retrieving orthology assignments for a given set 
of genes or genomes. All scripts are intended to be run from the Linux command line. 
Orthology data is provided by the eggNOG project v.3 
(http://eggnog.embl.de/version_3.0/). These scripts will not work properly with newer 
versions of eggNOG as the data file structure has changed. Spicednog is intended for 
use with bacterial genomes and bacterial gene orthology.

These scripts have been written for Python 2.7 and have not been fully tested with 
Python 3. They require an Internet connection.

There are three main components:

● spicednog.py takes a species or strain name and provides lists of genes, 
orthologous groups, and basic counts of locus types.

● spicednog-convert.py takes lists of Uniprot IDs and converts them into OG, NOG, 
and bactNOG IDs if available.

● spicednog-marshmallow.py takes an OG ID and finds genomes which contain it.

The accessory module ConToComplexCon.py is also provided to assist with calculating 
conservation fractions for protein complexes.

I.I.I Setup

All spicednog should be extracted to the same folder. This folder must also contain the 
eggNOG v.3 species flat file (species.v3.txt) as well as the contents of the compressed 
eggNOG members file (all.members.tar.gz; this file will decompress to a single folder, 
all.members) and the contents of the compressed eggNOG protein aliases file 
(protein.aliases.v3.txt.gz; this file decompresses to a single 3 Gb text file). Both files are 
available at http://eggnog.embl.de/version_3.0/downloads.html. 
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I.I.II Running spicednog

The main script can then be run by navigating to its location and running as shown in 
Figure A1. Here, python2 is specified to ensure the correct version is running, but may 
depend on the Python version installed on the system.

Fig. A1. The initial spicednog prompt.

Providing a species name causes spicednog to search the reference proteome 
database within Uniprot for entries matching the search query. Results will resemble 
those shown in Figure A2. In the event of no match, the search should be repeated.

Fig. A2. The results of a spicednog search.

Results contain the following information:
● taxon: the taxonomy ID specific to this entry. Used by Uniprot and the NCBI 

Taxonomy database.
● type: may be “peripheral species” or “core species”. Core species are more likely 

to be representative models.
● name_official: The full name of the corresponding species and strain.
● name_compact: A shorter form of the name.
● name_NCBI: The name used by NCBI databases.
● nr_of_loci: the total count of protein-coding loci in this species and strain's 

genome.
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Spicednog provides a suggestion of the best match to the query based on which of the 
results is a core species, if any. Otherwise, the entry may be chosen by typing the 
corresponding taxon value.

Once a reference proteome is selected, spicednog generates four files in the current 
directory.

[species name] OGs.txt contains on each line:
● An eggNOG v.3 OG. This may be a COG, NOG, or bactNOG.
● A single protein ID from the corresponding reference proteome. This is the 

internal ID used by eggNOG.
● The count of proteins in this set matching this OG. (This value includes all 

possible OG matches and will therefore not match values in other files.)
● The total count of members of the OG.

[species name] OG counts.txt contains on each line:
● An OG found in the set.
● The number of proteins in the set matching this OG.

[species name] loci counts.txt contains on each line:
● A protein found in the set.
● The number of potential OG matches for this protein.

[species name] conservation across Bacteria.txt contains on each line:
● An OG found in the set.
● A count of bacterial genomes also containing this OG.

The spicednog output also includes descriptive statistics of the reference proteome in 
terms of how many proteins can be mapped to OGs of any type and how many are 
highest-level OGs (that is, COGs) vs. more specific NOGs.

I.I.III Running accessory scripts

Spicednog-convert.py takes a list of Uniprot protein IDs as input and returns eggNOG 
IDs. This is useful for determining which proteins may map to multiple OGs. These IDs 
must be provided in a separate file. The script then prompts the user for the filename. 
The script searches the alias file for a corresponding eggNOG protein/locus ID, COG, 
NOG, and bactNOG. Results of NA indicate a corresponding ID was not found. An 
example of spicednog-convert.py output is shown in Figure A3.
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Fig. A3. The results of an example spicednog-convert.py search.

Spicednog-marshmallow.py searches for a given OG among a given set of species. 
This list may be customized (e.g., to search only Proteobacteria or another taxonomic 
group) but must be in the same directory as spicednog-marshmallow.py, must be 
named “speclist.txt”, and must contain one taxonomy ID per line. Note that some 
species or strains may not be present in all databases and may return OG counts of 
zero. The name of one or more OGs must be provided at the command line. The script 
then returns the number of times the OG is found in each of the given species with IDs 
provided in the species list. An example of spicednog-marshmallow.py output is shown 
in Figure A4.

Fig. A4. The results of an example spicednog-marshmallow.py search.
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I.II. Code

I.II.I spicednog.py

#!/usr/bin/python
# SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG 
# For parsing eggNOG files on a single­species or strain basis.
# Works properly when in same directory as the following:
# species.v3.txt
# Extracted "all.members.tar.gz" 
# Optimized for bacteria.
#INPUT: name of desired species or eggNOG identifier. Can enter as command line argument or when prompted

import mmap, re, sys, string, os

# Define input files
filenameSpecies = "species.v3.txt"
filenameCOG = "all.members/COG.members.txt"
filenameNOG = "all.members/NOG.members.txt"
filenamebactNOG = "all.members/bactNOG.members.txt"

# Open the species file and prompt for species name
txt = open(filenameSpecies)
# print "The species file is %r:" % filenameSpecies
print "Which species are you looking for?"
if (len(sys.argv)>1):

print str(sys.argv[1])
speciesname = str(sys.argv[1])

else:
speciesname = raw_input("> ")

# Search the species file for matching rows, get species code and display them
speciesmatches = 0
print txt.readline()
for line in txt:

if re.search(speciesname, line):
speciescode = re.match('[0­9]{4,}', line)
if re.search("core species", line):

bestspeciescode = speciescode
speciesmatches = speciesmatches + 1
print line,

# If there is one match, use that one. If there are >1 matches, allow the user to choose by species code
if speciesmatches != 0:

209



if speciesmatches == 1:
print "Your species code is %r." % speciescode.group()
speciescode = speciescode.group()

else:
try: 

bestspeciescode
except NameError:

print "More than one entry was matched. Aborting this run."
sys.exit(0)

else:
speciescode = bestspeciescode

print "There were %s matches. Your species code may be %s." % (speciesmatches, speciescode.group())
print "If that is acceptable, enter Y. If not, type your chosen species code (the first number)."
if (len(sys.argv)>1): #For automation purposes. Otherwise will wait for input when 4­

digit codes used
confirms = "Y"

else:
confirms = raw_input("> ")

if confirms == "Y":
speciescode = speciescode.group()

else:
speciescode = confirms

else: 
sys.exit("There were no matches. This is how things go sometimes.")

# Go back and get one species (row) entry in case a new one was specified 
# Retrieve its name and total number of loci
txt.seek(0)
for line in txt:

if re.match(speciescode + '\s', line):
speciesFullName = re.search('[A­Z]{1}[a­z]+\s[a­z]+( \w+)?( \w+)?', line)
speciesAllLoci = float((re.search('[0­9]+$', line)).group())
print "Species name: %s. Number of loci: %s." % (speciesFullName.group(), '{:g}'.format(speciesAllLoci))

# Move on to the COG and NOG files
txt.close()
ogfile=open(speciesFullName.group() + ' OGs.txt', 'w+')
print "\nOK. Building lists..."

# Retrieve rows from OG files with the corresponding species code. Write to the same output file
# Also populate the list of bacterial species while we have that bactNOG file open
loci = 0
bactnogloci = 0
txt2 = open(filenameCOG)
for line in txt2:
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if re.search("\t" + speciescode + "\.\w+", line):
#print line
loci = loci + 1
ogfile.write(line),

txt3 = open(filenameNOG)
for line in txt3:

if re.search("\t" + speciescode + "\.\w+", line):
#print line
loci = loci + 1
ogfile.write(line),

txt4 = open(filenamebactNOG)
listOfBacteria = [0] #To be a bacterial species, a code must be used with at least one bactNOG.
for line in txt4:

if (re.search('\t[0­9]{4,}\.', line)):
#print (re.search('(?:\t)([0­9]{4,})(?:\.)', line)).group(1)
listOfBacteria.append(re.search('(?:\t)([0­9]{4,})(?:\.)', line).group(1))

if re.search("\t" + speciescode + "\.\w+", line):
#print line
bactnogloci = bactnogloci + 1
ogfile.write(line),

setOfBacteria = (set(listOfBacteria))
if (bactnogloci>0):

print "This is one of 943 bacterial species/strains in the database."
else:

print "This is not a bacterial species."
sys.exit(0) #This is just here for automation purposes. Comment out when using non­bacteria

ogfile.seek(0)
#for line in ogfile:

#print line
print "\nSee %s for the OG list." % (ogfile.name)

# Get the number of times each OG is present ­ a rough analog for paralogy. Duplicates are removed. 
# print "Looking at OGs in %s" % (ogfile.name)

ogfileogcounts=open(speciesFullName.group() + ' OG counts.txt', 'w')
with ogfile as f:

filesize = os.path.getsize(speciesFullName.group() + ' OGs.txt')
data = mmap.mmap(f.fileno(), filesize)
#while True:

#lineline = data.readline()
#if lineline == "": break
#print lineline

allOGlist = re.findall('[C|N]OG[0­9]{4,6}', data)
allOGset = (set(allOGlist))
if allOGset:

211



for i in allOGset:
countOG = len(re.findall(i, data))
ogcountline = "\n" + i + "\t" + str(countOG)
#print ogcountline
ogfileogcounts.write(ogcountline),

print "\nSee %s for the OG counts." % (ogfileogcounts.name)
ogfileogcounts.close()

# Get the number of times each locus is present ­ shows which loci are in >1 OG.
# raw_input("\nPress Enter to see how many times each locus is present.")

ogfilelocicounts=open(speciesFullName.group() + ' loci counts.txt', 'w')
alllocilist = re.findall(speciescode + '\.\w+', data)
alllociset = (set(alllocilist))
if alllociset:

for i in alllociset:
countlocus = len(re.findall(i, data))
locuscountline = "\n" + i + "\t" + str(countlocus)
#print locuscountline 
ogfilelocicounts.write(locuscountline),

print "\nSee %s for the locus counts." % (ogfilelocicounts.name)
ogfilelocicounts.close()

print "\n* Within %s there are %s loci which map to OGs. %s loci are unique (that is, they don't share OGs)." % 
(speciesFullName.group(), loci, len(alllociset))
if bactnogloci >1:

print "* There are %s highest­level OGs and %s bactNOG loci." % ((len(allOGset) ­ bactnogloci), bactnogloci)
else:

print "* There are %s OGs." % (len(allOGset))
print "* OG loci, including any level of NOGs, comprise %s of all loci for this entry. %s loci did not map to OGs." % 
(('{:.2%}'.format(len(alllociset) / speciesAllLoci)),'{:g}'.format(speciesAllLoci ­ len(alllociset)))
print "In summary: /| %s | %s | %s | %s |/" % (speciesFullName.group(), speciescode, '{:g}'.format(speciesAllLoci), 
len(alllociset))

#print "\nPress Enter to get OG conservation across the whole database,\n\ttype B to restrict the search to Bacteria,\n\tOR 
type X to exit."
#confirms2 = raw_input("> ")
print "Moving on to the bacterial conservation search."
confirms2 = "B"
if confirms2 == "X":

sys.exit("Bye!")

#If requested, open up the COG and NOG and bactNOG files, split by species and remove duplicates, then search for all OGs 
found above
#If just looking at bacterial conservation, retrieves only OGs from bacterial species.
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print "\nOK, searching. This may take a while."
if confirms2 == "B":

ogfileAllConserve=open(speciesFullName.group() + ' conservation across Bacteria.txt', 'w')
else:

ogfileAllConserve=open(speciesFullName.group() + ' conservation across the database.txt', 'w')
cogs = mmap.mmap(txt2.fileno(), 0, prot=mmap.PROT_READ)
cogs = re.split('\..+(\n|\Z)', cogs)
cogset = (set(cogs))
if confirms2 == "B":

filteredcogset = set([])
for i in cogset:

if re.search('(?:\t)([0­9]{4,})', i):
if re.search('(?:\t)([0­9]{4,})', i).group(1) in setOfBacteria:

filteredcogset.add(i)
cogset = filteredcogset
print "Filtered COGs for bacteria only."

cogsettogether = '\t'.join(cogset)
nogs = mmap.mmap(txt3.fileno(), 0, prot=mmap.PROT_READ)
nogs = re.split('\..+(\n|\Z)', nogs)
nogset = (set(nogs))
if confirms2 == "B":

filterednogset = set([])
for i in nogset:

if re.search('(?:\t)([0­9]{4,})', i):
if re.search('(?:\t)([0­9]{4,})', i).group(1) in setOfBacteria:

filterednogset.add(i)
nogset = filterednogset
print "Filtered NOGs for bacteria only."

nogsettogether = '\t'.join(nogset)
bactnogs = mmap.mmap(txt4.fileno(), 0, prot=mmap.PROT_READ)
bactnogs = re.split('\..+(\n|\Z)', bactnogs) #Saves time by not filtering bactNOGs ­ they're already just in bacteria
bactnogset = (set(bactnogs))
bactnogsettogether = '\t'.join(bactnogset)
allOGlistCon = re.findall('[a­z]*[A­Z]{3}[0­9]{4,6}', data) #Get all the OGs for our chosen species.
print "Got all the OGs for the target species."
#print allOGlistCon 
allOGsetCon = (set(allOGlistCon))
#print allOGsetCon
if allOGsetCon:

for i in allOGsetCon:
countOG = 0
if 'COG' in i:

countOG = (len(re.findall(i + '\t[0­9]+', cogsettogether))) #Finds one instance of the OG per species 
code.

ogcountline = "\n" + i + "\t" + str(countOG)
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ogfileAllConserve.write(ogcountline),
if 'bactNOG' in i:

countOG = (len(re.findall(i + '\t[0­9]+', bactnogsettogether))) #Ditto. 
ogcountline = "\n" + i + "\t" + str(countOG)
ogfileAllConserve.write(ogcountline),

if 'NOG' in i and not 'bactNOG' in i:
countOG = (len(re.findall(i + '\t[0­9]+', nogsettogether))) #Same here. Leaves out missing ones to avoid 

double­counting bactNOGs
ogcountline = "\n" + i + "\t" + str(countOG)
ogfileAllConserve.write(ogcountline),

print "\nSee %s for the OG counts." % (ogfileAllConserve.name)
sys.exit(0)

I.II.II spicednog-convert.py

#!/usr/bin/python
# SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG 
# convert module ­ for turning Uniprot IDs into other things
# Works properly when in same directory as the following:
# protein.aliases.v3.txt
# Extracted "all.members.tar.gz" 
# Optimized for bacteria.
#INPUT: A list of Uniprot IDs, one per line, in file
import mmap, re, sys, string, os

# Define input files
filenameAliases = "protein.aliases.v3.txt"
filenameCOG = "all.members/COG.members.txt"
filenameNOG = "all.members/NOG.members.txt"
filenamebactNOG = "all.members/bactNOG.members.txt"

# prompt for upids
if (len(sys.argv)>1):

#print str(sys.argv[1])
filenameupid = str(sys.argv[1])

else:
print("Please enter Uniprot ID list file")
filenameupid = input("> ")

idfile = open(filenameupid)
print("upid\tlocus\tcogID\tnogID\tbactnogID")

# Search the input file for matching rows.
#Just returns the first matching hit.
undefinedvar = 'undefined'

214



for line in idfile:
upid = line.rstrip()
#print("***NOW SEARCHING ALIAS FILE FOR LOCUS FOR " + upid + "***")
txt = open(filenameAliases)
for line in txt:

#print line
locusline = undefinedvar
if upid in line:

locusline = line
#print line
break

if locusline is undefinedvar:
locus = locusline

locuslist=locusline.split("|")
locus = locuslist[0]
#print locus

# Move on to the COG and NOG files
txt.seek(0,0)

## Retrieve rows from OG files with the corresponding species code. Write to the same output file
cogID = "NA"
nogID = "NA"
bactnogID = "NA"
txt2 = open(filenameCOG)
#print("***NOW SEARCHING COG FILE FOR LOCUS FOR " + upid + "***")
for line in txt2:

if locus is undefinedvar:
break

if locus in line:
#print line
cogID = line[0:7]
break

txt2.close()
txt3 = open(filenameNOG)
#print("***NOW SEARCHING NOG FILE FOR LOCUS FOR " + upid + "***")
for line in txt3:

if locus is undefinedvar:
break

if locus in line:
#print line
nogID = line[0:8]
break

txt3.close()
txt4 = open(filenamebactNOG)
#print("***NOW SEARCHING bactNOG FILE FOR LOCUS FOR " + upid + "***")
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for line in txt4:
if locus is undefinedvar:

break
if locus in line:

#print line
bactnogID = line[0:12]
break

txt4.close()
print(upid + "\t" + locus + "\t" + cogID + "\t" + nogID + "\t" + bactnogID)

# Output everything, one line each ID

sys.exit(0)

I.II.III spicednog-marshmallow.py

#!/usr/bin/python
# SPecIfic Conservation for Every DamN Orthologous Group ­ SPICEDNOG 
# OG presence helper
# Input: At the command line, the name of the set (usually a protein complex name; don't use spaces)
# followed by the name of one or more eggNOG OGs (i.e., COG1234).
#  COGs, NOGs, and bactNOGs will work.
# Output: A taxon ID number and the number of members of the specified OG its genome contains.

import sys, array

specieslist = open("speclist.txt") #This is just a list of NCBI taxon IDs (Also used by eggNOG), one on each line.
listOfSpec = []
listOfOG = []
searchOGs = []

if (len(sys.argv)>1):
for eacharg in sys.argv:

searchOGs.append(eacharg)
#del searchOGs[0]
groupname = searchOGs[0]
del searchOGs[0]
print groupname
print "Searching for %s OGs in total." % len(searchOGs)

else:
sys.exit("No OGs provided.")

resultsList = [0]
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#Set up the arrays of species and OGs to search.
for line in specieslist:

listOfSpec.append(line.rstrip())
specieslist.close()
if any("COG" in item for item in searchOGs):

coglist = open("all.members/COG.members.txt")
for line in coglist:

listOfOG.append(line)
print "Loaded COG list."
coglist.close()

if any("bactNOG" in item for item in searchOGs):
bactnoglist = open("all.members/bactNOG.members.txt")
for line in bactnoglist:

listOfOG.append(line)
print "Loaded bactNOG list."
bactnoglist.close()

if any("NOG" in item for item in searchOGs):
noglist = open("all.members/NOG.members.txt")
for line in noglist:

listOfOG.append(line)
print "Loaded NOG list."
noglist.close()

for eachOG in searchOGs:
print "Searching for %s..." % eachOG
resultsLine = ­1
oneSpeciesResults = []
for i in listOfSpec:

resultsLine = resultsLine +1
positivecount = 0
for jline in listOfOG:

if i in jline and eachOG in jline:
positivecount = positivecount + 1

#print "%s\t%s" % (i, positivecount)
oneSpeciesResults.append(positivecount)
#print oneSpeciesResults

resultsList.append(oneSpeciesResults) 

print "*Species*\t%s" % '\t'.join(map(str, searchOGs))
index = 0
for item in listOfSpec:

tempString = "%s\t" % item
index2 = 1
for OG in searchOGs:

tempString = tempString + "\t" + str(resultsList[index2][index])
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index2 = index2 +1
print tempString
index = index +1
#On the same line, print the corresponding results row

I.II.IV ConToComplexCon.py

#!/usr/bin/python
# Script for converting spicednog­marshmallow­simple output to fractional conservation for
# each complex in a set of complexes.
# INPUTS: A matrix of conservation per species, with one species per row and 
# one OG per column. A second file contains a list of complexes and their OG components.
# OUTPUT: A matrix like the first input file, but with one complex per column.
# Output values are fractional conservation (that is, (# conserved vs. ref)/(# of components in ref. complex))

import sys, array

conlist = open("EcoCyc_and_Hu_complex_component_conservation.txt")
complexlist = open("Hu_E_coli_complexes.txt")
fractionsf = open('Hu_complex_conservation_fractions.txt', 'w')

#Load all the complexes, storing components in one list and names in another
#They should all remain in the same order though
allcomplexes = []
allnames = []
for line in complexlist:

singlecomplex = (line.rstrip()).split("\t")
singlename = singlecomplex.pop(0)
allcomplexes.append(singlecomplex)
allnames.append(singlename)

#print(allcomplexes)

#Load all components we have conservation for ­ list includes first column for consistency
possiblecomponents = ((conlist.readline()).rstrip()).split("\t")
print("Using conservation of " + str(len(possiblecomponents)) + " components in " + str(len(allnames)) + " complexes.")

#Check to make sure the data matches up
missingcount = 0
missingcomponents = []
for itercomplex in allcomplexes:

for component in itercomplex:
if component in possiblecomponents:

continue
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#print(component + " is in the set.")
else:

#print(component + " is NOT IN THE SET.")
missingcomponents.append(component)
missingcount = missingcount +1

if missingcount > 0:
print(str(missingcount) + " components are missing in the conservation data.")
print(missingcomponents)

#Set up the output file
allnames.insert(0,"Species")
fractionsf.write("\t".join(allnames) + "\n")

#Iterate through all species and complexes
errors = 0 #The number of components which couldn't be found in the set
for line in conlist:

line = (line.rstrip()).split("\t")
fractionsf.write(line[0] + "\t")
for itercomplex in allcomplexes:

totalcon = 0
for component in itercomplex:

try:
whichone = possiblecomponents.index(component)
totalcon = totalcon + int(line[whichone])
#print(totalcon)

except ValueError:
errors = errors +1
#print("Can't find " + component + " in the search set!")

fractioncon = (totalcon / float(len(itercomplex)))
fractionsf.write(str(fractioncon) + "\t")
#if fractioncon:

#print("%s\t%s\t%s\t%s") % (line[0], itercomplex, totalcon, len(itercomplex))
#fractionsf.write(repr(fractioncon))
#print(line[0] + "\t" + str(fractioncon))

fractionsf.write("\n")
print("Wrote output to " + fractionsf.name)
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APPENDIX II

Guide to network_umbra

II.I. User’s guide to network_umbra

Network_umbra predicts interactions in a protein interaction network based off a meta-
interactome network. It is intended for use with bacterial proteins and offers some 
support for viral proteins. This set of scripts is intended to be run from the Linux 
command line. It was written for Python 2.7 but should be compatible with Python 3.

Network_umbra uses eggNOG v.4 for orthology assignments (releases v.4.1 have been 
confirmed to work as expected, though previous versions will not). These scripts also 
provide options for retrieving reference proteomes from Uniprot, assigning their proteins 
to orthologs, and predicting interactions among those orthologs.

II.I.I Setup

Network_umbra requires at least 5 GB of free disk space for input and output files. It will 
download the required files if they are not found and therefore requires an Internet 
connection for this purpose.

It also requires the following:

● Biopython 1.65 or more recent. Try installing with the pip package installer as 
follows:

pip install numpy

pip install biopython

or see http://biopython.org/DIST/docs/install/Installation.html

● BeautifulSoup 4. Install as follows:

pip install beautifulsoup4

or see http://www.crummy.com/software/BeautifulSoup/bs4/doc/
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Network_umbra provides the option to download all available protein-protein 
interactions for bacteria from the IntAct database. Due to differences in data availability, 
interactions retrieved in this way may not directly correspond to those available through 
the IntAct HTML interface. See the EBI PSIQUIC View page 
(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml) for the status of 
source interaction databases. Alternatively, download interaction sets in PSI-MI TAB 2.7 
format or convert other data files to this format. These input files should contain no 
header row.

II.I.II Running Network-umbra

The first time it is run, network-umbra will download several files from eggNOG, 
including a protein ID conversion file, OG membership files, and annotation files.

It will then assemble a meta-interactome network from the provided interaction data 
file(s). All interactions involving interactors other than proteins are removed before 
addition to the meta-interactome. Finally, the meta-interactome is compressed into a 
consensus meta-interactome. The user is then presented with an options menu (Figure 
A5).

Fig. A5. The network-umbra menu seen after meta-interactome construction.

The following output files will be created, along with corresponding folders in the current 
working directory:

● 'metainteractome[date].txt'

A meta-interactome composed of all available bacterial protein-protein 
interactions. Follows PSI-MI Tab27 format, with the addition of two ortholog 
identifiers per row. See format description 
athttps://code.google.com/p/psimi/wiki/PsimiTab27Format

221

https://code.google.com/p/psimi/wiki/PsimiTab27Format


● 'meta_statistics[date].txt'

Contains statistics relevant to the produced meta-interactome.

● 'taxid_context[date].txt'

Contains NCBI taxonomy IDs, names, parent IDs, and domains for all input 
interactions. All domains should be Bacteria. Used as a reference if meta-
interactome and consensus meta-interactome not built during the same session.

● 'consensus[date].txt'

A consensus meta-interactome composed of all available bacterial protein-protein 
interactions. This set of interactions compresses all unique proteins into their 
corresponding orthologous groups. Data in each column is the following, from left 
to right:

1. InteractorA The first interactor. Usually an OG.

2. InteractorB The second interactor. Usually an OG.

3. InteractionCount Count of individual PROTEIN interactions contributing to 
this consensus interaction, as per the meta-interactome.

4. TaxonCount Count of different taxons (here, a proxy for species) 
corresponding to the interaction. Similar taxons are grouped together where 
possible, e.g. two different E. coli K-12 strains considered E. coli K-12 only.

5. Taxons The taxons corresponding to this interaction.

6. FuncCatA Functional category of the first interactor

7. DescA Description of the first interactor

8. FuncCatB Functional category of the second interactor

9. DescB Description of the second interactor

● 'cons_statistics[date].txt'

Contains statistics relevant to the produced consensus meta-interactome.
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Option A, the expanded subgraph filtering, filters the consensus meta-interactome by 
functional category and returns interactions in which one interactor is an OG and the 
other is an individual protein. These interactions can be filtered further by specifying 
how many different species/taxids each OG vs. OG interaction must have been 
observed in.

● 'subgraph_expansion_[FuncCat]_[date].txt'

A set of subgraphs of the consensus meta-interactome, filtered by conservation 
of interactions and function of interactors. Each line is one interaction between a 
consensus interactor and a unique protein, accompanied by the source taxid of 
the unique protein.

● 'subgraph_expansion_[FuncCat]nodes[date].txt'

Annotation file for the nodes in the expanded subgraphs. Each line is a single 
node and includes an OG or protein ID, a functional category if available, an OG 
description, and a protein description (each line will have one of the two types of 
description; protein descriptions are taken directly from the meta-interactome 
file).

Option B permits retrieval of one or more reference proteomes from Uniprot (see Figure 
A6). These proteomes are then used for interactome prediction. A warning is shown if a 
given proteome cannot be mapped to OGs or has limited mapping. All mapped 
proteomes are stored for later use.
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Fig. A6. Using network-umbra to retrieve a proteome.

Reference proteome retrieval may also be performed without constructing a meta-
interactome first by running proteins_umbra.py.

Network_umbra then provides the option to predict interactomes for all OG-mapped 
proteomes (see Figure A7). It first checks for experimental interactions (specifically, 
interactions involving proteins directly from the species of interest, including spoke-
model interactions) and then makes additional interaction predictions based on the 
presence of proteins with at least one interaction observed between corresponding OGs 
in a different species (that is, an interolog). The result is provided in the folder 
“predicted_interactomes” with the filename “pred_interactome[taxid].txt”. Each line in 
this file is a single interaction including the two protein interactors, two corresponding 
OGs, and whether the interaction is classified as Predicted or Experimental. A table of 
summary statistics of all interactomes predicted in the current batch is also created in 
the current working directory.
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Fig. A7. Example of interactome prediction process.

Option C provides counts of consensus meta-interactome properties. These include 
unique interactors (including both OGs and unmapped proteins, treated as single-
member OGs), interactions, and unique taxids.
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II.II. Code

II.II.I Network_umbra.py

#!/usr/bin/python
#Network_umbra.py
'''
Predicts interactions in a protein interaction network based off a meta­interactome network.
Uses eggNOG v.4.1.
Written for Python 2.7. Not tested with Python 3.

REQUIRES: Biopython 1.65 or more recent
                        Also needs at least 5 GB of available disk space to accomodate data files and output
                        More space may be necessary for proteome files.

INPUT: Downloads all available protein­protein interactions for bacteria from IntAct.
                Alternatively, uses a provided PPI data file in PSI­MI TAB 2.7 format.
                REMOVE THE HEADER ROW if it's present!
                Downloads highest­level (LUCA) and bacteria­specific Uniprot ID to NOG mappings from eggNOG v.4.1.
                Downloads highest­level (LUCA) bacteria­specific NOG annotations from eggNOG v.4.1.

OUTPUT: 
'metainteractome[date].txt'
                        A meta­interactome composed of all available bacterial protein­protein interactions.
                        Follows PSI­MI Tab27 format, with the addition of two ortholog identifiers per row.
                        See format description at https://code.google.com/p/psimi/wiki/PsimiTab27Format
                        
'meta_statistics[date].txt'
                        Contains statistics relevant to the produced meta­interactome.

'taxid_context[date].txt'
                        Contains NCBI taxonomy IDs, names, parent IDs, and domains for all input interactions.
                        All domains should be Bacteria.
                        Used as a reference if meta­interactome and consensus meta­interactome not
                        built during the same session.
                        
'consensus[date].txt'
                        A consensus meta­interactome composed of all available bacterial protein­protein interactions.
                        This set of interactions compresses all unique proteins into their corresponding orthologous groups.
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                        Data in each column is the following, from left to right:
InteractorA             The first interactor. Usually an OG.
InteractorB             The second interactor. Usually an OG.
InteractionCount                Count of individual PROTEIN interactions contributing to this consensus interaction, as per 
the meta­interactome.
TaxonCount              Count of different taxons (here, a proxy for species) corresponding to the interaction.
                        Similar taxons have been grouped together where possible, e.g. two different E. coli K­12 strains are 
just considered E. coli K­12.
Taxons          The taxons corresponding to this interaction.
FuncCatA                Functional category of the first interactor
DescA           Description of the first interactor
FuncCatB                Functional category of the second interactor
DescB           Description of the second interactor

'cons_statistics[date].txt'
                        Contains statistics relevant to the produced consensus meta­interactome.
                        
'subgraph_expansion_[FuncCat]_[date].txt'
                        A set of subgraphs of the consensus meta­interactome, filtered by conservation of interactions and 
function of interactors.
                        Each line is one interaction between a consensus interactor and a unique protein, accompanied by the 
source taxid of the unique protein.
                        
'subgraph_expansion_[FuncCat]_nodes_[date].txt'
                        Annotation file for the nodes in the expanded subgraphs.
                        
'interactome_statistics_[date].txt'
                        Counts of interactors ­ proteins and OGs ­ participating in predicted interactomes.
                        Contains the following counts per input proteome:
                        Name, taxid, Proteins, ProteinsNotInPPI, ProteinsWithExpPPI, ProteinsWithPredPPI, 
                        UniqueOGs, OGsWithoutInteractions, OGsWithExpInt, OGsWithPredInt, ExpOGIntNet, OGIntInPredNet

Uses PSIQUIC service to retrieve IntAct data ­ see https://github.com/micommunity/psicquic

'''

import proteins_umbra
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import glob, gzip, operator, os, re, requests, sys, urllib2, zipfile
from Bio import Entrez
from bs4 import BeautifulSoup
from collections import Counter
from datetime import date

Entrez.email = 'caufieldjh@vcu.edu'

#Options
useViruses = True       #Option for using eggNOG's viral OGs. Requires the filters permitting only Bacteria to be modified
                                        #Also requires the viral OGs to be downloaded and added.
                                        #This option needs to be set True BEFORE the Uniprot to OG map is built or it won't 
include proteins from viruses
                                        
useNonRefProteomes = True       #Option to search non­reference Uniprot proteomes in the interactome prediction module
#Retrieving non­reference proteomes sometimes returns an empty response.
#This happens with proteomes only in UniParc (e.g., if they are redundant)
#In those cases, we reject the search result.

#Functions

def get_eggnog_maps(): 
        #Download and unzip the eggNOG ID conversion file 
        #Filters file to just Uniprot IDs; the resulting file is the map file.
        #One Uniprot ID may correspond to multiple OGs ­ e.g. COG1234,COG3810,COG9313. 
        #these cases are considered OGs in their own right as this may indicate a pattern of conserved sequences on its own 
        baseURL = "http://eggnogdb.embl.de/download/eggnog_4.1/"
        convfilename = "eggnog4.protein_id_conversion.tsv.gz"   #File contains ALL database identifiers and corresponding 
proteins
        
        convfilepath = baseURL + convfilename
        outfilepath = convfilename[0:­3]
        dl_convfile = 1 #If 1, we need to download
        if os.path.isfile(convfilename): #Already have the compressed file, don't download
                print("Found compressed ID conversion file on disk: %s" % convfilename)
                decompress_convfile = 1
                dl_convfile = 0
        if os.path.isfile(outfilepath): #Already have the decompressed file don't download
                print("Found ID conversion file on disk: %s" % outfilepath)
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                decompress_convfile = 0
                dl_convfile = 0
        
        if dl_convfile == 1:
                print("Downloading ID mapping file ­ this file is ~400 Mb compressed so this may take some time.")
                print("Downloading from %s" % convfilepath)
                response = urllib2.urlopen(convfilepath)
                compressed_file = open(os.path.basename(convfilename), "w+b") #Start local compressed file
                chunk = 1048576
                while 1:
                        data = (response.read(chunk)) #Read one Mb at a time
                        compressed_file.write(data)
                        if not data:
                                print("\n%s file download complete." % convfilename)
                                compressed_file.close()
                                break
                        sys.stdout.flush()
                        sys.stdout.write(".")
                decompress_convfile = 1
                
        if decompress_convfile == 1:
                print("Decompressing map file. Lines written, in millions:")
                #Done in chunks since it's a large file
                with gzip.open(convfilename) as infile: #Open that compressed file, read and write to uncompressed file
                        outfile = open(outfilepath, "w+b")
                        linecount = 0
                        for line in infile:
                                outfile.write(line)
                                linecount = linecount +1
                                if linecount % 100000 == 0:
                                                sys.stdout.write(".")
                                if linecount % 1000000 == 0:
                                                sys.stdout.flush()
                                                sys.stdout.write(str(linecount/1000000))
                        infile.close()
                newconvfilename = outfilepath
                outfile.close()
        
        #Download and decompress member NOG files (2 of them)
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        nogURL = baseURL + "data/NOG/"
        nogfilename = "NOG.members.tsv.gz"
        bactnogURL = baseURL + "data/bactNOG/"
        bactnogfilename = "bactNOG.members.tsv.gz" 
        all_nog_locations = [[nogURL, nogfilename], [bactnogURL, bactnogfilename]]
        
        if useViruses == True:
                virnogURL = baseURL + "data/viruses/Viruses/"
                virnogfilename = "Viruses.members.tsv.gz"
                all_nog_locations.append([virnogURL, virnogfilename])
        
        for location in all_nog_locations:
                baseURL = location[0]
                memberfilename = location[1]
                memberfilepath = baseURL + memberfilename
                outfilepath = memberfilename[0:­3]
                if os.path.isfile(memberfilename): 
                        print("\nFound compressed NOG membership file on disk: %s" % memberfilename)
                        decompress_memberfile = 1
                if os.path.isfile(outfilepath): 
                        print("\nFound NOG membership file on disk: %s" % outfilepath)
                        decompress_memberfile = 0
                else:
                        print("\nDownloading NOG membership file ­ this may take some time.")
                        print("Downloading from %s" % memberfilepath)
                        response = urllib2.urlopen(memberfilepath)
                        compressed_file = open(os.path.basename(memberfilename), "w+b") #Start local compressed file
                        chunk = 1048576
                        while 1:
                                data = (response.read(chunk)) #Read one Mb at a time
                                compressed_file.write(data)
                                if not data:
                                        print("\n%s file download complete." % memberfilename)
                                        compressed_file.close()
                                        break
                                sys.stdout.flush()
                                sys.stdout.write(".")
                        decompress_memberfile = 1
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                if decompress_memberfile == 1:
                        print("Decompressing NOG membership file %s" % memberfilename)
                        #Done in chunks since it's a large file
                        with gzip.open(memberfilename) as infile: #Open that compressed file, read and write to uncompressed 
file
                                outfile = open(outfilepath, "w+b")
                                linecount = 0
                                for line in infile:
                                        outfile.write(line)
                                        linecount = linecount +1
                                        if linecount % 100000 == 0:
                                                sys.stdout.write(".")
                                        if linecount % 1000000 == 0:
                                                sys.stdout.flush()
                                                sys.stdout.write(str(linecount/1000000))
                                infile.close()
                        outfile.close()
                        
        #Clean up by removing compressed files
        print("\nRemoving compressed files.")
        all_compressed_files = [convfilename, nogfilename, bactnogfilename]
        if useViruses == True:
                all_compressed_files.append(virnogfilename)
        for filename in all_compressed_files:
                if os.path.isfile(filename):
                        os.remove(filename)
        
        #Load and filter the ID conversion file as dictionary
        print("Parsing ID conversion file. Lines read, in millions:")
        with open(convfilename[0:­3]) as infile:
                id_dict = {}    #Dictionary of eggNOG protein IDs with database IDs as keys
                #Gets filtered down to relevant database IDs (i.e., Uniprot IDs)
                linecount = 0
                for line in infile:
                        linecount = linecount +1
                        line_raw = ((line.rstrip()).split("\t"))        #Protein IDs are split for some reason; merge them
                        one_id_set = [line_raw[0] + "." + line_raw[1], line_raw[2], line_raw[3]]
                        if "UniProt_AC" in one_id_set[2]:
                                id_dict[one_id_set[1]] = one_id_set[0]
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                        if linecount % 100000 == 0:
                                sys.stdout.write(".")
                        if linecount % 1000000 == 0:
                                sys.stdout.flush()
                                sys.stdout.write(str(linecount/1000000))
                infile.close()

        #Use filtered ID conversion input to map to NOG members
        print("\nReading NOG membership files.")
        all_nog_filenames = [nogfilename[0:­3], bactnogfilename[0:­3]]
        nog_members = {}        #Dictionary of NOG ids with protein IDs as keys (need to split entries for each)
        nog_count = 0
        for filename in all_nog_filenames:
                temp_nog_members = {}   #We will have duplicates within each set but don't want to lose the information.
                print("Reading from %s" % filename)
                with open(filename) as infile:
                        for line in infile:
                                nog_count = nog_count +1
                                line_raw = ((line.rstrip()).split("\t"))
                                nog_id = line_raw[1]
                                line_members = line_raw[5].split(",")
                                for protein_id in line_members:                 #The same protein could be in more than one 
OG at the same level
                                        if protein_id in temp_nog_members:
                                                temp_nog_members[protein_id] = temp_nog_members[protein_id] + "," + nog_id
                                        else:
                                                temp_nog_members[protein_id] = nog_id
                        infile.close()
                nog_members.update(temp_nog_members)
        
        upids_length = str(len(id_dict))
        nogs_length = str(nog_count)
        proteins_length = str(len(nog_members))
        
        print("Mapping %s Uniprot IDs to %s NOGs through %s eggNOG protein IDs:" % (upids_length, nogs_length, 
proteins_length))
        upid_to_NOG = {}        #Conversion dictionary. Values are OGs, keys are UPIDs.
        mapped_count = 0        #upids mapped to nogs.
        for upid in id_dict:
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                if id_dict[upid] in nog_members:
                        upid_to_NOG[upid] = nog_members[id_dict[upid]]
                        mapped_count = mapped_count +1
                        if mapped_count % 100000 == 0:
                                sys.stdout.write(".")
                        if mapped_count % 1000000 == 0:
                                sys.stdout.flush()
                                sys.stdout.write(str(mapped_count/1000000))
                
        #Use this mapping to build map file, named "uniprot_og_maps_*.txt"
        print("Writing map file.")
        nowstring = (date.today()).isoformat()
        mapfilename = "uniprot_og_maps_" + nowstring + ".txt"
        mapfile = open(mapfilename, "w+b")
        for mapping in upid_to_NOG:
                mapfile.write(mapping + "\t" + upid_to_NOG[mapping] + "\n")     #Each line is a uniprot ID and an OG id
        mapfile.close() 
        
def get_interactions():
        #Download and unzip the most recent IntAct version, filtered for bacteria, using REST
        #Just uses IntAct for consistency, but could theoretically include other PSIQUIC compatible DB's
        #May need to add more interactions to the file if not present in IntAct
        #The PSICQUIC interface may also not retrieve all available interactions or may not filter as desired,
        #so script prompts for option to use other input files.
        #See format description here: https://code.google.com/p/psimi/wiki/PsimiTab27Format
        
        #As of Feb 8 2016, this only downloads a few entries ­ seem to be an issue with PSICQUIC or IntAct or both.
        
        baseURL = "http://www.ebi.ac.uk/Tools/webservices/psicquic/intact/webservices/current/search/query/species:
%22taxid:2%22?format=tab27"
        intfilename = "protein­interactions.tab"
        
        if os.path.isfile(intfilename): 
                print("Found default interaction file on disk: %s" % intfilename)
        else:
                response = urllib2.urlopen(baseURL)
                print("Downloading from IntAct. NOTE: This option may only provide enough interactions for an example.")
                intfile = open(os.path.basename(intfilename), "w+b") #Start local file
                chunk = 1048576
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                while 1:
                        data = (response.read(chunk)) #Read one Mb at a time
                        intfile.write(data)
                        if not data:
                                print("\nInteraction file download complete.")
                                intfile.close()
                                break
                        sys.stdout.flush()
                        sys.stdout.write(".")

def get_eggnog_annotations():
        #Downloads and extracts the eggNOG NOG annotations. 
        baseURLs = ["http://eggnogdb.embl.de/download/latest/data/bactNOG/", 
"http://eggnogdb.embl.de/download/latest/data/NOG/"]
        bactannfilename = "bactNOG.annotations.tsv.gz"  #The annotations for bacteria­specific NOGs
        lucaannfilename = "NOG.annotations.tsv.gz"      #The annotations for other NOGs, but not bacteria­specific NOGs
        annfilenames = [bactannfilename, lucaannfilename]
        
        if useViruses == True:
                baseURLs.append("http://eggnogdb.embl.de/download/latest/data/viruses/Viruses/")
                annfilenames.append("Viruses.annotations.tsv.gz")
        
        this_url = 0
        for annfilename in annfilenames:
                annfilepath = baseURLs[this_url] + annfilename
                this_url = this_url +1
                outfilepath = annfilename[0:­3]
                if os.path.isfile(annfilename): 
                        print("Found compressed annotation file on disk: " + annfilename)
                else:
                        response = urllib2.urlopen(annfilepath)
                        print("Downloading from " + annfilepath)
                        compressed_file = open(os.path.basename(annfilename), "w+b") #Start local compressed file
                        chunk = 1048576
                        while 1:
                                data = (response.read(chunk)) #Read one Mb at a time
                                compressed_file.write(data)
                                if not data:
                                        print("\n" + annfilename + " file download complete.")
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                                        compressed_file.close()
                                        break
                                sys.stdout.flush()
                                sys.stdout.write(".")
                
                print("Decompressing annotation file.")
                with gzip.open(annfilename) as infile: #Open that compressed file, read and write to uncompressed file
                        file_content = infile.read()
                        outfile = open(outfilepath, "w+b")
                        outfile.write(file_content)
                        infile.close()
                outfile.close()
                
        print("\nRemoving compressed files.")
        all_compressed_files = [bactannfilename, lucaannfilename]
        for filename in all_compressed_files:
                os.remove(filename)
        
def build_meta(mapping_file_list, ppi_data): 
        #Sets up the meta­interactome network.
        #Also creates statistics file about the meta­interactome.
        #This means unique proteins become referred to by their OGs.
        #Interactions are still unique, so two OGs may interact multiple times.
        
        nowstring = (date.today()).isoformat()
        meta_network_filename = "metainteractome" + nowstring + ".txt"
        taxid_context_filename = "taxid_context" + nowstring + ".txt"
        meta_network_file = open(meta_network_filename, "w")
        taxid_context_file = open(taxid_context_filename, "w")
        
        all_taxids = []
        all_filtered_taxids = []        #Will remove non­bacterial taxids, unless useViruses is on
        map_dict = {}   #Uniprot ID to OG dictionary for ALL IDs
        interaction_file = open(ppi_data)
        interaction_array = []
        interaction_filtered_array = []
        protein_array = []
        taxid_species = {} #Dictionary to store taxids and their name and PARENT taxid.
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        print("Building meta­interactome...")
        print("Setting up protein to OG maps.")
        #We preferentially use bacteria mapping first
        for input_map_file in mapping_file_list:
                try:
                        map_file = open(input_map_file)
                except IOError as e:
                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                for line in map_file:
                        one_map = ((line.rstrip()).split("\t"))
                        map_dict[one_map[0]] = one_map[1]
                map_file.close()
        
        #for item in map_dict:
        #       print(item + "\t" + map_dict[item])
        
        print("Arraying interaction file and creating lists of proteins and taxids.")
        
        for line in interaction_file:
                one_interaction = (line.rstrip()).split("\t")
                for taxid in [one_interaction[9], one_interaction[10]]:
                        taxid = (((((taxid.split("|"))[0]).lstrip("taxid:")).split("("))[0])
                        if taxid not in all_taxids and taxid != "­": #Need to start filtering taxids here so we don't pass 
bad values to Entrez
                                #Why would we get this value anyway? Could be malformed entry as all interactions should have 
taxids
                                all_taxids.append(taxid)        #Just the raw taxid list
                interaction_array.append(one_interaction)       #This is just the raw interaction list at this point
        
        interaction_file.close()
        
        
        print("Finding details for interactor taxids. This will take some time.")
        
        for taxid in all_taxids:
                
                if taxid in ["Taxid interactor A", "Taxid interactor B"]:       #This means the header wasn't removed.
                        continue
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                unique_taxid_count = 0
                #print(str(taxid))
                target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
                target_records = Entrez.read(target_handle)
                taxid_name = target_records[0]["ScientificName"]
                taxid_parent = target_records[0]["ParentTaxId"]
                taxid_division = target_records[0]["Division"]
                #print(taxid_division)
                taxid_filter = ["Bacteria"]
                if useViruses == True:
                        virus_types = ["Phages", "Viruses"]
                        for virus_type in virus_types:
                                taxid_filter.append(virus_type) 
                if taxid_division in taxid_filter:      #Restrict the set to bacteria, unless useViruses is on
                        taxid_species[taxid] = [taxid_name, taxid_parent, taxid_division]
                        taxid_context_file.write(str(taxid) + "\t" + "\t".join(taxid_species[taxid])+ "\n")
                        if taxid not in all_filtered_taxids:
                                all_filtered_taxids.append(taxid)
                                sys.stdout.flush()
                                sys.stdout.write(".")
                                unique_taxid_count = unique_taxid_count +1
                                if unique_taxid_count % 100 == 0:
                                        sys.stdout.flush()
                                        sys.stdout.write(str(unique_taxid_count))
                        #print(taxid_species[taxid])
        taxid_context_file.close()      
        
        if useViruses == False:
                print("\nCleaning up data by removing non­protein and non­bacterial interactors.")
        else:
                print("\nCleaning up data by removing non­protein and non­bacterial and non­viral interactors.")
        interactions_removed = 0
        for interaction in interaction_array:
                interaction_ok = 1
                for taxid in [interaction[9], interaction[10]]:
                        taxid = (((((taxid.split("|"))[0]).lstrip("taxid:")).split("("))[0])
                        if taxid not in all_filtered_taxids:    #This is where the non­bacterial (and non­viral, if 
useViruses is on) interactions get removed
                                interaction_ok = 0      #Ensure the interaction won't be kept later

237



                                break                           #Ignore this interactor and the other in the pair
                if interaction_ok == 1: #Don't bother to filter proteins if this didn't pass the first filter
                        for protein in interaction[0:2]:                        #both proteins in the interacting pair
                                if protein[0:9] != "uniprotkb": #Only keep proteins with uniprot IDs
                                        #Might be nice to keep other protein IDs too but they're rare
                                        interaction_ok = 0      #Ensure the interaction won't be kept later
                                        break                           #Ignore this interactor and the other in the pair
                                this_protein = protein.lstrip("uniprotkb:")
                                if this_protein not in protein_array:
                                        protein_array.append(this_protein)
                        if interaction_ok == 1: # The last filter check for cleaning
                                if interaction not in interaction_filtered_array:
                                        interaction_filtered_array.append(interaction)
                        else:
                                interactions_removed = interactions_removed +1
                else:
                        interactions_removed = interactions_removed +1
                                
                
        print("Total taxids: %s" % (len(all_filtered_taxids)))
        print("Total raw interactions: %s" % (len(interaction_array)))          
        print("Interactions removed: %s" % (interactions_removed))      
        
        print("Mapping OGs to %s proteins in %s interactions." % (len(protein_array), len(interaction_filtered_array)))
        
        protein_OG_maps = {} #Dictionary to save protein­OG mapping specific for this interaction set
        mapped_count = 0
        proteins_without_OG = 0
        for protein in protein_array:
                mapped_count = mapped_count +1
                
                if protein in map_dict:
                        matching_OG = map_dict[protein]
                else:
                        matching_OG = protein   #If the protein doesn't map to an OG it retains its original ID
                        proteins_without_OG = proteins_without_OG +1
                        
                protein_OG_maps[protein] = matching_OG
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        print("\nWriting meta­interactome file.")
        interaction_count = 0
        for interaction in interaction_filtered_array:          #Write OGs for all (filtered) interactions.
                interaction_count = interaction_count +1
                                
                for protein in interaction[0:2]:        #Get matching OGs for both proteins in the pair.
                        matching_OG = protein_OG_maps[protein.lstrip("uniprotkb:")]
                        interaction.append(matching_OG)
                        
                interaction_out = "\t".join(interaction) + "\n"
                meta_network_file.write(interaction_out)
                
                #print("mapped " + str(interaction_count) + " ­ " + matching_OG_A + " vs. " + matching_OG_B)
        
        meta_network_file.close()
        
        meta_stats_filename = "meta_statistics_" + nowstring + ".txt"
        meta_stats_file = open(meta_stats_filename, "w")
        stats_header = ("Unique proteins\tInteractions\tProteins without OG\n")
        meta_stats_file.write(stats_header)
        meta_statistics = []
        for meta_stat in [len(protein_array), interaction_count, proteins_without_OG]:
                meta_statistics.append(str(meta_stat))
        meta_stats_file.write("\t".join(meta_statistics))
        print("\nWrote meta­interactome statistics to %s" % meta_stats_filename)
        meta_stats_file.close()

        return [meta_network_filename, taxid_species]
        
def build_consensus(metafile, annotation_file_list, taxid_species): 
        #Sets up the consensus meta­interactome network.
        #This is identical to the meta­interactome but compresses interactions into their respective OGs.
        #Interactors without OG assignment are retained and considered single­member OGs.
        
        nowstring = (date.today()).isoformat()
        consensus_network_filename = "consensus" + nowstring + ".txt"
        consensus_network_file = open(consensus_network_filename, "w")
        
        consensus_interactors = []      #Consensus interactome interactors ­ an OG where mapping is possible
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        all_interactions_taxids = []    #All interactions in the meta­interactome, but just with OGs and taxids 
        all_interactions_simple = [] #All interactions in the meta­interactome, but just with OGs
        consensus_interactions = []     #Consensus interactome interactions first, then associated data. Get written to 
output file.
        all_annotations = [] #Annotations in file ­ a bit inefficient to load the whole thing but more searchable this way
        consensus_annotations = {} #Dictionary to store functional category and descriptions of OG interactors.
        
        #Load the meta­interactome file, removing true cross­species interactions
        for line in metafile:
                one_interaction = ((line.rstrip()).split("\t"))
                taxid_A = (((((one_interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                taxid_B = (((((one_interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                taxid_mismatch = 0      #Assume that the two taxids are the same by default
                if taxid_A != taxid_B:  #If the two taxids aren't identical, they may still be related or may truly be cross­
species.
                        #Cross­species PPI get removed.
                        taxid_mismatch = 1
                        if (taxid_species[taxid_A])[1] == (taxid_species[taxid_B])[1]: #Check if taxids share a parent
                                taxid_mismatch = 0
                        if (taxid_species[taxid_A])[1] == taxid_B or (taxid_species[taxid_B])[1] == taxid_A: #Check for 
parent­child relationship
                                taxid_mismatch = 0      
                if taxid_mismatch != 1:
                        all_interactions_taxids.append([one_interaction[42], one_interaction[43], taxid_A, taxid_B])
                        all_interactions_simple.append([one_interaction[42], one_interaction[43]])
        
        #First pass: create a list of unique interactors and interactions, using OG IDs
        print("Finding unique interactors and interactions. Interactions found:")
        cons_interaction_count = 0
        
        for interaction in all_interactions_simple:
                interaction_rev = [interaction[1], interaction[0]]
                new_interaction = 0
                for interactor in interaction:  #Interactor A or B's OG or ID if no OG mapped
                        if interactor not in consensus_interactors:
                                consensus_interactors.append(interactor)
                if interaction not in consensus_interactions and interaction_rev not in consensus_interactions:
                        new_interaction = 1
                if new_interaction == 1:
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                        cons_interaction_count = cons_interaction_count +1
                        if cons_interaction_count % 100 == 0:
                                        sys.stdout.flush()
                                        sys.stdout.write(".")
                        if cons_interaction_count % 1000 == 0:
                                        sys.stdout.flush()
                                        sys.stdout.write(str(cons_interaction_count))
                        consensus_interactions.append(interaction)
                        
        #Second pass: count the number of interactions contributing to each consensus
        #Compare taxids across interactions to see how many different sources interaction is seen for (i.e., X different 
species) 
        #Add counts to each item in consensus_interactions
        #The first count is the total occurence of the given interaction across the full meta­interactome
        #The second count is the number of different, unique taxids (species or at least distant strains) corresponding to 
the interaction
        
        print("\nCounting interaction contributions. This may take a while.")
        print("Consensus interactions checked, out of %s:" % (len(consensus_interactions)))
        
        all_consensus_taxids = []
        con_interactions_counted = 0
        for interaction in consensus_interactions:
                con_interactions_counted = con_interactions_counted +1
                if con_interactions_counted % 100 == 0:
                        sys.stdout.flush()
                        sys.stdout.write(".")
                if con_interactions_counted % 1000 == 0:
                        sys.stdout.flush()
                        sys.stdout.write(str(con_interactions_counted))
                interaction_sources = []        #The list of taxids found to correspond to this interaction.
                original_count = 0
                #This gets a bit complicated.
                for original_interaction in all_interactions_taxids:    #For each interaction in the set of all (not OG­
compressed consensus) meta­interactome interactions...
                        original_interaction_slim = original_interaction[0:2]
                        original_interaction_slim_rev = [original_interaction[1], original_interaction[0]]
                        if interaction == original_interaction_slim or interaction == original_interaction_slim_rev:    #If 
the original interaction OR its reverse matches the consensus interaction...
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                                original_count = original_count +1      #Add to the count of this interaction across the 
meta­interactome.
                                for taxid in original_interaction[2:4]: #For both taxids corresponding to the meta­
interactome interaction...
                                        if taxid not in interaction_sources and taxid != "­":   #If the taxid isn't in the 
source taxids for this interaction yet...and isn't empty...
                                                if (taxid_species[taxid])[1] not in interaction_sources:        #Check to see 
if the sources contain the taxid's parent taxid (if so, it's redundant)
                                                        for source in interaction_sources:
                                                                if (taxid_species[source])[1] == taxid: #Check to see if 
taxid is a parent of existing sources (if so, remove children and just use parent)
                                                                        interaction_sources.remove(source)
                                                                if (taxid_species[source])[1] == (taxid_species[taxid])[1]: 
#Check if taxids share a parent (if so, use parent taxid and drop children)
                                                                        taxid = (taxid_species[source])[1]      #The problem 
here is that the parent taxid may not be in taxid_species since it's new to us
                                                                        
                                                                        #So we look it up and add it!
                                                                        target_handle = Entrez.efetch(db="Taxonomy", 
id=str(taxid), retmode="xml")
                                                                        target_records = Entrez.read(target_handle)
                                                                        taxid_name = target_records[0]["ScientificName"]
                                                                        taxid_parent = target_records[0]["ParentTaxId"]
                                                                        taxid_species[taxid] = [taxid_name, taxid_parent]
                                                                        #This really should be its own function to limit 
redundancy
                                                                        
                                                                        interaction_sources.remove(source)
                                                        interaction_sources.append(taxid)
                for source in interaction_sources:      #List all the taxids used across the consensus ­ does NOT care about 
parent/child relationships
                        if source not in all_consensus_taxids:
                                all_consensus_taxids.append(source)
                interaction.append(str(original_count))
                interaction.append(str(len(interaction_sources)))
                interaction.append(" ".join(interaction_sources))
                #print(interaction)
        
        #Third pass: get the functional categories and descriptions of all interactors
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        print("\nAdding interactor annotations.")
        for input_ann_file in annotation_file_list:
                try:
                        ann_file = open(input_ann_file)
                except IOError as e:
                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                for line in ann_file:
                        all_annotations.append((line.rstrip()).split("\t"))
                ann_file.close()
        
        multiple_og_count = 0   #The count of interactors mapping to >1 OG. Are treated as single OGs as this may be 
biologically meaningful
        annotation_count = 0
        for interactor in consensus_interactors:
                annotation_count = annotation_count +1
                if annotation_count % 100 == 0:
                        sys.stdout.write(".")
                if annotation_count % 1000 == 0:
                        sys.stdout.write(str(annotation_count))
                consensus_annotations[interactor] = ["NA", "NA"] #Should only happen if OG not in description file (e.g. if 
it's unmapped to an OG)
                if "," in interactor:   #Meaning it maps to multiple OGs, so we need to annotate all of them
                        #print(interactor)
                        this_mult_og_count = 0  #Keeps track of multiple OG sets. Usually just two or three different OGs at 
most.
                        consensus_annotations[interactor] = ["", ""]
                        multiple_og_count = multiple_og_count +1
                        multiple_ogs = interactor.split(",")
                        for og in multiple_ogs:
                                this_mult_og_count = this_mult_og_count +1
                                for annotation in all_annotations:
                                        if og == annotation[1]:
                                                #Concatenate each FuncCat, separated by |
                                                (consensus_annotations[interactor])[0] = (consensus_annotations[interactor])
[0] + annotation[4]
                                                if this_mult_og_count != len(multiple_ogs):
                                                        (consensus_annotations[interactor])[0] = 
(consensus_annotations[interactor])[0] + "|"
                                                #Concatenate each description, separated by |
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                                                (consensus_annotations[interactor])[1] = (consensus_annotations[interactor])
[1] + annotation[5]
                                                if this_mult_og_count != len(multiple_ogs):
                                                        (consensus_annotations[interactor])[1] = 
(consensus_annotations[interactor])[1] + "|"
                                                break
                else:
                        for annotation in all_annotations:
                                if interactor == annotation[1]:
                                        consensus_annotations[interactor] = [annotation[4], annotation[5]] #FuncCat and 
description
                                        break
        for interaction in consensus_interactions:
                for interactor in interaction[0:2]:
                        interaction.append("\t".join(consensus_annotations[interactor]))
        
        print("\nConsensus meta­interactome involves " +
                        "%s interactors and %s interactions." % (len(consensus_interactors), cons_interaction_count))
        print("It involves %s unique taxids, " % (len(all_consensus_taxids)) +
                        "though some may be closely related.")
        print("%s interactors map to more than one OG." % multiple_og_count)
        
        print("Writing consensus meta­interactome file.")
        for interaction in consensus_interactions:
                consensus_network_file.write("\t".join(interaction) + "\n")
        consensus_network_file.close()
        
        cons_stats_filename = "cons_statistics_" + nowstring + ".txt"
        cons_stats_file = open(cons_stats_filename, "w")
        stats_header = ("Unique interactors\tInteractions\tTaxids\n")
        cons_stats_file.write(stats_header)
        cons_statistics = []
        for cons_stat in [len(consensus_interactors), cons_interaction_count, len(all_consensus_taxids)]:
                cons_statistics.append(str(cons_stat))
        cons_stats_file.write("\t".join(cons_statistics))
        print("Wrote consensus meta­interactome statistics to " + cons_stats_filename)
        cons_stats_file.close()
        
        return consensus_network_filename
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def merge_data(list_of_filenames):
        
        nowstring = (date.today()).isoformat()
        merged_file_name = "interactions" + nowstring + ".txt"
        merged_file = open(merged_file_name, "w")
        
        for item in list_of_filenames:
                this_file = open(item)
                line_count = 0
                for line in this_file:
                        write_ok = 1
                        line_count = line_count +1
                        line_contents = ((line.rstrip()).split("\t"))
                        for interactor in line_contents[0:2]:
                                if interactor == "­":
                                        print("Empty interactor in %s in line %s" + str() % (item, line_count))
                                        write_ok = 0
                                        #Unmapped interactors might be denoted with a ­. Don't add them.
                        if len(line_contents) != 42:
                                print("Format problem in %s line %s" % (item, line_count))
                                write_ok = 0
                                #Just checking to see if the right number of columns are there
                                #Won't write problem lines to the merged file
                        if write_ok == 1:
                                merged_file.write(line)
                this_file.close()
        return merged_file_name
        
def subgraph_expansion(metafile, consensusfile):
        print("\nSubset expansion will filter consensus interactions by functional category" +
                         " and by conservation across taxonomic groups.\n" +
                         "It will produce a set of subgraphs, where each graph involves a consensus" +
                         " interactor and ALL of its interactions in the meta­interactome.\n" +
                         "These graphs will contain taxonomy annotations for each interaction" +
                         " and can be split in network analysis software, e.g. Cytoscape.\n")
        print("Functional categories:\n" 
                        "INFORMATION STORAGE AND PROCESSING\n"
                        "[J] Translation, ribosomal structure and biogenesis\n" 
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                        "[A] RNA processing and modification\n" 
                        "[K] Transcription\n"
                        "[L] Replication, recombination and repair\n" 
                        "[B] Chromatin structure and dynamics\n"
                        "CELLULAR PROCESSES AND SIGNALING\n"
                        "[D] Cell cycle control, cell division, chromosome partitioning\n" 
                        "[Y] Nuclear structure\n"
                        "[V] Defense mechanisms\n"
                        "[T] Signal transduction mechanisms\n"
                        "[M] Cell wall/membrane/envelope biogenesis\n" 
                        "[N] Cell motility\n" 
                        "[Z] Cytoskeleton\n"
                        "[W] Extracellular structures\n"
                        "[U] Intracellular trafficking, secretion, and vesicular transport\n" 
                        "[O] Posttranslational modification, protein turnover, chaperones\n" 
                        "METABOLISM\n"
                        "[C] Energy production and conversion\n"
                        "[G] Carbohydrate transport and metabolism\n" 
                        "[E] Amino acid transport and metabolism\n"
                        "[F] Nucleotide transport and metabolism\n" 
                        "[H] Coenzyme transport and metabolism\n" 
                        "[I] Lipid transport and metabolism\n"
                        "[P] Inorganic ion transport and metabolism\n"
                        "[Q] Secondary metabolites biosynthesis, transport and catabolism\n" 
                        "POORLY CHARACTERIZED\n"
                        "[R] General function prediction only\n"
                        "[S] Function unknown\n")
                        
        func_filter = raw_input("Filter interactors for which functional category? (Type X for interactors of unknown 
function.)\n")
        search_unknowns = 0
        if func_filter in ["x", "X"]:
                search_unknowns = 1
                print("Filtering for interactors of unknown function. Interactors marked NA will not be included.")
        
        consensus_interactions = []     #Contains whole line (one interaction) from consensus
        consensus_interactions_filtered = [] #Interactions filtered by FuncCat
        consensus_interactions_taxfilt = []     #Interactions filtered by FuncCat and taxids
        consensus_interactors_filtered = {}     #Contains interactor, FuncCat, and description (filtered by FuncCat)
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        consensus_interactors_taxfilt = {}      #Contains interactor, FuncCat, and description (filtered by FuncCat and 
                                                                                #by participation in an interaction passing 
the taxid filter)
        expanded_interactions = {}                      #Keys are consensus interactors. Values are all unique proteins (and 
sources) they interact with.
                                                                                #Actually a dict of lists of lists. Fun.
        max_taxon_range = 1     #The greatest count of different taxids per interaction, across the whole consensus
        all_interactions = []   #All interactions in the meta­interactome
        protein_annotations = {}        #Annotations (from IntAct) for unique proteins. No FuncCats here.
        
        print("Filtering consensus interactors by function.")
        consensusfile.seek(0)   #In case we've been using the file already
        for line in consensusfile:      #Filter interactors by FuncCat
                one_consensus_interaction = ((line.rstrip()).split("\t"))
                consensus_interactions.append(one_consensus_interaction)
                
                if one_consensus_interaction[5] != "NA":        #For interactor A
                        if search_unknowns == 1:
                                if "R" in one_consensus_interaction[5] or "S" in one_consensus_interaction[5]:
                                        consensus_interactors_filtered[one_consensus_interaction[0]] = 
[one_consensus_interaction[5], one_consensus_interaction[6]]
                        else:
                                if func_filter in one_consensus_interaction[5]:
                                        consensus_interactors_filtered[one_consensus_interaction[0]] = 
[one_consensus_interaction[5], one_consensus_interaction[6]]
                if one_consensus_interaction[7] != "NA":        #For interactor B
                        if search_unknowns == 1:
                                if "R" in one_consensus_interaction[7] or "S" in one_consensus_interaction[7]:
                                        consensus_interactors_filtered[one_consensus_interaction[1]] = 
[one_consensus_interaction[7], one_consensus_interaction[8]]
                        else:
                                if func_filter in one_consensus_interaction[7]:
                                        consensus_interactors_filtered[one_consensus_interaction[1]] = 
[one_consensus_interaction[7], one_consensus_interaction[8]]
                                        
        consensusfile.close()   #May not want to close file if we plan on doing multiple filters during same session.
        
        for interaction in consensus_interactions:
                if interaction[0] in consensus_interactors_filtered or interaction[1] in consensus_interactors_filtered:
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                        consensus_interactions_filtered.append(interaction)
                        if interaction[3] > max_taxon_range:
                                max_taxon_range = interaction[3]
                
        print("The maximum for this filter will be " + str(max_taxon_range) + " different taxids.")
        tax_filter = raw_input("Select for at least how many different taxonomic groups?\n")
        
        for interaction in consensus_interactions_filtered:
                if interaction[3] >= tax_filter:
                        consensus_interactions_taxfilt.append(interaction)
                        
                        if interaction[5] != "NA":      #For interactor A
                                if search_unknowns == 1:
                                        if "R" in interaction[5] or "S" in interaction[5]:
                                                consensus_interactors_taxfilt[interaction[0]] = [interaction[5], 
interaction[6]]
                                else:
                                        if func_filter in interaction[5]:
                                                consensus_interactors_taxfilt[interaction[0]] = [interaction[5], 
interaction[6]]
                        if interaction[7] != "NA":      #For interactor B
                                if search_unknowns == 1:
                                        if "R" in interaction[7] or "S" in interaction[7]:
                                                consensus_interactors_taxfilt[interaction[1]] = [interaction[7], 
interaction[8]]
                                else:
                                        if func_filter in interaction[7]:
                                                consensus_interactors_taxfilt[interaction[1]] = [interaction[7], 
interaction[8]]
        
        print("Generated list of filtered consensus interactors. Searching meta­interactome.")
        
        for line in metafile:   #Set up the meta­interactome file first
                one_interaction = (line.rstrip()).split("\t")
                all_interactions.append(one_interaction)        #This is just the raw interaction list at this point
        
        metafile.close()
                
        for interactor in consensus_interactors_taxfilt:
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                expanded_interactions[interactor] = []
                for interaction in all_interactions:    #Search meta­interactome for matching interactions; return unique all 
proteins and corresponding organisms
                        if interaction[42] == interactor:
                                taxid = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                                protein = interaction[1].lstrip("uniprotkb:")
                                if protein not in protein_annotations:
                                        protein_annotations[protein] = [interaction[23], interaction[43]]
                                protein_and_source = [protein, taxid]
                                (expanded_interactions[interactor]).append(protein_and_source)
                        if interaction[43] == interactor:
                                if interaction[0] != interaction[1]:    #Avoid adding self­interactions twice.
                                        taxid = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                                        protein = interaction[0].lstrip("uniprotkb:")
                                        if protein not in protein_annotations:
                                                protein_annotations[protein] = [interaction[22], interaction[42]]
                                        protein_and_source = [protein, taxid]
                                        (expanded_interactions[interactor]).append(protein_and_source)
        
        nowstring = (date.today()).isoformat()
        subgraph_file_name = "subgraph_expansion_" + func_filter + "_" + nowstring + ".txt"
        subgraph_node_file_name = "subgraph_expansion_" + func_filter + "_nodes_" + nowstring + ".txt"
        subgraph_file = open(subgraph_file_name, "w")
        subgraph_node_file = open(subgraph_node_file_name, "w")
        
        #print(consensus_interactors_taxfilt)   
        #print(expanded_interactions)
        
        print("Writing subgraph expansion file and node annotation file.")
        for consensus_interactor in expanded_interactions:
                for interaction in expanded_interactions[consensus_interactor]:
                        #print(consensus_interactor + "\t" + "\t".join(interaction))
                        subgraph_file.write(consensus_interactor + "\t" + "\t".join(interaction) + "\n")
        
        #Protein annotations are kind of a mess but that's because the interaction data table combines interactor annotations 
into single columns.
        #It's also difficult to know what kind of annotation to expect. 
        #All are included here, for now.
        

249



        for interactor in consensus_interactors_taxfilt:
                subgraph_node_file.write(interactor + "\t" + "\t".join(consensus_interactors_taxfilt[interactor]) + "\t­\n")
        for protein in protein_annotations:
                subgraph_node_file.write(protein + "\t­\t" + "\t".join(protein_annotations[protein]) + "\n")
                
        print("Done.")
        
def predict_interactome(mapping_file_list, metafile, consensusfile):
        cwd = os.getcwd()
        storage_path = "proteomes"
        if not os.path.isdir(storage_path):
                try: 
                        os.mkdir(storage_path)
                        print("Setting up proteome directory.")
                except OSError:
                        if not os.path.isdir(storage_path):
                                raise
                                
        pred_interactome_path = "predicted_interactomes"
        if not os.path.isdir(pred_interactome_path):
                try: 
                        os.mkdir(pred_interactome_path)
                        print("Setting up predicted interactome directory.")
                except OSError:
                        if not os.path.isdir(pred_interactome_path):
                                raise
        
        getting_proteomes = 1                   #Can retrieve proteome entries from Uniprot and will map to OGs.
        while getting_proteomes == 1:
                get_new_proteomes = raw_input("Get a proteome from Uniprot? (Y/N)\n")
                if get_new_proteomes in ["Y", "y"]:
                        get_a_proteome()        #run get_a_proteome() method
                else:
                        print("Will now map proteomes to OGs.")
                        break
        
        os.chdir(storage_path)
        proteome_list = glob.glob('proteome_raw_*.txt') #Raw proteomes, from Uniprot, in list format, labeled with taxid
        os.chdir("..")
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        map_dict = {}   #Dictionary for Uniprot to OG maps
        
        if len(proteome_list) > 0:      #Only need the OG map if we have raw proteomes to be processed
                print("Setting up protein to OG maps.")
                for input_map_file in mapping_file_list:
                        try:
                                map_file = open(input_map_file)
                        except IOError as e:
                                print("I/O error({0}): {1}".format(e.errno, e.strerror))
                        for line in map_file:
                                one_map = ((line.rstrip()).split("\t"))
                                map_dict[one_map[0]] = one_map[1]
                        map_file.close()
        
        for proteome_filename in proteome_list:                                 #Map all available raw proteomes to OGs.
                #Proteins without OG mappings retain their Uniprot IDs but we keep track of it in an extra column, too
                os.chdir(storage_path)
                print("Mapping proteins in " + proteome_filename)
                proteome_proteins = []
                proteome_map_filename = proteome_filename.replace("raw", "map")
                try:
                        proteome_file = open(proteome_filename)
                        proteome_map_file = open(proteome_map_filename, "w")
                except IOError as e:
                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                for line in proteome_file:
                        one_protein = line.rstrip()
                        proteome_proteins.append(one_protein)
                total_proteins = 0
                total_proteins_mapped = 0
                for protein in proteome_proteins:
                        og_mapped = 0   #All proteins are unmapped to OGs by default
                        total_proteins = total_proteins +1
                        if protein in map_dict:
                                og_mapped = 1
                                total_proteins_mapped = total_proteins_mapped +1
                                proteome_map_file.write(map_dict[protein] + "\t" + protein + "\t" + str(og_mapped) + "\n")
                        else:
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                                proteome_map_file.write(protein + "\t" + protein + "\t" + str(og_mapped) + "\n")
                
                proteome_file.close()
                os.remove(proteome_filename)    #Remove the raw file as it's redundant now.
                
                print(proteome_filename + " contains " + str(total_proteins) + " proteins. " 
                                + str(total_proteins_mapped) + " map to OGs.")
                if total_proteins_mapped == 0:
                        print("WARNING: No proteins in this proteome map to OGs.")
                os.chdir("..")
        
        os.chdir(storage_path)
        proteome_map_list = glob.glob('proteome_map_*.txt')     #Proteomes mapped to eggNOG OGs, labeled with taxid
        os.chdir("..")
        
        #Uses Entrez here for more info about taxid corresponding to proteome.
        print("\nAvailable proteome maps:")
        taxid_context = {}      #We'll keep the taxonomy information for later.
        for proteome_filename in proteome_map_list:
                taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
                target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
                target_records = Entrez.read(target_handle)
                #print(target_records)
                taxid_name = target_records[0]["ScientificName"]
                taxid_parent = target_records[0]["ParentTaxId"]
                taxid_division = target_records[0]["Division"]
                if taxid_division != "Bacteria" and useViruses == False:
                        print(taxid_name + "\t\t" + proteome_filename + "\tNOTE: Not Bacteria! May not work well with 
bacterial consensus networks.")
                if taxid_division == "Viruses" and useViruses == True:
                        print(taxid_name + "\t\t" + proteome_filename + "\tNOTE: This is a viral proteome. Ensure your meta­
interactome uses viral proteins.")
                else:
                        print(taxid_name + "\t\t" + proteome_filename)
                taxid_context[taxid] = [taxid_name, taxid_parent, taxid_division]       #This is critical as we'll need it 
shortly
        
        #Also retrieve taxid details from the taxid context file.
        taxid_context_filenames = glob.glob("taxid_context*.txt")

252



        if len(taxid_context_filenames) > 1:
                print("More than one taxid context file found. Check for duplicates.")
                return None
        if len(taxid_context_filenames) == 0:
                print("Cannot find taxid context file. Rebuild meta­interactome.")
                return None
        taxid_context_file = open(taxid_context_filenames[0])
        for line in taxid_context_file:
                one_context = (line.rstrip()).split("\t")
                this_taxid = one_context[0]
                taxid_name = one_context[1]
                taxid_parent = one_context[2]
                taxid_division = one_context[3]
                taxid_context[this_taxid] = [taxid_name, taxid_parent, taxid_division]
        
        #Now that we have proteomes, we can use them to predict interactomes.
        
        continue_prediction = raw_input("Predict interactomes for all above? (Y/N)\n")
        if continue_prediction in ["Y", "y"]:
                print("Predicting interactomes for the above species.")
        else:
                return None
                
        print("Loading meta­interactome files.")        #Only uses the consensus right now, but full meta­interactome may be 
needed
        consensus_interactions = []                                     #if we want to filter by spoke expansion or know 
individual proteins
        all_interactions = []
        
        for line in consensusfile:
                one_consensus_interaction = (line.rstrip()).split("\t")
                consensus_interactions.append(one_consensus_interaction)
        consensusfile.close()
        
        for line in metafile:
                one_interaction = (line.rstrip()).split("\t")
                all_interactions.append(one_interaction)        #This is just the raw interaction list at this point
        metafile.close()
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        #Interactome prediction starts here, iterating through each OG­mapped proteome.
        interactome_stats = {}  #Uses taxid as key
        
        for proteome_filename in proteome_map_list:     #Go through each of the available OG­mapped proteomes
                print("\nPredicting interactome for " + proteome_filename + ".")
                taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
                this_proteome_map = {}  #A dictionary of OGs to multiple proteins, since >1 protein may map to an OG.
                this_proteome = []      #A list of just proteins
                this_og_eome = []       #A list of just OGs in the proteome
                this_pred_interactome = []      #Actually the interactome at any one time ­ the whole prediction is written 
to file
                this_pred_interactome_detailed = [] #The same interactome, but with contextual details
                #It will also include a prediction category.
                os.chdir(storage_path)
                proteome_map_file = open(proteome_filename)
                for line in proteome_map_file:
                        contents = (line.rstrip()).split("\t")
                        one_protein = contents[1]
                        one_og = contents[0]
                        if one_og not in this_proteome_map:
                                this_proteome_map[one_og] = [one_protein]
                        else:
                                this_proteome_map[one_og].append(one_protein)
                        this_proteome.append(one_protein)       #Each line in the input should already contain a unique 
protein ID
                        if one_og not in this_og_eome:
                                this_og_eome.append(one_og)     #Should be the same as the keys in this_proteome_map
                proteome_map_file.close()
                        
                os.chdir("..")
                os.chdir(pred_interactome_path)
                pred_interactome_filename = proteome_filename.replace("proteome_map", "pred_interactome")
                pred_interactome_file = open(pred_interactome_filename, "w")
                
                pred_ppi_count = 0      #The count of PPI from predictions
                exp_ppi_count = 0       #The count of PPI from experimental results, counting spoke expansion
                
                #First pass: check the meta­interactome for exact match PPI
                #This is mostly to account for proteins without OG matches, but we count them all 
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                #as we want to distingish between interactions seen already and new predictions.
                #Like with building the consensus set, we need to check for related taxids.
                
                print("Checking for experimental interactions.")
                for interaction in all_interactions:
                        same_species = 0        #Well, not the same, but same as the target species OR related
                        parent_taxid = taxid_context[taxid][1]
                        taxid_A = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                        taxid_B = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                        if taxid == taxid_A or parent_taxid == taxid_A: #If taxids are the same as target or its parent
                                if taxid == taxid_B or parent_taxid == taxid_B: 
                                        same_species = 1
                        elif taxid == taxid_A or taxid == taxid_context[taxid_A][1]:    #If taxids are child of target
                                if taxid == taxid_B or taxid == taxid_context[taxid_B][1]:
                                        same_species = 1
                        elif taxid == taxid_A or parent_taxid == taxid_context[taxid_A][1]:     #If taxids share parent
                                if taxid == taxid_B or parent_taxid == taxid_context[taxid_B][1]:
                                        same_species = 1
                        #May throw KeyError here, indicating taxid not in taxid_context ­ look up if needed?
                        if same_species == 1:
                                proteinA = interaction[0].lstrip("uniprotkb:")
                                proteinB = interaction[1].lstrip("uniprotkb:")
                                ogA = interaction[42]
                                ogB = interaction[43]
                                unique_interaction = [proteinA, proteinB, ogA, ogB]
                                unique_interaction_detailed = [proteinA, proteinB, ogA, ogB, "Experimental"]
                                if unique_interaction not in this_pred_interactome:
                                        exp_ppi_count = exp_ppi_count +1
                                        if exp_ppi_count % 10 == 0:
                                                sys.stdout.write(".")
                                        if exp_ppi_count % 100 == 0:
                                                sys.stdout.write(str(exp_ppi_count))
                                        this_pred_interactome.append(unique_interaction)
                                        this_pred_interactome_detailed.append(unique_interaction_detailed)
                sys.stdout.write(str(exp_ppi_count))
                
                print("\nMaking interaction predictions.")
                #Second pass: make predictions based on OGs and the consensus interactome.
                #That is, if two proteins interact, predict all proteins in their two OGs interact.
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                #All experimental interactions should be covered in the consensus, so don't care about species here
                #Don't need to handle protein vs. protein as we should have seen it in the meta­interactome already
                
                for interaction in consensus_interactions:
                        if interaction[0] in this_og_eome and interaction[1] in this_og_eome:   #Check for OG vs. OG first
                                for proteinA in this_proteome_map[interaction[0]]:      #Expand interaction to all possible 
proteins with OG matches
                                        for proteinB in this_proteome_map[interaction[1]]:
                                                unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
                                                unique_interaction_detailed = [proteinA, proteinB, interaction[0], 
interaction[1], "Predicted"]
                                                if unique_interaction not in this_pred_interactome:
                                                        pred_ppi_count = pred_ppi_count +1
                                                        this_pred_interactome.append(unique_interaction)
                                                        this_pred_interactome_detailed.append(unique_interaction_detailed)
                                                        if pred_ppi_count % 10 == 0:
                                                                sys.stdout.write(".")
                                                        if pred_ppi_count % 100 == 0:
                                                                sys.stdout.write(str(pred_ppi_count))
                        elif interaction[0] in this_og_eome and interaction[1] in this_proteome:        #Check if it's an OG 
and a protein
                                for proteinA in this_proteome_map[interaction[0]]:      #Expand interaction to all possible 
proteins with OG matches
                                        proteinB = interaction[1]
                                        unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
                                        unique_interaction_detailed = [proteinA, proteinB, interaction[0], interaction[1], 
"Predicted"]
                                        if unique_interaction not in this_pred_interactome:
                                                pred_ppi_count = pred_ppi_count +1
                                                this_pred_interactome.append(unique_interaction)
                                                this_pred_interactome_detailed.append(unique_interaction_detailed)
                                                if pred_ppi_count % 10 == 0:
                                                        sys.stdout.write(".")
                                                if pred_ppi_count % 100 == 0:
                                                        sys.stdout.write(str(pred_ppi_count))
                        elif interaction[0] in this_proteome and interaction[1] in interaction[1] in this_og_eome:      
#Check if it's a protein and an OG
                                proteinA = interaction[0]
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                                for proteinB in this_proteome_map[interaction[1]]:      #Expand interaction to all possible 
proteins with OG matches
                                        unique_interaction = [proteinA, proteinB, interaction[0], interaction[1]]
                                        unique_interaction_detailed = [proteinA, proteinB, interaction[0], interaction[1], 
"Predicted"]
                                        if unique_interaction not in this_pred_interactome:
                                                pred_ppi_count = pred_ppi_count +1
                                                this_pred_interactome.append(unique_interaction)
                                                this_pred_interactome_detailed.append(unique_interaction_detailed)
                                                if pred_ppi_count % 10 == 0:
                                                        sys.stdout.write(".")
                                                if pred_ppi_count % 100 == 0:
                                                        sys.stdout.write(str(pred_ppi_count))
                sys.stdout.write(str(pred_ppi_count))
                
                #Finally ­ get a few more protein and OG counts.
                #These counts won't be right if we just use the proteome, as PPI may include related species
                #Isn't a problem for predictions as they're all based off one proteome
                #But for experimental results we just get every Uniprot ID
                proteins_in_interactions = []
                proteins_w_exp_ppi = []
                proteins_w_pred_ppi = []
                ogs_in_interactions = []
                ogs_w_exp_int = []
                ogs_w_pred_int = []
                exp_og_int = []
                pred_og_int = []
                for interaction in this_pred_interactome_detailed:
                        og_pair = interaction[2:4] 
                        rev_og_pair = [interaction[3], interaction[2]]  #We don't care about interaction direction.
                        if interaction[4] == "Experimental":
                                for protein in interaction[0:2]:
                                        if protein not in proteins_w_exp_ppi:
                                                proteins_w_exp_ppi.append(protein)
                                for og in og_pair:
                                        if og not in ogs_w_exp_int:
                                                ogs_w_exp_int.append(og)
                                if og_pair not in exp_og_int and rev_og_pair not in exp_og_int:
                                        exp_og_int.append(og_pair)
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                        for protein in this_proteome:
                                both_interactors = 0
                                if protein in interaction[0:2] and protein not in proteins_in_interactions:
                                        both_interactors = both_interactors +1
                                        proteins_in_interactions.append(protein)
                                        if interaction[4] == "Predicted" and protein not in proteins_w_pred_ppi:
                                                proteins_w_pred_ppi.append(protein)
                                if both_interactors == 2:
                                        break
                        for og in this_og_eome:
                                both_interactors = 0
                                if og in interaction[2:4] and og not in ogs_in_interactions:
                                        both_interactors = both_interactors +1
                                        ogs_in_interactions.append(og)
                                        if interaction[4] == "Predicted" and og not in ogs_w_pred_int:
                                                ogs_w_pred_int.append(og)
                                if both_interactors == 2:
                                        break
                        if og_pair not in exp_og_int and rev_og_pair not in pred_og_int:
                                pred_og_int.append(og_pair)
                                        
                proteins_not_in_interactions = len(this_proteome) ­ len(proteins_in_interactions)       #Just a count, here
                ogs_not_in_interactions = len(this_og_eome) ­ len(ogs_in_interactions)
                #interactome_stats contains statistics used in batch output. Contains:
                #Name, taxid, Proteins, ProteinsNotInPPI, ProteinsWithExpPPI, ProteinsWithPredPPI, 
                #UniqueOGs, OGsWithoutInteractions, OGsWithExpInt, OGsWithPredInt, ExpOGIntNet, OGIntInPredNet
                interactome_stats[taxid] = [taxid_context[taxid][0], taxid, str(len(this_proteome)), 
str(proteins_not_in_interactions), 
                                                                        str(len(proteins_w_exp_ppi)), 
str(len(proteins_w_pred_ppi)), str(len(this_og_eome)),
                                                                        str(ogs_not_in_interactions), 
str(len(ogs_w_exp_int)), str(len(ogs_w_pred_int)),
                                                                        str(len(exp_og_int)), str(len(pred_og_int))]
                
                #This is just for testing.
                '''
                for interaction in all_interactions:
                        taxid_A = (((((interaction[9].split("|"))[0]).lstrip("taxid:")).split("("))[0])
                        taxid_B = (((((interaction[10].split("|"))[0]).lstrip("taxid:")).split("("))[0])
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                        if taxid == taxid_A or taxid == taxid_B:
                                proteinA = interaction[0].lstrip("uniprotkb:")
                                proteinB = interaction[1].lstrip("uniprotkb:")
                                ogA = interaction[42]
                                ogB = interaction[43]
                                this_meta_interaction = [proteinA, proteinB, ogA, ogB]
                                if this_meta_interaction not in this_pred_interactome:
                                        print(this_meta_interaction)
                '''
                        
                #Write interactome file.
                for interaction in this_pred_interactome_detailed:
                        pred_interactome_file.write("\t".join(interaction) + "\n")
                
                print("\nFound " + str(exp_ppi_count)  + " experimental interactions (including spoke" + 
                                " expansion) and made " + str(pred_ppi_count) + " interaction predictions" +
                                " for " + taxid_context[taxid][0] + ".")
                
                pred_interactome_file.close()
                os.chdir("..")
                
        #Once all the interactome predictions for all proteomes are done, do summary statistics.
        nowstring = (date.today()).isoformat()
        multi_inter_stats_file_name = "interactome_statistics_" + nowstring + ".txt"
        multi_inter_stats_file = open(multi_inter_stats_file_name, "w")
        os.chdir("predicted_interactomes")
        interactome_filenames = glob.glob("pred_interactome_*.txt")
        
        stats_outlines = []     #This is where the output for each species will go, one interactome per line
        for filename in interactome_filenames:
                taxid = ((filename.rstrip(".txt")).split("_"))[2]
                outline = "\t".join(interactome_stats[taxid]) + "\n"
                stats_outlines.append(outline)
                
        os.chdir("..")
        #Text header
        multi_inter_stats_file.write("Species\tTaxid\tProteins\tProteinsNotInPPI\tProteinsWithExpPPI\tProteinsWithPredPPI\t" 
+
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"UniqueOGs\tOGsWithoutInteractions\tOGsWithExpInt\tOGsWithPredInt\tOGIntInExpNet\tOGIntInPredNet\n")
        for outline in stats_outlines:
                multi_inter_stats_file.write(outline)
        
        print("\nWrote summary statistics for these interactomes to " + multi_inter_stats_file_name)
        print("\nComplete.\n")
        
def get_a_proteome():
        proteins_umbra.get_a_proteome()

def describe_consensus(consensusfile):
        cons_stats_filenames = glob.glob("cons_statistics_*.txt")
        if len(cons_stats_filenames) > 1:
                print("More than one consensus statistics file found. Check for duplicates.")
                return None
        if len(cons_stats_filenames) == 0: 
                print("No consensus statistics file found. Will skip basic counts.")
        else:
                con_stats = open(cons_stats_filenames[0])
                for line in con_stats:
                        print(line)
                print("\n")
        
        consensus_interactions = []
        for line in consensusfile:
                one_interaction = (line.rstrip()).split("\t")
                consensus_interactions.append(one_interaction)
                
        taxids_and_context = {}
        taxid_ref_list = glob.glob('taxid_context*.txt')
        if len(taxid_ref_list) >1:
                sys.exit("Something went wrong ­ more than one taxid context file found.")
        if len(taxid_ref_list) == 0:
                sys.exit("Something went wrong ­ no taxid context file found.")
        taxid_ref_file = open(taxid_ref_list[0])
        for line in taxid_ref_file:
                content = ((line.rstrip()).split("\t"))
                taxids_and_context[content[0]] = [content[1], content[2], content[3]]
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        taxid_ref_file.close()
        
        print("Top taxid contributions, in number of consensus interactions corresponding to the taxid.")
        print("Name\tTaxid\tNumber of interactions")
        all_taxids = {} #All taxids AND their counts.
        
        for interaction in consensus_interactions:      #Check each interaction for contributing taxids
                these_sources = interaction[4].split()
                for taxid in these_sources:
                        if taxid not in all_taxids:
                                all_taxids[taxid] = 1
                        all_taxids[taxid] = all_taxids[taxid] + 1

        sorted_taxids = sorted(all_taxids.items(), key=operator.itemgetter(1), reverse=True)
        top_taxids = sorted_taxids[0:15]
        
        for taxid in top_taxids:
                taxid_only = taxid[0]
                taxid_name = taxids_and_context[taxid_only][0]
                print(taxid_name + "\t" + taxid_only + "\t" + str(taxid[1]))
                        
def main():
        #Check for eggNOG mapping file and get if needed
        #Requires downloading several files and building new mapping file from them
        mapping_file_list = glob.glob('uniprot_og_maps*.txt')
        if len(mapping_file_list) >2:
                sys.exit("Found more than one mapping file. Check for duplicates.")
        if len(mapping_file_list) == 0:
                print("No eggNOG mapping files found or they're incomplete. Rebuilding them.")
                get_eggnog_maps()
                mapping_file_list = glob.glob('uniprot_og_maps*.txt')
                
        #Check for eggNOG annotation file and get if needed
        annotation_file_list = glob.glob('*annotations.tsv')
        expected_filecount = 2
        if useViruses == True:
                expected_filecount = 3
        if len(annotation_file_list) > expected_filecount:
                sys.exit("Found more eggNOG annotation files than expected. Check for duplicates.")

261



        if len(annotation_file_list) < expected_filecount:
                print("No eggNOG annotation files found or they're incomplete. Retrieving them.")
                get_eggnog_annotations()
                annotation_file_list = glob.glob('*annotations.tsv')
                
        #Prompt for choice of protein interactions.
        #May provide manually or may download, but downloaded set may not be filtered properly.
        #Don't need to get interactions if we already have a meta­interactome.
        meta_file_list = glob.glob('*metainteractome*.txt')
        ppi_data_filename = ""
        if len(meta_file_list) >1:
                sys.exit("More than one meta­interactome found. Please use just one at a time.")
        if len(meta_file_list) == 0:
                print("\nNo meta­interactome found.")
                while ppi_data_filename == "":
                        ppi_data_option = raw_input("Retreive IntAct bacterial PPI or use local file(s) to build meta­
interactome?\n"
                        "Enter:\n R for retrieval\n L for local file, \n M for multiple inputs, \n or X to quit.\n")
                        if ppi_data_option in ["R", "r"]:       #Downloads PPI data from IntAct server. 
                                #May not include all PPI available through HTTP IntAct interface.
                                ppi_data_filename = "protein­interactions.tab"
                                interaction_file_list = glob.glob(ppi_data_filename)
                                if len(interaction_file_list) >1:
                                        sys.exit("One protein interaction file at a time, please! Check for duplicates.")
                                if len(interaction_file_list) == 0:
                                        print("No protein interaction file found. Retrieving it.")
                                        get_interactions()
                                        interaction_file_list = glob.glob(ppi_data_filename)
                                try:
                                        interactionfile = open(interaction_file_list[0])
                                except IOError as e:
                                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                        if ppi_data_option in ["L", "l"]:       #Uses a local file, usually a downloaded IntAct PPI set, in 
PSI­MI Tab27 format
                                print("Will use single local file. Note that it should be in PSI­MI TAB 2.7 format and have 
no header row.")
                                ppi_data_filename = raw_input("Please provide local filename.\n")
                                interaction_file_list = glob.glob(ppi_data_filename)
                                if len(interaction_file_list) == 0:
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                                        sys.exit("Can't find a file with that filename.")       
                        if ppi_data_option in ["M", "m"]:       #Uses multiple local files in PSI­MI Tab27 format
                                print("Will append multiple local files. Note that each should be in PSI­MI TAB 2.7 format 
and have no header row.")
                                adding_files = 1
                                interaction_file_list = []
                                while adding_files:
                                        ppi_data_filename = raw_input("Please provide local filename.\n")
                                        files_present = glob.glob(ppi_data_filename)
                                        if len(files_present) >0:
                                                interaction_file_list.append(ppi_data_filename) #Can be expanded easily later 
to do batch processing
                                                print("Added " + ppi_data_filename + " to input list.")
                                        else:
                                                print("Can't find a file with that filename. Didn't add.")
                                        ask_again = raw_input("Add another? Y/N\n")
                                        if ask_again in ["N", "n"]:
                                                adding_files = 0
                                print("Using the following inputs for the meta­interactome:\n")
                                if len(interaction_file_list) == 0:
                                        sys.exit("Input list is empty. Exiting...")
                                for item in interaction_file_list:
                                        print(item)
                                print("Merging into a single file and checking for malformed interaction entries.")
                                ppi_data_filename = merge_data(interaction_file_list)
                        if ppi_data_option in ["X", "x"]:
                                sys.exit("Exiting...")
        
        #Load meta­interactome network file
        #Needs to be built first.
        new_meta = 0
        if len(meta_file_list) == 0:
                build_meta_network = raw_input("Build a new meta­interactome? Y/N ")
                if build_meta_network in ["Y", "y"]:
                        new_meta_result = build_meta(mapping_file_list, ppi_data_filename)
                        new_meta_filename = new_meta_result[0]
                        taxids_and_context = new_meta_result[1]
                        new_meta = 1
                else:
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                        sys.exit("Meta­network needed. Exiting.")
        try:
                if new_meta == 1:
                        metafile = open(new_meta_filename)
                else:
                        metafile = open(meta_file_list[0])
        except IOError as e:
                print("I/O error({0}): {1}".format(e.errno, e.strerror))        
        print("\nUsing " + metafile.name + " as the meta­interactome network.")
        
        #Load consensus network file
        #Needs to be built first.
        consensus_file_list = glob.glob('*consensus*.txt')
        new_consensus = 0
        if len(consensus_file_list) >1:
                sys.exit("One consensus network at a time, please!")
        if len(consensus_file_list) == 0:
                print("No consensus network file found. Building one.")
                description_file = open("bactNOG.annotations.tsv")
                if new_meta == 1:       #If we just build a meta­interactome we have taxid details already
                        new_consensus_filename = build_consensus(metafile, annotation_file_list, taxids_and_context)
                else:   #Otherwise we need to read taxid details from file ­ just rebuild dict from it
                        taxid_ref_list = glob.glob('taxid_context*.txt')
                        taxids_and_context = {}
                        if len(taxid_ref_list) >1:
                                sys.exit("Something went wrong ­ more than one taxid context file found.")
                        if len(taxid_ref_list) == 0:
                                sys.exit("Something went wrong ­ no taxid context file found.")
                        taxid_ref_file = open(taxid_ref_list[0])
                        for line in taxid_ref_file:
                                content = ((line.rstrip()).split("\t"))
                                taxids_and_context[content[0]] = [content[1], content[2], content[3]]
                        taxid_ref_file.close()
                        new_consensus_filename = build_consensus(metafile, annotation_file_list, taxids_and_context)
                new_consensus = 1
        try:
                if new_consensus == 1:
                        consensusfile = open(new_consensus_filename)
                else:
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                        consensusfile = open(consensus_file_list[0])
        except IOError as e:
                print("I/O error({0}): {1}".format(e.errno, e.strerror))        
        print("\nUsing " + consensusfile.name + " as the consensus network.")
        
        #Quit now or ask for next step.
        requested = 0
        while requested == 0:
                print("\n­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­")
                request_next = raw_input("\nChoose from the following options.\n" 
                        "A: Generate expanded subgraphs of the consensus network, filtering by function.\n"
                        "B: Generate a predicted interactome for one or more proteomes.\n"
                        "C: Get statistics for the consensus meta­interactome.\n"
                        "X: Exit.\n") 
                if request_next in ["x", "X"]:
                        sys.exit("Exiting...")
                if request_next in ["a", "A"]:
                        subgraph_expansion(metafile, consensusfile)
                if request_next in ["b", "B"]:
                        predict_interactome(mapping_file_list, metafile, consensusfile)
                if request_next in ["c", "C"]:
                        describe_consensus(consensusfile)
                print("\nChoose from the list, please.")
        
        
if __name__ == "__main__":
        main()
        
                        
sys.exit(0)

II.II.II proteins_umbra.py

#!/usr/bin/python
#proteins_umbra.py
'''
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Downloads a reference proteome and assigns an orthologous group (OG) to each.
Uses eggNOG v.4.1 ­ or whatever the most recent version is.

REQUIRES: Biopython 1.65 or more recent
                        Needs ~5 GB of disk space for ID conversion files.
                        Needs an additional ~29 GB for mapping virus protein IDs.
                         (This is because it uses the full Uniprot ID mapping database,
                         which is excessive but more reliable than their mapping server
                         for large mapping requests)

INPUT: Downloads a reference proteome from Uniprot.
                Produces OG maps if needed or uses those produced by Network_umbra.py.

OUTPUT: 
'proteome_map_[taxid].txt' ­ on each line:
  a single OG membership
  the UniProtAC of the protein
  a binary value indicating whether the protein maps to an OG (0 if no, 1 if yes)
  

'''

import glob, gzip, operator, os, re, requests, sys, urllib2, zipfile
from Bio import Entrez
from bs4 import BeautifulSoup
from collections import Counter
from datetime import date

Entrez.email = 'caufieldjh@vcu.edu'

#Options
useViruses = True       #Option for using eggNOG's viral OGs. Requires the filters permitting only Bacteria to be modified
                                        #Also requires the viral OGs to be downloaded and added.
                                        #This option needs to be set True BEFORE the Uniprot to OG map is built or it won't 
include proteins from viruses
#NOTE: Viruses are not currently in the eggNOG ID conversion file
#The eggNOG protein IDs vary from protein to protein but are often Uniprot IDs (mnemonic identifiers, i.e. A9J730_BPLUZ)
#We still check the ID conversion file for them in case it gets updated soon
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useNonRefProteomes = True       #Option to search non­reference Uniprot proteomes
#Many of these proteomes have been made redundant in Uniprot
#and this script ignores redundant results, so they will not be seen

#Functions

def chunkit(input_seq, chunk_size):
    return (input_seq[position:position + chunk_size] for position in xrange(0, len(input_seq), chunk_size))

def get_eggnog_maps(version): 
        #Download and unzip the eggNOG ID conversion file 
        #Filters file to just Uniprot IDs; the resulting file is the map file.
        #One Uniprot ID may correspond to multiple OGs ­ e.g. COG1234,COG3810,COG9313. 
        #these cases are considered OGs in their own right as this may indicate a pattern of conserved sequences on its own 
        baseURL = "http://eggnogdb.embl.de/download/" + version + "/"
        convfilename = "eggnog4.protein_id_conversion.tsv.gz"   #File contains ALL database identifiers and corresponding 
proteins
        
        convfilepath = baseURL + convfilename
        outfilepath = convfilename[0:­3]
        dl_convfile = 1 #If 1, we need to download
        if os.path.isfile(convfilename): #Already have the compressed file, don't download
                print("Found compressed ID conversion file on disk: %s" % convfilename)
                decompress_convfile = 1
                dl_convfile = 0
        if os.path.isfile(outfilepath): #Already have the decompressed file, don't download
                print("Found ID conversion file on disk: %s" % outfilepath)
                decompress_convfile = 0
                dl_convfile = 0
        
        if dl_convfile == 1:
                print("Downloading ID mapping file ­ this file is large so this may take some time.")
                print("Downloading from %s" % convfilepath)
                response = urllib2.urlopen(convfilepath)
                filesize = response.info()['Content­Length']
                compressed_file = open(os.path.basename(convfilename), "w+b") #Start local compressed file
                chunk = 2097152
                totaldata = 0
                while 1:
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                        data = (response.read(chunk)) #Read two Mb at a time
                        compressed_file.write(data)
                        totaldata = totaldata + chunk
                        if not data:
                                print("\n%s file download complete." % convfilename)
                                compressed_file.close()
                                break
                        sys.stdout.flush()
                        sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
                decompress_convfile = 1
                
        if decompress_convfile == 1:
                print("Decompressing map file. Lines written, in millions:")
                with gzip.open(convfilename) as infile: #Open that compressed file, read and write to uncompressed file
                        outfile = open(outfilepath, "w+b")
                        linecount = 0
                        for line in infile:
                                outfile.write(line)
                                linecount = linecount +1
                                if linecount % 1000000 == 0:
                                                sys.stdout.flush()
                                                sys.stdout.write("\r%s" % (linecount/1000000))
                        infile.close()
                newconvfilename = outfilepath
                outfile.close()
        
        #Download and decompress member NOG files (at least 2 of them)
        nogURL = baseURL + "data/NOG/"
        nogfilename = "NOG.members.tsv.gz"
        bactnogURL = baseURL + "data/bactNOG/"
        bactnogfilename = "bactNOG.members.tsv.gz" 
        all_nog_locations = [[nogURL, nogfilename], [bactnogURL, bactnogfilename]]
        
        if useViruses == True:  #Need some additional files to handle viral proteins
                virnogURL = baseURL + "data/viruses/Viruses/"
                virnogfilename = "Viruses.members.tsv.gz"
                all_nog_locations.append([virnogURL, virnogfilename])
                up_baseURL = "ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/"
                up_mapping_filename = "idmapping.dat.gz"
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                up_mapping_filepath = up_baseURL + up_mapping_filename
                up_outfilepath = up_mapping_filename[0:­3]
                
                dl_up_mapping_file = 1  #If 1, we need to download
                if os.path.isfile(up_mapping_filename): #Already have the compressed file, don't download
                        print("Found compressed Uniprot ID conversion file on disk: %s" % up_mapping_filename)
                        decompress_up_mapping_file = 1
                        dl_up_mapping_file = 0
                if os.path.isfile(up_outfilepath): #Already have the decompressed file, don't download
                        print("Found ID conversion file on disk: %s" % up_outfilepath)
                        decompress_up_mapping_file = 0
                        dl_up_mapping_file = 0
                
                if dl_up_mapping_file == 1:
                        print("\nDownloading Uniprot ID mapping file for viral protein mapping. Please wait as this file is 
large.")
                        print("Downloading from %s" % up_mapping_filepath)
                        response = urllib2.urlopen(up_mapping_filepath)
                        filesize = response.info()['Content­Length']
                        compressed_file = open(os.path.basename(up_mapping_filename), "w+b") #Start local compressed file
                        chunk = 2097152
                        totaldata = 0
                        while 1:
                                data = (response.read(chunk)) #Read two Mb at a time
                                compressed_file.write(data)
                                if not data:
                                        print("\n%s file download complete." % up_mapping_filename)
                                        compressed_file.close()
                                        break
                                sys.stdout.flush()
                                sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
                        decompress_up_mapping_file = 1
                        
                if decompress_up_mapping_file == 1:
                        print("Decompressing Uniprot ID mapping file. Lines written, in millions:")
                        with gzip.open(up_mapping_filename) as infile: #Open that compressed file, read and write to 
uncompressed file
                                outfile = open(up_outfilepath, "w+b")
                                linecount = 0
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                                for line in infile:
                                        outfile.write(line)
                                        linecount = linecount +1
                                        if linecount % 1000000 == 0:
                                                        sys.stdout.flush()
                                                        sys.stdout.write("\r%s" % (linecount/1000000))
                                infile.close()
                                outfile.close()
        
        for location in all_nog_locations:
                baseURL = location[0]
                memberfilename = location[1]
                memberfilepath = baseURL + memberfilename
                outfilepath = memberfilename[0:­3]
                if os.path.isfile(memberfilename): 
                        print("\nFound compressed NOG membership file on disk: %s" % memberfilename)
                        decompress_memberfile = 1
                if os.path.isfile(outfilepath): 
                        print("\nFound NOG membership file on disk: %s" % outfilepath)
                        decompress_memberfile = 0
                else:
                        print("\nDownloading NOG membership file ­ this may take some time.")
                        print("Downloading from %s" % memberfilepath)
                        response = urllib2.urlopen(memberfilepath)
                        filesize = response.info()['Content­Length']
                        compressed_file = open(os.path.basename(memberfilename), "w+b") #Start local compressed file
                        chunk = 2097152
                        totaldata = 0
                        while 1:
                                data = (response.read(chunk)) #Read two Mb at a time
                                compressed_file.write(data)
                                if not data:
                                        print("\n%s file download complete." % memberfilename)
                                        compressed_file.close()
                                        break
                                sys.stdout.flush()
                                sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
                        decompress_memberfile = 1
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                if decompress_memberfile == 1:
                        print("Decompressing NOG membership file %s" % memberfilename)
                        #Done in chunks since it's a large file
                        with gzip.open(memberfilename) as infile: #Open that compressed file, read and write to uncompressed 
file
                                outfile = open(outfilepath, "w+b")
                                linecount = 0
                                for line in infile:
                                        outfile.write(line)
                                        linecount = linecount +1
                                        if linecount % 1000000 == 0:
                                                sys.stdout.flush()
                                                sys.stdout.write("\r%s" % (linecount/1000000))
                                infile.close()
                        outfile.close()
                        
        #Clean up by removing compressed files
        print("\nRemoving compressed files.")
        all_compressed_files = [convfilename, nogfilename, bactnogfilename]
        if useViruses == True:
                for this_filename in [virnogfilename, up_mapping_filename]:
                        all_compressed_files.append(this_filename)
        for filename in all_compressed_files:
                if os.path.isfile(filename):
                        os.remove(filename)
        
        #Load and filter the ID conversion file as dictionary
        print("Parsing ID conversion file. Lines read, in millions:")
        with open(convfilename[0:­3]) as infile:
                id_dict = {}    #Dictionary of eggNOG protein IDs as values and database IDs (UniprotAC) as keys
                #Gets filtered down to relevant database IDs (i.e., Uniprot IDs)
                linecount = 0
                for line in infile:
                        linecount = linecount +1
                        line_raw = ((line.rstrip()).split("\t"))        
                        one_id_set = [line_raw[0] + "." + line_raw[1], line_raw[2], line_raw[3]] #Protein IDs are split for 
some reason; merge them
                        if "UniProt_AC" in one_id_set[2]:
                                id_dict[one_id_set[1]] = one_id_set[0]
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                        if linecount % 1000000 == 0:
                                sys.stdout.flush()
                                sys.stdout.write("\r%s" % (linecount/1000000))
                infile.close()

        #Use filtered ID conversion input to map to NOG members
        print("\nReading NOG membership files.")
        all_nog_filenames = [nogfilename[0:­3], bactnogfilename[0:­3]]
        if useViruses == True:
                all_nog_filenames.append(virnogfilename[0:­3])
        nog_members = {}        #Dictionary of NOG ids with protein IDs as keys (need to split entries for each)
        nog_count = 0
        for filename in all_nog_filenames:
                temp_nog_members = {}   #We will have duplicates within each set but don't want to lose the information.
                print("Reading from %s" % filename)
                with open(filename) as infile:
                        membercol = 5   #The column where the NOG members are
                        if filename == virnogfilename[0:­3]:    #The virus members file has a different format as there is no 
FuncCat column
                                infile.readline()       #Skip the first line
                                membercol = 4
                                viral_ids = [] #A list of viral eggNOG protein IDs, some of which are Uniprot IDs to be 
converted to ACs
                        for line in infile:
                                nog_count = nog_count +1
                                line_raw = ((line.rstrip()).split("\t"))
                                nog_id = line_raw[1]
                                line_members = line_raw[membercol].split(",")
                                for protein_id in line_members:                 
                                        if filename == virnogfilename[0:­3]: #If Viruses, we need to convert IDs as they 
aren't in the eggNOG ID conversion file.
                                                if protein_id not in viral_ids:
                                                        viral_ids.append(protein_id)
                                        if protein_id in temp_nog_members: #The same protein could be in more than one OG at 
the same level
                                                temp_nog_members[protein_id] = temp_nog_members[protein_id] + "," + nog_id
                                        else:
                                                temp_nog_members[protein_id] = nog_id
                        infile.close()
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                nog_members.update(temp_nog_members)
                
        
        if useViruses == True:
                
                #We use three different dictionaries here.
                #The first is Uniprot IDs to UniprotACs (just for viral proteins)
                #The second is eggNOG IDs to Uniprot IDs.
                #The third is UniprotACs to eggNOG IDs ­ this is id_dict{} already.
                uniprotID_to_uniprotAC = {}
                eggnog_to_uniprotID = {}
                unmapped_ids = [] #eggNOG protein IDs which may not contain Uniprot IDs
                
                #We go through the viral protein IDs twice, first to get Uniprot IDs
                #and then to add them to id_dict.
                
                for viral_id in viral_ids:
                        eggnog_to_uniprotID[viral_id] = (viral_id.split("."))[1]        #Remove the taxid
                        #Some of the eggNOG IDs may not include UniprodIDs, but many do
                
                #This data file is too large to efficiently much of it in a dict.
                #Luckily we just got the IDs we need here to filter it
                print("Parsing Uniprot ID mapping file. Lines read, in millions:")
                with open(up_outfilepath) as infile:
                        linecount = 0
                        for line in infile:
                                linecount = linecount +1
                                line_raw = ((line.rstrip()).split("\t"))        
                                if line_raw[1] == "UniProtKB­ID" and line_raw[2] in eggnog_to_uniprotID.values():
                                        uniprotID_to_uniprotAC[line_raw[2]] = line_raw[0]
                                if linecount % 1000000 == 0:
                                        sys.stdout.flush()
                                        sys.stdout.write("\r%s" % (linecount/1000000))
                        infile.close()
                
                print("Finding identifiers for %s viral proteins." % len(viral_ids))
                
                for viral_id in viral_ids:
                        upid = eggnog_to_uniprotID[viral_id]
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                        if upid in uniprotID_to_uniprotAC:
                                upid_ac = uniprotID_to_uniprotAC[upid]
                                id_dict[upid_ac] = viral_id
                        else:
                                unmapped_ids.append(viral_id)
                                
                print("Done mapping viral proteins.")
                print("The following entries were not recognized as Uniprot IDs:")
                print(unmapped_ids)
        
        #Get counts of how many identifiers we have now
        upids_length = str(len(id_dict))
        nogs_length = str(nog_count)
        proteins_length = str(len(nog_members))
        
        print("Mapping %s Uniprot IDs to %s NOGs through %s eggNOG protein IDs:" % (upids_length, nogs_length, 
proteins_length))
        upid_to_NOG = {}        #Conversion dictionary. Values are OGs, keys are UPIDs.
        mapped_count = 0        #upids mapped to nogs.
        for upid in id_dict:
                if id_dict[upid] in nog_members:
                        upid_to_NOG[upid] = nog_members[id_dict[upid]]
                        mapped_count = mapped_count +1
                        if mapped_count % 100000 == 0:
                                sys.stdout.flush()
                                sys.stdout.write(".")
                        if mapped_count % 1000000 == 0:
                                sys.stdout.flush()
                                sys.stdout.write(str(mapped_count/1000000))
                
        #Use this mapping to build map file, named "uniprot_og_maps_*.txt"
        print("\nWriting map file.")
        nowstring = (date.today()).isoformat()
        mapfilename = "uniprot_og_maps_" + nowstring + ".txt"
        mapfile = open(mapfilename, "w+b")
        for mapping in upid_to_NOG:
                mapfile.write(mapping + "\t" + upid_to_NOG[mapping] + "\n")     #Each line is a uniprot ID and an OG id
        mapfile.close() 
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def get_eggnog_annotations():
        #Downloads and extracts the eggNOG NOG annotations. 
        baseURLs = ["http://eggnogdb.embl.de/download/latest/data/bactNOG/", 
"http://eggnogdb.embl.de/download/latest/data/NOG/"]
        bactannfilename = "bactNOG.annotations.tsv.gz"  #The annotations for bacteria­specific NOGs
        lucaannfilename = "NOG.annotations.tsv.gz"      #The annotations for other NOGs, but not bacteria­specific NOGs
        annfilenames = [bactannfilename, lucaannfilename]
        
        if useViruses == True:
                virannfilename = "Viruses.annotations.tsv.gz"
                baseURLs.append("http://eggnogdb.embl.de/download/latest/data/viruses/Viruses/")
                annfilenames.append(virannfilename)
        
        this_url = 0
        for annfilename in annfilenames:
                annfilepath = baseURLs[this_url] + annfilename
                this_url = this_url +1
                outfilepath = annfilename[0:­3]
                if os.path.isfile(annfilename): 
                        print("Found compressed annotation file on disk: " + annfilename)
                else:
                        response = urllib2.urlopen(annfilepath)
                        filesize = response.info()['Content­Length']
                        print("Downloading from " + annfilepath)
                        compressed_file = open(os.path.basename(annfilename), "w+b") #Start local compressed file
                        chunk = 2097152
                        totaldata = 0
                        while 1:
                                data = (response.read(chunk)) #Read two Mb at a time
                                compressed_file.write(data)
                                if not data:
                                        print("\n" + annfilename + " file download complete.")
                                        compressed_file.close()
                                        break
                                sys.stdout.flush()
                                sys.stdout.write("\r%s out of %s bytes" % (totaldata, filesize))
                
                print("Decompressing annotation file.")
                with gzip.open(annfilename) as infile: #Open that compressed file, read and write to uncompressed file
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                        file_content = infile.read()
                        outfile = open(outfilepath, "w+b")
                        outfile.write(file_content)
                        infile.close()
                outfile.close()
                
        print("\nRemoving compressed files.")
        all_compressed_files = [bactannfilename, lucaannfilename]
        if useViruses == True:
                all_compressed_files.append(virannfilename)
        for filename in all_compressed_files:
                os.remove(filename)
                
def get_mapped_proteome(mapping_file_list):
        cwd = os.getcwd()
        storage_path = "proteomes"
        if not os.path.isdir(storage_path):
                try: 
                        os.mkdir(storage_path)
                        print("Setting up proteome directory.")
                except OSError:
                        if not os.path.isdir(storage_path):
                                raise
        
        getting_proteomes = 1                   #Can retrieve proteome entries from Uniprot and will map to OGs.
        while getting_proteomes == 1:
                get_new_proteomes = raw_input("Get a proteome from Uniprot? (Y/N)\n")
                if get_new_proteomes in ["Y", "y"]:
                        get_a_proteome()        #run get_a_proteome() method
                else:
                        print("Will now map proteomes to OGs.")
                        break
        
        os.chdir(storage_path)
        proteome_list = glob.glob('proteome_raw_*.txt') #Raw proteomes, from Uniprot, in list format, labeled with taxid
        os.chdir("..")
        
        map_dict = {}   #Dictionary for Uniprot to OG maps
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        if len(proteome_list) > 0:      #Only need the OG map if we have raw proteomes to be processed
                print("Setting up protein to OG maps.")
                for input_map_file in mapping_file_list:
                        try:
                                map_file = open(input_map_file)
                        except IOError as e:
                                print("I/O error({0}): {1}".format(e.errno, e.strerror))
                        for line in map_file:
                                one_map = ((line.rstrip()).split("\t"))
                                map_dict[one_map[0]] = one_map[1]
                        map_file.close()
        
        unmapped_taxids = [] #These are the taxids without any OG mapping
        for proteome_filename in proteome_list:                                 #Map all available raw proteomes to OGs.
                #Proteins without OG mappings retain their Uniprot IDs but we keep track of it in an extra column, too
                os.chdir(storage_path)
                print("Mapping proteins in " + proteome_filename)
                taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
                proteome_proteins = []
                proteome_map_filename = proteome_filename.replace("raw", "map")
                try:
                        proteome_file = open(proteome_filename)
                        proteome_map_file = open(proteome_map_filename, "w")
                except IOError as e:
                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                for line in proteome_file:
                        one_protein = line.rstrip()
                        proteome_proteins.append(one_protein)
                total_proteins = 0
                total_proteins_mapped = 0
                for protein in proteome_proteins:
                        og_mapped = 0   #All proteins are unmapped to OGs by default
                        total_proteins = total_proteins +1
                        if protein in map_dict:
                                og_mapped = 1
                                total_proteins_mapped = total_proteins_mapped +1
                                proteome_map_file.write(map_dict[protein] + "\t" + protein + "\t" + str(og_mapped) + "\n")
                        else:
                                proteome_map_file.write(protein + "\t" + protein + "\t" + str(og_mapped) + "\n")
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                proteome_file.close()
                os.remove(proteome_filename)    #Remove the raw file as it's redundant now.
                
                print(proteome_filename + " contains " + str(total_proteins) + " proteins. " 
                                + str(total_proteins_mapped) + " map to OGs.")
                if total_proteins_mapped == 0:
                        print("WARNING: No proteins in this proteome map to OGs.")
                        unmapped_taxids.append(taxid)
                os.chdir("..")
        
        os.chdir(storage_path)
        proteome_map_list = glob.glob('proteome_map_*.txt')     #Proteomes mapped to eggNOG OGs, labeled with taxid
        os.chdir("..")
        
        #Uses Entrez here for more info about taxid corresponding to proteome.
        print("\nAvailable proteome maps:")
        taxid_context = {}      #We'll keep the taxonomy information for later.
        for proteome_filename in proteome_map_list:
                taxid = ((proteome_filename.split("_"))[2]).rstrip(".txt")
                target_handle = Entrez.efetch(db="Taxonomy", id=str(taxid), retmode="xml")
                target_records = Entrez.read(target_handle)
                #print(target_records)
                taxid_name = target_records[0]["ScientificName"]
                taxid_parent = target_records[0]["ParentTaxId"]
                taxid_division = target_records[0]["Division"]
                if taxid_division != "Bacteria" and useViruses == False:
                        nameline = (taxid_name + "\t\t" + proteome_filename + "\tNOTE: Not Bacteria! May not work well with 
bacterial consensus networks.")
                if taxid_division == "Viruses" and useViruses == True:
                        nameline = (taxid_name + "\t\t" + proteome_filename + "\tNOTE: This is a viral proteome. Ensure your 
meta­interactome uses viral proteins.")
                else:
                        nameline = (taxid_name + "\t\t" + proteome_filename)
                if taxid in unmapped_taxids:
                        nameline = "** " + nameline
                print(nameline)
                taxid_context[taxid] = [taxid_name, taxid_parent, taxid_division]       #Not used at the moment
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        if len(unmapped_taxids) > 0:
                print("Maps marked with ** have no OG mappings.")
        
        print("\nComplete.\n")
        
def get_a_proteome():   #Does what it says.     Much more organized than the rest of this since I wrote it a while ago.
        
        def get_search_url(query, fil):
                search_url = "http://www.uniprot.org/proteomes/?query=" + query + \
                                        "+redundant%3Ano&fil=" + fil + "&sort=score"
                return search_url
        
        def parse_search(up_input):
                search_results = []
                soup = BeautifulSoup(up_input, "lxml")
                for child in (soup.find_all('tr')):
                        single_result = child.get_text("\t")
                        search_results.append(single_result)
                del search_results[0:2]
                if len(search_results) == 0:
                        print("No results found.")
                        return None
                return search_results
        
        def get_proteome_url(entry, format_choice):
                proteome_url = "http://www.uniprot.org/uniprot/?sort=&desc=&query=proteome:" + entry + "&force=no&format=" + 
format_choice
                return proteome_url
                
        def parse_proteome_entry(up_input):
                if not up_input:
                        entry_text = "EMPTY"
                else:
                        soup = BeautifulSoup(up_input, "lxml")
                        entry_text = (soup.p.get_text())
                return entry_text
                
        def save_proteome(text,taxid):
                os.chdir("proteomes")

279



                filename = "proteome_raw_" + str(taxid) + ".txt"
                try:
                        outfile = open(filename, 'wb')
                except IOError as e:
                        print("I/O error({0}): {1}".format(e.errno, e.strerror))
                        sys.exit()
                for line in text:
                        outfile.write(line)
                print("File written to " + filename)
                outfile.close()
                os.chdir("..")

        #Retrieve proteomes on a query
        query = (raw_input("Please specify a full or partial species name.\n")).rstrip()
        ref_filter = "reference%3Ayes"
        if useNonRefProteomes == True:
                ref_filter = ""
        search_results_url = get_search_url(query, ref_filter) #Leave filter as "" to get non­reference proteomes too
                                                                #Other option: taxonomy%3A"Bacteria+%5B2%5D" for just 
bacteria
        
        search_response = requests.get(search_results_url)
        
        #Output the query results
        #print(search_response)
        proteome_entries = parse_search(search_response.text)
        if proteome_entries == None:
                return None
        i = 0
        print("Result\tAccession\tName")
        for entry in proteome_entries:
                print(str(i) + "\t" + entry)
                i = i +1
        
        #Choose a single proteome and output to file
        choice = raw_input('Please choose a search result.\n')
        if not re.match("^[0­9]*$", choice):
                print("Numbers only, please.")
                sys.exit()
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        chosen_entry = (proteome_entries[int(choice)]).split("\t")
        print("Retrieving proteome for " + chosen_entry[1])
        proteome_url = get_proteome_url(chosen_entry[0], "list") #Options include list, txt, tab
        proteome_response = requests.get(proteome_url)
        proteome_text = parse_proteome_entry(proteome_response.text)
        if proteome_text == "EMPTY":
                print("Could not retrieve this proteome. It may be a redundant entry. See the Uniprot entry for %s." % 
chosen_entry[0])
        else:
                save_proteome(proteome_text, chosen_entry[2])
                
def main():
        #Check for eggNOG mapping file and get if needed
        #Requires downloading several files and building new mapping file from them
        mapping_file_list = glob.glob('uniprot_og_maps*.txt')
        if len(mapping_file_list) >2:
                sys.exit("Found more than one mapping file. Check for duplicates.")
        if len(mapping_file_list) == 0:
                print("No eggNOG mapping files found or they're incomplete. Rebuilding them.")
                version = "latest"
                version = raw_input("Which eggNOG version would you prefer? Default is latest version.\n")
                if version not in ["4.5","4.1","4.0"]:
                        version = "latest"
                else:
                        version = "eggnog_" + version
                get_eggnog_maps(version)
                mapping_file_list = glob.glob('uniprot_og_maps*.txt')
                
        #Check for eggNOG annotation file and get if needed
        annotation_file_list = glob.glob('*annotations.tsv')
        expected_filecount = 2
        if useViruses == True:
                expected_filecount = 3
        if len(annotation_file_list) > expected_filecount:
                sys.exit("Found more eggNOG annotation files than expected. Check for duplicates.")
        if len(annotation_file_list) < expected_filecount:
                print("No eggNOG annotation files found or they're incomplete. Retrieving them.")
                get_eggnog_annotations()
                annotation_file_list = glob.glob('*annotations.tsv')
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        #Quit now or ask for next step.
        requested = 0
        while requested == 0:
                request_next = raw_input("\nChoose from the following options.\n" 
                        "A: Download a reference proteome and map to OGs.\n"
                        "X: Exit.\n") 
                if request_next in ["x", "X"]:
                        sys.exit("Exiting...")
                if request_next in ["a", "A"]:
                        get_mapped_proteome(mapping_file_list)
        
                print("\nChoose from the list, please.")

if __name__ == "__main__":
        sys.exit(main())
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APPENDIX III

Additional data tables for Chapter 2

Table III-A. Average conservation of loci and orthologous groups across 
numerous bacterial species.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-A.xlsx
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Table III-B. Average conservation of orthologous groups among protein complex 
components.

Species

Hu et al. E. 
coli 
complexes

EcoCyc E. coli 
complexes

Kühner et al. 
Mycoplasma 
pneumoniae 
complexes

Mycoplasma genitalium G37 87.98% 87.36% 75.57%

Mycoplasma pneumoniae M129 86.00% 86.26% 61.38%

Helicobacter pylori 26695 79.10% 76.08% 91.19%

Streptococcus sanguinis SK36 78.56% 76.06% 83.12%

Caulobacter crescentus NA1000 75.08% 70.06% 85.87%

Bacillus subtilis subsp. subtilis 168 74.02% 71.85% 82.46%

Escherichia coli K-12 W3110 57.20% 56.01% 85.93%

Pseudomonas aeruginosa UCBPP-PA14 67.76% 65.90% 87.04%
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Table III-C. Conservation of orthologous groups and protein-coding loci between pairs of model bacterial species.

Table III-C-A. Counts of total orthologous groups shared between species.  Exact strains of each species are identified in the 
Chapter 2 Methods. Values are locus counts as per shared eggNOG v.3 orthologous groups. Identity values are total OG counts 

for the given species.

M. pneumoniae M. genitalium B. subtillis S. sanguinis H. pylori C. crescentus P. aeruginosa E. coli
M. pneumoniae 461 0.6972 0.0016 0.5707 0.4326 0.4908 0.5324 0.5408

M. genitalium 0.8693 435 0.7116 0.6992 0.5332 0.6100 0.6535 0.6556

B. subtillis 0.0856 0.0846 2582 0.2421 0.1714 0.2564 0.3052 0.3023

S. sanguinis 0.1681 0.1652 0.4814 1437 0.2549 0.3652 0.4255 0.4338

H. pylori 0.1775 0.1754 0.4744 0.3549 1180 0.4894 0.5379 0.5365

C. crescentus 0.0818 0.0815 0.2882 0.2065 0.1987 2231 0.3853 0.3489

P. aeruginosa 0.0554 0.0546 0.2144 0.1503 0.1365 0.2407 3112 0.2884

E. coli 0.0784 0.0762 0.2958 0.2135 0.1896 0.3037 0.4017 2593

Table III-C-B. Percentage of total loci shared between species.  Exact strains of each species are identified in the Methods. 
Values are locus counts as per shared eggNOG v.3 orthologous groups; following values in parentheses are total conservation 

fractions, e.g., 466 of 482 M. genitalium loci appear to be conserved in the M. pneumoniae genome (or a fraction of 0.9668) 
while 517 of 601 M. pneumoniae loci appear to be conserved in the M. genitalium genome (or a fraction of 0.8602).

M. pneumoniae M. genitalium B. subtilis S. sanguinis H. pylori C. crescentus P. aeruginosa E. coli
M. pneumoniae 601 (1) 517 (0.8602) 430 (0.7155) 427 (0.7105) 336 (0.5591) 379 (0.6306) 395 (0.6572) 408 (0.6789)
M. genitalium 466 (0.9668) 482 (1) 388 (0.805) 381 (0.7905) 290 (0.6017) 333 (0.6909) 353 (0.7324) 355 (0.7365)
B. subtilis 644 (0.1588) 627 (0.1546) 4056 (1) 1974 (0.4867) 1374 (0.3388) 2101 (0.518) 2465 (0.6077) 2428 (0.5986)
S. sanguinis 538 (0.2637) 519 (0.2544) 1514 (0.7422) 2040 (1) 804 (0.3941) 1186 (0.5814) 1341 (0.6574) 1379 (0.676)
H. pylori 314 (0.2143) 304 (0.2075) 844 (0.5761) 631 (0.4307) 1465 (1) 916 (0.6253) 979 (0.6683) 992 (0.6771)
C. crescentus 454 (0.1258) 440 (0.122) 2064 (0.5721) 1487 (0.4121) 1401 (0.3883) 3608 (1) 2618 (0.7256) 2414 (0.6691)
P. aeruginosa 678 (0.1174) 655 (0.1134) 3275 (0.5672) 2353 (0.4075) 1963 (0.34) 3615 (0.6261) 5774 (1) 4007 (0.694)

E. coli 594 (0.1433) 567 (0.1368) 2418 (0.5834) 1791 (0.4321) 1414 (0.3411) 2409 (0.5812) 3027 (0.7303) 4145 (1)
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Table III-D. Key to short protein complex IDs.

Short ID EcoCyc ID Complex Name Note

C1 F-1-CPLX ATP synthase F1 complex

C2 ATPSYN-CPLX
ATP synthase / thiamin triphosphate 
synthase

C3 UVRABC-CPLX
UvrABC Nucleotide Excision Repair 
Complex

C4 RNAPS-CPLX RNA polymerase sigma S

C5 RNAP32-CPLX RNA polymerase sigma 32

C6 RNAP70-CPLX RNA polymerase sigma 70

C7 APORNAP-CPLX RNA polymerase, core enzyme

C8 F-O-CPLX ATP synthase F0 complex

C9 HSP70-CPLX DnaK-DnaJ-GrpE chaperone system

C10 CPLX0-3801
DNA polymerase III, preinitiation 
complex

C11 RIBONUCLEOSIDE-DIP-REDUCTII-CPLX ribonucleoside-diphosphate reductase 2

C12 CPLX0-7609
5-carboxymethylaminomethyluridine-
tRNA synthase 

C13 PHES-CPLX phenylalanyl-tRNA synthetase

C14 CPLX0-7879 NusB-NusE complex

C15 CPLX0-2424 topoisomerase IV

C16 CPLX0-2425 DNA gyrase

C17 PC00027
IHF DNA-binding transcriptional dual 
regulator

C18 CPLX0-3934 GroEL-GroES chaperonin complex

C19 CPLX0-2021
HU DNA-binding transcriptional dual 
regulator

C20 RIBONUCLEOSIDE-DIP-REDUCTI-CPLX ribonucleoside diphosphate reductase 1

C21 CPLX0-3956 50S ribosomal protein complex L8

C22 CPLX0-3964 ribosome

C23 SECE-G-Y-CPLX SecYEG translocase

C24 RNAPE-CPLX RNA polymerase sigma 24

C25 CPLX0-221 RNA polymerase sigma 19
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C26 RNAP54-CPLX RNA polymerase sigma 54

C27 CPLX0-222 RNA polymerase sigma 28

C28 ABC-22-CPLX peptide ABC transporter OppABCDF

C29 CPLX0-3970
murein tripeptide ABC transporter 
OppBCDFMppA

C30 ABC-8-CPLX dipeptide ABC transporter

C31 ABC-49-CPLX glutathione ABC transporter

C32 ABC-20-CPLX nickel ABC transporter

C33 ABC-59-CPLX
YddO/YddP/YddQ/YddR/YddS ABC 
transporter

C34 GCVMULTI-CPLX glycine cleavage system

C35 CPLX0-1944 ferric enterobactin transport system

C36 ABC-23-CPLX phosphonate ABC transporter

C37 CPLX0-3323
CcmEFGH holocytochrome <I>c</I> 
synthetase

C38 HCAMULTI-CPLX 3-phenylpropionate dioxygenase system

C39 ABC-11-CPLX iron (III) hydroxamate ABC transporter

C40 CPLX0-3108 ClpAXP

C41 CPLX0-3104 ClpAP

C42 ABC-21-CPLX YadG/YadH ABC transporter

C43 ABC-57-CPLX YbhF/YbhR/YbhS ABC transporter

C44 SECD-SECF-YAJC-YIDC-CPLX
SecD-SecF-YajC-YidC Secretion 
Complex

C45 ABC-9-CPLX ferric dicitrate ABC transporter

C46 CPLX0-2982
HflB, integral membrane ATP-dependent 
zinc metallopeptidase

C47 RUVABC-CPLX resolvasome

C48 SEC-SECRETION-CPLX Sec Translocation Complex

C49 CPLX0-5
EntS-TolC Enterobactin Efflux Transport 
System

C50 TRANS-200-CPLX
MacAB-TolC macrolide efflux transport 
system

C51 CPLX0-2381 degradosome

C52 CPLX0-2161 EmrKY-TolC multidrug efflux transport 
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system

C53 CPLX0-2121
EmrAB-TolC multidrug efflux transport 
system

C54 ABC-62-CPLX LolCDE ABC lipoprotein transporter

C55 CPLX0-1981 ferrichrome transport system

C56 CPLX0-7954 ferric coprogen transport system

C57 CPLX0-2001 ferric dicitrate transport system

C58 CPLX0-7934 FtsLBQ cell division complex

C59 ABC-10-CPLX ferric enterobactin ABC transporter

C60 CPLX0-3803 DNA polymerase III, holoenzyme

C61 CPLX0-2361 DNA polymerase III, core enzyme

C62 CPLX0-3922 primosome

C63 CPLX0-241 tagatose-1,6-bisphosphate aldolase 2

C64 CPLX0-240 tagatose-1,6-bisphosphate aldolase 1

C65 ABC-25-CPLX putrescine ABC transporter

C66 ABC-51-CPLX YdcS/YdcT/YdcV/YdcU ABC transporter

C67 ABC-24-CPLX putrescine / spermidine ABC transporter

C68 CPLX-158 fructose PTS permease

C69 CPLX-159 PTS permease - unknown specificity

C70 CPLX-157 glucose PTS permease

C71 CPLX0-7 N-acetylmuramic acid PTS permease

C72 CPLX-164 maltose / glucose PTS permease
Entry removed from EcoCyc but 
present in MetaCyc

C73 CPLX-168 trehalose PTS permease

C74 ABC-27-CPLX phosphate ABC transporter

C75 PYRUVATEDEH-CPLX pyruvate dehydrogenase

C76 2OXOGLUTARATEDEH-CPLX 2-oxoglutarate dehydrogenase complex

C77 CPLX0-3925 DNA polymerase V

C78 CPLX-156 mannitol PTS permease - cryptic

C79 MONOMER0-1761 MalT-MalK

C80 ABC-16-CPLX maltose ABC transporter

C81 CPLX-160 PTS permease - unknown specificity
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C82 ABC-34-CPLX
glycerol-3-phosphate / 
glycerophosphodiester ABC transporter

C83 ABC-55-CPLX YcjN/YcjO/YcjP ABC transporter

C84 CPLX0-3958 EcoKI restriction-modification system

C85 EIISGA L-ascorbate PTS permease

C86 EIISGC PTS permease - unknown specificity

C87 CPLX0-231 galactitol PTS permease

C88 SUCC-DEHASE succinate dehydrogenase

C89 CPLX0-3933
Outer Membrane Protein Assembly 
Complex
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Table III-E. Conservation of E. coli complexes from Hu et al. (2009).

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-E.xlsx
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Table III-F. Essentiality of E. coli complexes from Hu et al. (2009).

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-F.xlsx
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Table III-G. Conservation of E. coli complexes from EcoCyc.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-G.xlsx
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Table III-H. Essentiality of E. coli complexes from EcoCyc.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-H.xlsx
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Table III-I. Conservation of Mycoplasma pneumoniae complexes from Kühner et 
al. (2009).

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-I.xlsx
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Table III-J. Essentiality of Mycoplasma pneumoniae complexes from Kühner et al. 
(2009).

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-J.xlsx
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Table III-K. Experimental protein complexes containing uncharacterized components.

In this table, Data Set identifies the source of the complex. 

CplxID is the complex identifier assigned by the data source. For the experimentally-observed complexes (Hu et al. (2009) and 
Kühner et al (2009)) this is the CplxID or Purification ID, respectively. 

Size is the number of unique protein components (by OG) in the complex.

Unknown Components is the total number of components in this complex with unknown or unclear functions beyond their 
membership in the complex. The corresponding OGs must have functional category labels of R or S. 

Highly Conserved Components are those coded for by the genomes of at least half of the eight species in the focused set.

Highly Essential Components are those coded for by essential genes present in at least half of the eight species in the 
focused set. 

Data Set CplxID Size
Unknown 
Components

Highly Conserved 
Components

Highly Essential 
Components Notes

Hu et al. (2009) 1 39 13 26 4 degradosome

2 25 10 15 2 resolvasome

5 16 7 9 2

23 9 6 5 0 HflB complex?

3 22 4 15 6 ClpP protease complex?

9 13 4 10 2 efflux transport system?

15 11 4 7 1

4 18 3 13 3 ABC transporter

11 12 3 9 1 DosC-DosP complex?

25 9 3 4 1 ABC transporter

52 6 3 4 1
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59 6 3 4 1

105 5 3 4 1

66 6 3 3 1

101 5 3 3 1

26 8 3 6 0

40 7 3 4 0

79 5 3 3 0

90 5 3 3 0

109 5 3 3 0

62 6 3 1 0

12 12 2 7 5

20 10 2 10 4

36 7 2 5 4

41 7 2 7 1

18 11 2 5 1

53 6 2 5 1

91 5 2 4 1

146 4 2 4 1

75 5 2 3 1

80 5 2 3 1

88 5 2 3 1

143 4 2 3 1

151 4 2 3 1

85 5 2 2 1

14 11 2 6 0

33 8 2 6 0

48 7 2 6 0

34 8 2 5 0

100 5 2 5 0
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45 7 2 4 0

49 7 2 4 0

55 6 2 4 0

68 6 2 4 0

103 5 2 4 0

116 4 2 3 0

127 4 2 3 0

145 4 2 3 0

149 4 2 3 0

251 3 2 3 0

123 4 2 2 0

245 3 2 2 0

84 5 2 1 0

134 4 2 1 0

154 4 2 1 0

6 13 1 10 5

10 13 1 10 5

27 8 1 8 4

29 8 1 7 4

28 8 1 6 3

30 8 1 6 3

42 7 1 3 3

22 9 1 8 2

21 9 1 5 2

60 6 1 5 2

58 6 1 4 2

137 4 1 2 2

8 13 1 10 1

19 11 1 9 1
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17 11 1 8 1

50 6 1 5 1

95 5 1 5 1

97 5 1 5 1

35 8 1 4 1

98 5 1 4 1

107 5 1 4 1

121 4 1 3 1

82 5 1 2 1

102 5 1 2 1

112 4 1 2 1

165 3 1 2 1

173 3 1 2 1

176 3 1 2 1

192 3 1 2 1

232 3 1 2 1

239 3 1 2 1

346 2 1 2 1

204 3 1 1 1

13 12 1 5 0

39 7 1 5 0

46 7 1 5 0

108 5 1 5 0

44 7 1 4 0

54 6 1 4 0

56 6 1 4 0

61 6 1 4 0

78 5 1 4 0

86 5 1 4 0
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110 4 1 4 0

120 4 1 4 0

161 4 1 4 0

65 6 1 3 0

67 6 1 3 0

69 6 1 3 0

73 5 1 3 0

87 5 1 3 0

89 5 1 3 0

92 5 1 3 0

94 5 1 3 0

114 4 1 3 0

150 4 1 3 0

198 3 1 3 0

210 3 1 3 0

240 3 1 3 0

72 5 1 2 0

93 5 1 2 0

115 4 1 2 0

118 4 1 2 0

148 4 1 2 0

156 4 1 2 0

181 3 1 2 0

222 3 1 2 0

227 3 1 2 0

237 3 1 2 0

247 3 1 2 0

261 3 1 2 0

262 3 1 2 0
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264 3 1 2 0

289 2 1 2 0

290 2 1 2 0

339 2 1 2 0

354 2 1 2 0

364 2 1 2 0

365 2 1 2 0

403 2 1 2 0

43 7 1 1 0

74 5 1 1 0

126 4 1 1 0

162 4 1 1 0

203 3 1 1 0

228 3 1 1 0

230 3 1 1 0

246 3 1 1 0

248 3 1 1 0

259 3 1 1 0

426 2 1 1 0

99 5 1 0 0

178 3 1 0 0

258 3 1 0 0

Kühner et al 
(2009), table S2 50 62 2 39 33 Ribosome

10 10 2 8 6
Aminoacyl-tRNA 
synthetase complex

36 10 2 8 5
Complex function unknown 
- contains GroL/GroS

8 16 2 7 1 Protein chaperone complex

19 3 2 3 1
Complex function unknown 
- contains thymidylate 
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synthase

49 28 1 19 12 RNA polymerase complex

44 13 1 8 5
Pyruvate dehydrogenase 
complex

15 10 1 7 4
DNA Recombination 
complex

29 10 1 5 3 DNA Pol III core complex

46 4 1 3 3

Carbohydrate 
transport/metabolism 
complex - contains enolase

45 11 1 7 2

34 5 1 4 2

35 5 1 4 2

11 2 1 2 2

27 9 1 3 1

59 2 1 2 1

100 2 1 2 1

70 2 1 2 1

98 2 1 1 1

24 5 1 2 0

31 4 1 2 0

14 3 1 2 0

68 2 1 2 0

74 2 1 2 0

2 5 1 1 0

42 4 1 1 0

20 4 1 1 0

21 4 1 1 0

43 2 1 1 0

109 2 1 1 0

55 2 1 1 0
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56 2 1 1 0

58 2 1 1 0

76 2 1 1 0
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Table III-L. Complex-based protein-protein interactions for E. coli.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20III-L.xlsx

This table includes all protein-protein interactions among E. coli proteins (as determined 
by Rajagopala et al. 2014) involved in heteromeric protein complexes (from the EcoCyc 
set). Each row corresponds to a single protein-protein interaction between the two 
proteins defined using Uniprot identifiers (InteractorA and InteractorB). 

Each protein is assigned to an OG (specifically, an eggNOG v.4 bactNOG or highest-
level NOG where possible, or otherwise a COG; see OG_A and OG_B). 

GroupA and GroupB correspond to the EcoCyc protein complex containing InteractorA 
and InteractorB, respectively. 

Cplx_Int_Predicted indicates interactions predicted to occur in the lack of direct 
experimental evidence but observed experimentally for other proteins of the same two 
OGs. 

FunctionalityA and FunctionalityB are general functional categories referring to 
complex function (of GroupA and GroupB, respectively) rather than individual protein 
function. The functional categories are primarily based on EcoCyc annotations but also 
take the shared functions of the component proteins into account.

304



APPENDIX IV

Additional data tables for Chapter 3

Table IV-A. Counts of literature citing multiple bacterial interactomes.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-A.xls

The initial version of this data was produced by Christopher Wimble.

All publications in PubMed Central were searched for citations for at least one of the 11 
publications listed below, each of which describes a comprehensive bacterial protein-
protein interactome. 

PMCID Pubmed Central identifier of the publication.

DOI DOI of the publication, if available.

Publication Title Title of the publication.

Citations The total count of papers, of those listed below, cited by 
the specified publication. An “x” denotes a citation to the 
publication in this row.

Rain 2001 Citation to Rain JC, Selig L, De Reuse H, Battaglia V, 
Reverdy C, et al. (2001) The protein-protein interaction 
map of Helicobacter pylori. Nature 409: 211–215. 

Parrish 2007 Citation to Parrish JR, Yu J, Liu G, Hines J a, Chan JE, et 
al. (2007) A proteome-wide protein interaction map for 
Campylobacter jejuni. Genome Biol 8: R130.

Sato 2007 Citation to Sato S, Shimoda Y, Muraki A, Kohara M, 
Nakamura Y, et al. (2007) A large-scale protein-protein 
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interaction analysis in synechocystis sp. PCC6803. DNA 
Res 14: 207–216.

Shimoda 2008 Citation to Shimoda Y, Shinpo S, Kohara M, Nakamura Y, 
Tabata S, et al. (2008) A large scale analysis of protein-
protein interactions in the nitrogen-fixing bacterium 
Mesorhizobium loti. DNA Res 15: 3–11.

Titz 2008 Citation to Titz B, Rajagopala S V., Goll J, Häuser R, 
McKevitt MT, et al. (2008) The binary protein interactome 
of Treponema pallidum - The syphilis spirochete. PLoS 
One 3: e2292.

Hu 2009 Citation to Hu P, Janga SC, Babu M, Díaz-Mejía JJ, 
Butland G, et al. (2009) Global functional atlas of 
Escherichia coli encompassing previously 
uncharacterized proteins. PLoS Biol 7: 0929–0947.

Kuhner 2009 Citation to Kühner S, van Noort V, Betts MJ, Leo-Macias 
A, Batisse C, et al. (2009) Proteome organization in a 
genome-reduced bacterium. Science 326: 1235–1240.

Wang 2010 Citation to Wang Y, Cui T, Zhang C, Yang M, Huang Y, et 
al. (2010) Global protein-protein interaction network in 
the human pathogen Mycobacterium tuberculosis H37Rv. 
J Proteome Res 9: 6665–6677.

Cherkasov 2011 Citation to Cherkasov A, Hsing M, Zoraghi R, Foster LJ, 
See RH, et al. (2011) Mapping the Protein Interaction 
Network in Methicillin-Resistant Staphylococcus aureus. 
J Proteome Res 10: 1139–1150.

Hauser 2014 Citation to Häuser R, Ceol A, Rajagopala S V, Mosca R, 
Siszler G, et al. (2014) A second-generation protein-
protein interaction network of Helicobacter pylori. Mol 
Cell Proteomics 13: 1318–1329.

Rajagopala 2014 Citation to Rajagopala S V., Sikorski P, Kumar A, Mosca 
R, Vlasblom J, et al. (2014) The binary protein-protein 
interaction landscape of Escherichia coli. Nat Biotechnol 
32: 285–290.
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Table IV-B. All interactions in the meta-interactome network.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-B.csv.tar.gz

Interactions are provided in PSI-MI TAB 2.7 format, with the addition of orthologous 
group identifiers for interactor A and B in the 43rd and 44th columns, respectively. The 
table does not contain a heading for this reason. The file must be decompressed prior to 
use.

The PSI-MI TAB 2.7 format depends on PSI-MI controlled vocabularies and is described 
in detail at: https://code.google.com/archive/p/psimi/wikis/PsimiTab27Format.wiki
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Table IV-C. All interactions in the consensus meta-interactome network.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-C.xls

In this table:

InteractorA The first interactor. Either an eggNOG OG identifier or a Uniprot 
protein identifier, representative of a single-member OG.

InteractorB The second interactor. Either an eggNOG OG identifier or a Uniprot 
protein identifier, representative of a single-member OG.

For InteractorA and InteractorB, interactors mapping to multiple 
OGs include all corresponding OGs, separated by commas. For 
purposes of this data set, multiple-OG interactors are treated as 
unique OGs, even if their mappings overlap with other OGs.

InteractionCount Count of individual PROTEIN interactions contributing to this 
consensus interaction, as per the meta-interactome.

TaxonCount Count of different taxons (here, a proxy for species) corresponding 
to the interaction.

Similar taxons have been grouped together where possible, e.g. 
two different E. coli K-12 strains are just considered E. coli K-12.

Taxons The taxons corresponding to this interaction.

FuncCatA Functional category of the first interactor.

DescA Description of the first interactor.

FuncCatB Functional category of the second interactor.

DescB Description of the second interactor.

For all FuncCats and Descriptions, multiple-OG interactors include all annotations, 
separated by pipe ( | ) symbols. NA indicates that a functional category or description is 
not available.
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Table IV-D. Conserved interactions of unclear function.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20IV-D.xls

The format of this table is identical to that of Table IV-C. All interactions in this table are 
OG-OG interactions from the consensus meta-interactome where the interaction has 
been observed in at least two distinct species and involves at least one OG with a 
functional category of “S”.
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APPENDIX V

Additional data tables for Chapter 4

Table V-A. Interactions between bacteriophage and bacterial proteins.

This table is not included in this document due to size. 

It may be retrieved from the following location:

https://github.com/caufieldjh/dissertation/blob/master/Table%20V-A.xlsx

All interactions in this table are between a bacterial protein and a bacteriophage protein. 
Induction of a phenotype (I.e., gpX causes lysis) is insufficient evidence, as are host 
range studies (e.g., gpX mutations allow infection of Species A but not Species B) even 
if a specific receptor is named. Protein-focused methods (e.g., yeast two hybrid) are 
acceptable. Reciprocal interactions are included when available but each interaction 
appears only once between two unique proteins. If an interaction was found in more 
than one study, all studies are listed under the Source heading.

Phage_Interactor The protein name of the phage interactor.

Phage The name of the bacteriophage source of the phage 
interactor.

Phage_UPID The Uniprot entry ID of the phage interactor.

Phage_Alt_ID An alternate ID for the phage interactor if a Uniprot ID is not 
available. Otherwise, this is identical to Phage_UPID.

Phage_OG An eggNOG v.4.5 orthologous group assignment for the 
phage interactor, if available. Otherwise, this is identical to 
Phage_Alt_ID. Lack of current OG assignment does not 
preclude future OG assignment.
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Host_Interactor The protein name of the host interactor.

Host The species name of the bacterial host and source of the 
host interactor.

Host_UPID The Uniprot entry ID of the host interactor.
Host_Alt_ID An alternate ID for the host interactor if a Uniprot ID is not 

available. Otherwise, this is identical to Host_UPID.

Host_OG An eggNOG v.4.5 orthologous group assignment for the host 
interactor, if available. Otherwise, this is identical to 
Host_Alt_ID.

ExpMethod The experimental method used to observe the interaction, as 
one of the methods defined by the PSI MI 2.5 methods 
ontology.

ExpMethodID The ontology ID for the experimental method. See 
http://www.ebi.ac.uk/ols/beta/ontologies/mi

InfMethod "Spoke" if the reported interaction is the product of a spoke 
expansion model. "-" if otherwise.

Source The first author and publication year of the source of the 
reported interaction. Multiple sources may be provided for a 
single interaction but will have different entries.

SourceID An NCBI PubMed ID for the source.

Database The source database, if present in a database of protein 
interactions, or a review article including a collection of 
interactions.
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Table V-B. Citations for phage-host protein interaction sources.

First Author PMID Full Citation

Atanasiu et al., 2002 12235377
Atanasiu, C., Su, T.-J., Sturrock, S. S. & Dryden, D. T. F. Interaction of the ocr gene 0.3 protein of bacteriophage T7 
with EcoKI restriction/modification enzyme. Nucleic Acids Res. 30, 3936–44 (2002).

Berkane et al. (2006) 16489764
Berkane, E. et al. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of 
the viral tail protein gpJ to LamB (Maltoporin). Biochemistry 45, 2708–20 (2006).

Blasche et al. (2013) 24049175
Blasche, S., Wuchty, S., Rajagopala, S. V & Uetz, P. The protein interaction network of bacteriophage lambda with 
its host, Escherichia coli. J. Virol. 87, 12745–55 (2013).

Breyton et al. (2013) 24014030
Breyton, C. et al. Assessing the conformational changes of pb5, the receptor-binding protein of phage T5, upon 
binding to its Escherichia coli receptor FhuA. J. Biol. Chem. 288, 30763–72 (2013).

Brieba et al. (2004) 15297882
Brieba, L. G. et al. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA 
polymerase. EMBO J. 23, 3452–61 (2004).

Chen et al. (2002) 11751917
Chen, M. et al. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein 
insertion. J. Biol. Chem. 277, 7670–5 (2002).

Cheng et al. (2004) 15302217
Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 
340–52 (2004).

Ding et al. (1995) 7578104
Ding, Y., Duda, R. L., Hendrix, R. W. & Rosenberg, J. M. Complexes between chaperonin GroEL and the capsid 
protein of bacteriophage HK97. Biochemistry 34, 14918–31 (1995).

Doublié et al. (1998) 9440688
Doublié, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA 
replication complex at 2.2 A resolution. Nature 391, 251–8 (1998).

Dove and Hochschild 
(2001) 11591686

Dove, S. L. & Hochschild, A. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit 
of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas 
aeruginosa. J. Bacteriol. 183, 6413–21 (2001).

Dutta et al. (2004) 15528277
Dutta, S. et al. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA 
polymerase reveal mechanisms of mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 101, 16186–91 (2004).

Fornelos et al. (2015) 26138485
Fornelos, N. et al. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit 
RecA-mediated auto-cleavage. Nucleic Acids Res. 43, 7315–29 (2015).
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