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 The bacterial ribosome is essential to cell growth yet little is known about how its 

proteins attain their mature structures.  Recent studies indicate that certain Staphlyococcus 

aureus bacteriophage protein sequences contain specific sites that may be cleaved by a non-

bacteriophage enzyme (Poliakov et al. 2008).   The phage cleavage site was found to bear 

sequence similarity to the N-terminus of  S. aureus ribosomal protein L27.  Previous studies in E. 

coli (Wower et al.1998; Maguire et al. 2005) found that L27 is situated adjacent to the ribosomal 

peptidyl transferase site, where it likely aids in new peptide formation.  The predicted S. aureus 

L27 protein contains an additional N-terminal sequence not observed within the N-terminus of 

the otherwise similar E. coli L27; this sequence appears to be cleaved, indicating yet-unobserved 

ribosomal protein post-translational processing and use of host processes by phage.  

Phylogenetic analysis shows that L27 processing has the potential to be highly conserved.   

Further study of this phenomenon may aid antibiotic development.      
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CHAPTER 1 

 

INTRODUCTION 

 

 

 Life depends upon ribosomes.  All cells must scrupulously control translation of mRNA-

encoded genes into useful proteins or risk wasting precious cellular resources on unnecessary or 

potentially toxic peptides.  Living things at the periphery of our definition of life depend upon 

bacterial ribosomes as well.  The bacteriophages, encoding no ribosomes of their own, must take 

advantage of their hosts' protein-producing machinery to manufacture new viral components.  

Such exploitation of host processes by bacteriophages can provide new insight into bacterial 

biology.  This work describes one such example: a yet-unexplored cellular process involving 

post-translational processing of a ribosomal protein.  It specifically focuses on processing of 

ribosomal protein L27 within Staphlyococcus aureus and shows the potential extent of this 

activity among numerous other bacterial species. 

 Staphlyococcus aureus is a Gram-positive coccus of the bacterial family 

Staphylococcaceae.  This catalase-positive, facultative anaerobe requires a growth environment 

rich in amino acids and other complex nutrient resources.  A commensal colonist of the human 

respiratory tract, mucous membranes and skin, it generally causes only limited irritation or 

infection.  Ten distinct lineages compose the commensal S. aureus population (Lindsay, 2010), 

though acquisition of mobile genetic elements can cause any of these strains to become highly 

pathogenic.  Pathogenic S. aureus strains are responsible for a variety of diseases: the toxins 

responsible for toxic shock syndrome, scalded skin syndrome, and necrotizing pneumonia are all 
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found in pathogenic S. aureus.  Especially virulent strain of this species can also cause pervasive 

infections of the skin, deep tissues, and cardiac valves (Stefani and Goglio, 2010).    

 Infections by S. aureus strains resistant to the beta-lactam antibiotic methicillin (MRSA) 

have gained particular notoriety in recent years.  MRSA infections have reached epidemic status 

and limit the number of effective antibiotics available.  These antibiotic-resistant strains remain 

especially prevalent in clinical environments; MRSA remains a primary cause of hospital-

associated infections, especially among the elderly (Klevens et al., 2007).  Antibiotic resistance 

has led to use of alternative antibiotics such as the glycopeptide vancomycin.  This provides only 

a temporary strategy for combating pathogenic S. aureus, as human cases of fully vancomycin-

resistant S. aureus (VRSA) infection have been appearing for several years (Zhu et al., 2008). 

 Studies of S. aureus antibiotic resistance and pathogenicity show that mobile genetic 

elements are responsible for the transfer of many virulence factors of S. aureus.  Horizontal 

transfer events, mediated by plasmids, transposons, temperate bacteriophages and other 

mechanisms, can lead to insertion of pathogenicity determinants. Resistance to methicillin is 

conferred by insertion of a 52 Kb DNA cassette known as Staphylococcus cassette chromosome 

mec (SCCmec) into the S. aureus chromosome (Katayama et al., 2000).  Vancomycin resistance 

may be the result of horizontal transfer by a plasmid from Enterococcus faecalis (Zhu et al., 

2008).  S. aureus strains are also known to harbor a class of phage-related, superantigen-

encoding pathogenicity islands (reviewed in Novick et al., 2010).  These superantigen 

pathogenicity islands, or SaPIs, are phage-like genetic elements resident within some S. aureus 

strains that require infection by helper phages for replication and mobilization.  SaPIs were 

originally discovered to carry the gene for toxic shock syndrome toxin-1 (TSST-1) (Lindsay et al., 
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1998) and as such are highly relevant to S. aureus pathogenicity, but mobilize only in the 

presence of phage, as their genomes spread in phage-protein-composed particles. 

 Bacteriophages – or simply phages – are bacterial viruses, usually containing little more 

than their own genomes within a protein capsid.  A variety of phage types and morphologies 

exist within a global population estimated at more than 10
31

 viral particles (Wommack and 

Colwell, 2000).  These viruses exist freely in the environment and must inject their DNA into a 

host bacterium to replicate.  Depending upon the phage in question and its local population, its 

life cycle may continue down one of two specific paths.  A lytic pathway may be taken, in which 

the phage quickly subverts the host's protein production, shifting it to phage proteins.  Some 

phages enter a lysogenic cycle instead, in which the phage genome integrates with the host 

chromosome and enters a lytic phase upon exposure to stimuli such as the host SOS response.   

 Most known bacteriophages are tailed bacteriophages of the order Caudovirales.  These 

viruses all possess icosahedral heads known as capsids, as well as tails and connector proteins.  

They contain genomes of linear dsDNA.  Individual tailed bacteriophage particles come together 

in a generally conserved process of macromolecular self-assembly, though the assembly process 

requires accessory proteins for stability during maturation.  Once the host begins to produce 

phage proteins, structural proteins will begin to form the required phage particle structures as a 

function of their own conformation, requiring limited energy beyond that required for initial 

protein production.  The immature capsid structure is known as a procapsid.  Studies of two of 

the dsDNA phages of E. coli, P22 and T4, found that mature capsid assembly depended upon 

production of a precursor or 'scaffold' protein.  Scaffold proteins were later found to be essential 

to the assembly of most other dsDNA phages and many other viruses (Dokland, 1999).  Studies 
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of the phage P22 have shown that the scaffold protein is responsible for reducing the 

concentration of capsid protein required for phage particle assembly, as well as guiding 

formation of the icosahedral structure and recruiting other phage proteins to the maturing particle.  

In many phages these actions require capsid and/or scaffold proteins to be cleaved by a virally-

encoded protease (Johnson 2010).     

 The study presented here emerged from observations of bacteriophage 80α, a helper 

phage responsible for transduction of one of the SaPI genetic elements mentioned above (Tallent 

et al., 2007).  Studies of bacteriophage 80α of S. aureus showed that it assembled in much the 

same manner as other tailed bacteriophages, yet contained no virally-encoded protease for 

processing of its capsid and scaffold proteins.  Furthermore, analysis of capsid (gp46) and 

scaffold (gp47) proteins showed they were cleaved when isolated from 80α procapsids in S. 

aureus but not when isolated from E. coli plasmid expression systems; see Figure 1 for protein 

size comparison by SDS-PAGE (Poliakov et al., 2008).  Figure 2 compares the sequences of 

these proteins and indicates where the cleavage occurs. Scaffold protein is significantly smaller 

than capsid protein, but both proteins are N-terminally cleaved within a consensus sequence of 

NLQFFA.  In their mature forms, both proteins begin with an alanine, indicating a site of 

cleavage immediately after a phenylalanine.  Further work by P.K. Damle (unpublished) showed 

that plasmid-based expression of gp46 and gp47 alone in S. aureus also yielded cleaved proteins 

like those purified from 80α procapsids (Fig. 1b).  These observations led to the conclusion that 

the protease involved in 80α capsid assembly must originate from the host.  This protease 

presumably has a normal, non-bacteriophage-related function within S. aureus. 
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Figure 1. Comparison of bacteriophage 80α capsid and scaffold proteins by SDS-PAGE. 
a) Bacteriophage 80α capsid protein (CP) and scaffold protein (SP) purified from bacteriophage 

80α procapsids in S. aureus and the same proteins expressed from plasmid pPD2 in E. coli.  

Marker shown on left denotes protein size in KDa.  Adapated from Poliakov et al., 2008. 

b) Bacteriophage 80α capsid and scaffold proteins purified from overexpression in E. coli and S. 

aureus.  Marker shown on right denotes protein size in KDa. P.K. Damle, unpub. 
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Figure 2. Protein sequence alignment of the N-terminal regions of bacteriophage 80ɑ capsid 

protein (CP), bacteriophage 80ɑ scaffold protein (SP), and S. aureus L27.  All sequences 

from NCBI protein database – see Materials and Methods for accession numbers.  Red line 

indicates predicted cleavage site.  Amino acids on colored background indicate identity between 

at least one other sequence. 
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 Searching the S. aureus genome with the conserved sequence of the 80α capsid and 

scaffold protein cleavage site revealed one potential protease target.  NCBI protein-protein 

BLAST was used to search the non-redundant protein sequence database for protein sequences in 

S. aureus similar to those of phage 80α capsid and scaffold proteins.  The single confident result 

from each BLAST search was ribosomal protein L27. (Original search results courtesy of Terje 

Dokland lab, unpub.)  This protein is the product of the gene rpmA and codes for a 94 amino acid 

protein of the 50S ribosomal subunit.  The core L27 protein sequence shows very little similarity 

to that of the phage 80α capsid and scaffold proteins; no discernible alignment exists after the 

30
th

 amino acid of each sequence.  The N-terminus of L27 as coded for by rpmA does appear to 

bear similarity to the conserved sequence seen in the phage proteins (see Figure 2).  Most notably, 

this region does contain the conserved cleavage site seen in the phage proteins.  If a host protease 

exists within S. aureus and cleaves phage 80α structural proteins, its usual target is likely to be 

this N-terminal region of the L27 protein.  This activity would be a highly novel phenomenon as 

no examples of post-translational ribosomal protein processing are currently known.      

 The bacterial ribosome requires both RNA and a collection of proteins for its assembly 

and stability (reviewed in Shajani et al., 2010).  The complete ribosome sediments as a 70S 

particle made up of a small 30S subunit and a large 50S subunit.  The small subunit contains a 

16S ribsosomal RNA molecule and 21 distinct proteins.  The large subunit contains a 23S rRNA 

and a 5S rRNA as well as 33 proteins, one of which is L27.  Early work by Traub and Nomura 

(1968) showed that E. coli ribosomal particles required no additional components for assembly: 

rRNA and ribosomal proteins were found to assemble into 30S particles in vitro without the 
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addition of any other cellular components.  Furthermore, this work shows that the ribosomal 

proteins bind to 16S rRNA in a distinct order, with a set of protein-RNA interactions required for 

the stable binding of other ribosomal proteins.  Peptidyl transferase activity depends upon sites 

within the rRNA.   

Bacteria can evidently tolerate lack of some ribosomal proteins but not without impacts 

on growth.  Treatment of ribosomes with proteinase K or SDS – presumably disrupting 

ribosomal proteins – has been found to severely limit but not abolish peptidyl transferase activity 

in E. coli (Noller et al., 1992).  Individual knockouts of the 30S ribosomal protein genes rpsF, 

rpsI, rpsM, rpsO, rpsQ, and rpsT still remained viable, though the mutants were temperature 

sensitive (Bubunenko et al., 2007).  As much of the work exploring ribosomal proteins concerns 

E. coli only, some of these results may not extend to ribosomes of other bacterial species.  

 Despite an ability to function without a full complement of ribosomal proteins, stable 70S 

ribosomes require these accessories to reach full efficiency.  A substantial body of evidence 

suggests that ribsosomal protein L27 in particular aids both ribosome assembly and the peptidyl 

transferase reaction.  The Keio collection of E. coli K-12 deletion mutants does not contain an 

rpmA mutant – the study behind this collection considered it essential for growth (Baba et al., 

2006).  Earlier work by Wower et al (1998), however, showed that rpmA deletions are not lethal 

in E. coli.  Rather, lack of rpmA slows growth rates at 37ºC to nearly a fifth of that seen with the 

parent strain (E. coli LG90). These mutants did not grow at all at 25ºC or 43ºC.  In addition to 

these growth defects, E. coli rpmA deletion strains formed only 40S precursors to the ribosomal 

50S subunit.  These malformed subunits lack the proteins L16, L20, and L21 as well, though 

they do still appear to form 70S particles in vivo (Wower et al., 1998).  Notably, the L21 protein 
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is still produced when L27 is deleted (Wower et al., 1998) and though they appear to be located 

within the same operon, transcription of one of their respective genes does not appear to cause 

post-transcriptional regulation of the other (Nomura et al., 1984).  In Staphyloccus aureus, rpmA 

was shown to be essential by transposon mutagenesis (Chaudhuri et al. 2009) and antisense RNA 

ablation of rpmA was found to be lethal (Ji et al., 2001). 

 Work by Lotti et al. (1987) used immuno-electron microscopy to find that L27 is located 

immediately adjacent to the peptidyl transferase center (PTC).  Later, a crystal structure of the 

50S ribosomal subunit from D. radiodurans (Harms et al., 2001) showed that L27 was one of the 

few proteins extending into the PTC.  Its N-terminal region – though disordered in this model – 

was found to hold a position ideal for interaction with the P-site tRNA.  Another structural study 

attempted to examine the L27 structure independent of ribosomal RNA.  It described the free-

protein form as a tetramer of four identical monomers (Wang et al., 2004).  This work omitted 19 

N-terminal amino acids from the modeled structure, as the region is very flexible and disordered 

in crystal structures.  More recent structural examinations of the full 70S ribosome of Thermus 

thermophilus have confirmed the potential for interaction at the PTC (Selmer et al., 2006, also 

Trobro and Aqvist, 2008).  The majority of the L27 structure appears to be conserved between E. 

coli, D. radiodurans, T. thermophilus, and likely most other members of Eubacteria, though it 

should be noted that the most similar ribosomal protein in Archaea by sequence, L21e (Fox, 

2010), appears to have a different structure and a different set of interactions with its protein and 

RNA neighbors in the ribosome (Ban et al., 2000, also Harms et al., 2001). 

 Regulation of rpmA transcription may depend upon environmental factors.  Studies of the 

Bacillus subtilis cold-shock response observed how some ribosomal protein genes, including 
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rpmA, saw doubled transcript levels after a temperature change from 37°C to 18°C.  Two 

upstream genes occupying the same operon showed no change in levels of transcript under the 

same change in conditions.  These results suggest that rpmA may be regulated by its own 

temperature-dependent promoter immediately upstream of the gene (Kaan et al., 2002).  Work by 

Ohashi et al. (2003), also in B. subtilis, found that rpmA mutants had difficulty entering 

sporulation at 47°C.  Ribosomal protein L27 may provide some bacterial species with an 

increased ability to handle temperature shifts. 

 A substantial body of work exists regarding N-terminal processing during the maturation 

of non-ribosomal proteins in bacteria.  It is known that N-terminal methionines are frequently 

removed from proteins, for example.  Statistical analyses of protein sequences by Flinta et al. 

(1986) found that N-terminal methionine removal is most likely to occur when the penultimate 

N-terminal residue is Ala, Gly, Pro, Ser, or Thr.  Longer N-terminal peptides are also cleaved 

from peptides to direct their transport in the cell by the Sec pathway. These processing reactions 

generally occur while most of the new protein remains within the ribosome.  Still further 

examples of post-translational structural modifications are seen in eukaryotes.      

Wower et al. (1998) and Maguire et al. (2005) showed that L27 is an important precursor 

in ribosome assembly. If S. aureus L27 is sufficiently similar in sequence to E. coli L27 in all but 

the N-terminus, E. coli without L27 might be complemented by S. aureus L27 lacking the 

characteristic N-terminal sequence.  This peptide sequence should be identical to the polypeptide 

existing in S. aureus after L27 is post-translationally processed.  Evidence for L27 processing 

exists for B. subtilis, as Lauber et al. (2009) have shown that purified B. subtilis L27 is missing 
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the first 9 amino acids (MLRLDLQFF) coded for by the predicted gene sequence1.  Lotti et al. 

(1987) also claimed to reconstitute 50S subunits from E. coli mutants lacking L27 by adding 

purified Bacillus subtilis L27.  It must be assumed that the purified B. subtilis protein has already 

been subjected to the post-translational processing proposed here.   

 Processing of a ribosomal protein is a previously unrecognized phenomenon.  While 

much is known about the structure of the ribosome and its constituent parts, the manner in which 

each element attains its final position remains unclear.  The discovery of post-translational 

ribosomal protein processing reveals how the seemingly unrelated studies of bacteriophage 

capsid assembly and ribosomal proteins intersect at genetics; in both cases, sequences of mature 

proteins do not agree with their respective genes.  In the context of the bacterial ribosome, 

however, protein processing suggests the possibility of unidentified regulatory mechanisms. This 

study was performed in order to investigate post-translational processing of S. aureus L27 and to 

determine how widely this phenomenon may be conserved among other bacterial species.   

 The work described here combined traditional microbiology methods with broad 

comparisons of genomic data from a variety of diverent bacterial species.  Several in vivo 

methods were used to show how mature forms of L27 differ after expressing this protein within 

E. coli and S. aureus.  (Maguire et al. (2001) performed a similar study in an attempt to replace E. 

coli L27 with that of thermophilic bacterium Aquifex aeolicus.) A potentially cleavage-deficient 

L27 mutant protein was expressed in S. aureus to explore the effects of restricted L27 processing.  

Lastly, bacterial species were compared on the basis of their respective 16S rRNA sequences and 

predicted L27 protein sequences. 

                                                 
1
Lauber et al. suggested this discrepancy is due to errors annotating the reference sequence of the B. subtilis 168 

genome. 
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STATEMENT OF OBJECTIVES 

 

 

The Aims of this Study are: 

1.  Establish that Staphylococcus aureus ribosomal protein L27 is post-translationally 

processed by the removal of amino acids from its N-terminus.   

2.  Establish how the potential for N-terminal processing of L27 compares with 

phylogenetic distribution of bacterial species by 16S rRNA. 

 

The overall objective of this study is to confirm the prediction that the mature form of ribosomal 

protein L27 differs from the gene product coded for by gene rpmA in Staphylococcus aureus.   
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

 

Bacterial culture.  Bacterial strains used in this study are described in Table 2.  All E. coli 

strains were cultured in lysogeny broth (LB) as prepared using LB-Miller (Fisher Scientific, Fair 

Lawn, NJ) or were plated on LB agar consisting of LB-Miller broth and 1% (wt/vol) agar (both 

Fisher Scientific, Fair Lawn, NJ).  All E. coli cultures were incubated at 37°C overnight unless 

otherwise noted and liquid cultures were grown on a platform shaker rotating at 200 RPM.  

Media was supplemented with ampicillin (100 µg/ml), kanamycin (60 µg/ml), or 

chloramphenicol (12.5 µg/ml) as appropriate. 

 S. aureus strains used in this study were cultured in tryptic soy broth (TSB) (Remel, 

Lenexa, KS) or on tryptic soy agar (TSA) (Becton, Dickinson, Sparks, MD) and incubated at 

30°C overnight unless otherwise noted and liquid cultures were grown on a platform shaker 

rotating at 200 RPM.  Media was supplemented with chloramphenicol (5 µg/ml) and tetracycline 

(2 µg/ml) as appropriate. 

 

Genomic DNA extraction.  Genomic DNA was isolated from E. coli strain DH5α by first 

growing 5 ml of culture in LB media overnight as described above.  The culture was pelleted 

using an Eppendorf 5418 benchtop centrifuge at 14,000 rpm and removing the supernatant by 

micropipette.  The cell pellet was resuspended in 500 µl of TE buffer (10 mM Tris-HCl, pH 8.0, 

and 1 mM EDTA).  50 µl of 10% (wt/vol) SDS and 25 µl of 20 mg/ml proteinase K were added 

to the resuspended pellet and mixed by inversion.  The solution was incubated at 65°C for  30 
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minutes.  The solution was then mixed by inversion with 500 µl of 1:1 phenol/chloroform and 

spun in the benchtop centrifuge for 10 minutes at 14,000 rpm.  The resulting top aqueous phase 

was removed by micropipette and transferred to a fresh tube to which 500 µl of 1:1 

phenol/chloroform was added and mixed by inversion.  The solution was spun in the benchtop 

centrifuge again for 10 minutes at 14,000 rpm and the resulting top aqueous phase was extracted 

by micropipette.  50 µl of 3M sodium acetate (pH 5.2) was added to the solution and gently 

mixed, followed by 300 µl 100% isopropanol and mixed again, causing DNA precipitation.  The 

DNA was spooled onto a micropipette tip and resuspended in 50 µl TE buffer and then incubated 

with 1 µl RNase A (10mg/ml) at 37°C for 15 minutes.  Prepared gDNA was stored at 4°C until 

use.      

 

DNA manipulations.  DNA was purified from agarose gel using the QIAquick Gel Extraction 

Kit (Qiagen, Valencia, CA) as per manufacturer's instructions.  All restriction enzymes, T4 DNA 

Ligase, and enzyme buffers, including BSA, were purchased from New England Biolabs 

(Ipswitch, MA) and used as per manufacturer's instructions.  PCR amplification products were 

purified using the QIAquick PCR Purification Kit (Qiagen, Valencia, CA) as per manufacturer's 

instructions.  All plasmid minilysates were prepared with the QIAprep Spin Miniprep Kit 

(Qiagen, Valencia, CA) according to manufacturer's instructions using overnight E. coli cultures 

grown in 5 ml of LB media with antibiotic as described above.  Subsequent plasmid preparations 

for use in S. aureus transformations were prepared with the QIAfilter Plasmid Midiprep Kit 

(Qiagen, Valencia, CA) to ensure DNA concentrations above 1 µg/µl. 
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Agarose gels.  Agarose gels were prepared by dissolving agarose (Bioline USA, Boston, MA) in 

1X TAE buffer (American Bioanalytical, Natick, MA) to a concentration of 1% for all use except 

occasional comparisons of plasmid inserts, when 2% agarose gels were used.  Ethidium bromide 

was added to gels at 0.1 µg/ml before polymerization.  5X loading dye was added to DNA prior 

to loading.  Hyperladder DNA ladders I and IV (Bioline USA, Boston, MA) as well as 

Supercoiled DNA Ladder (New England Biolabs, Ipswitch, MA) were loaded and used as 

molecular markers to determine DNA size and concentration. Gels were run at 16.25 V/cm until 

the dye front had travelled approximately ¾ of the length of the gel, at which point DNA was 

visualized under UV light.   

 

Plasmid screening.  E. coli transformant candidate colonies were screened using a quick-check 

procedure (Akada, 1994).  Colonies were selected from growth plates and grown in individual 

overnight cultures as described above.  For each candidate, 100 µl of culture was added to 50 µl 

of phenol:chloroform (1:1) and 10 µl 0.1% bromophenol blue in microcentrifuge tubes.  Each 

sample was mixed by vortexing for 10 seconds and spun in an Eppendorf 5418 benchtop 

centrifuge for 3 minutes at 13,000 rpm.  Supernatant fractions were loaded in 10 µl volumes 

directly onto a 1% agarose in TAE gel alongside 2 µl of Supercoiled DNA Ladder (New England 

Biolabs, Ipswitch, MA) and empty vector.  Transformant candidates were selected from those 

appearing larger than empty vector.   

 

Polymerase Chain Reaction (PCR).  PCR reactions were performed using a TGradient 

Thermoblock thermocycler (Whatman Biometra, Göttingen, Germany).  Primers are shown in 
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Table 1 and were produced by Integrated DNA Technologies (Coralville, IA).  Primer stocks 

were resuspended at first use in HPLC-grade water (JT Baker, Phillipsburg, NJ) to 100 µM.  

PCR amplifications were prepared as follows: 0.2 mM of each dNTP from a 10 mM dNTP mix 

(Invitrogen, Carlsbad, CA), 0.2 mM of each primer from 1:10 dilutions of 100 µM stocks in MQ 

water, 1X HF Phusion Buffer from a 5X stock and 1 to 2 U of Phusion DNA Polymerase (both 

from Finnzymes, Vantaa, Finland). Phusion polymerase required use of melting temps 3 degrees 

higher than those otherwise calculated for each primer.  DNA template was added in 

concentrations of less than 50 ng/µl and the reaction volume was adjusted to 50 µl with MQ 

water.   

 The thermocycler program was optimized for each amplification.  In general, the program 

was as follows: 98°C for 1 minute; 30 cycles of 96°C for 30 seconds, Tm(+3) for 30 seconds and 

72°C for 80 seconds; 72°C for 5 minutes, and a holding temperature of 4°C.   

 

Preparation of competent cells.  E. coli used for cloning in this study were NEB 5-alpha 

chemically competent cells purchased from New England Biolabs (Ipswitch, MA) unless stated 

otherwise.  Electrocompetent DH5α and IW312 cells were also prepared using the following 

procedure, adapted from the operating instructions for the Bio-Rad (Hercules, CA) Micropulser 

Electroporation Apparatus.  Liquid overnight culture was prepared as described above in LB 

media.  The following day, 24 ml of LB media without antibiotic was inoculated with 1 ml of 

overnight culture and placed at 37°C on a shaking platform at 200 rpm.  The culture was allowed 

to grow to the middle of logarithmic-phase growth as determined by optical density; this 

corresponds to a Klett reading of 95 or an OD
600

 value of approximately 0.6.  The culture was 
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transferred to ice and chilled for 20 minutes; all subsequent steps were kept cold as well.  The 

culture was then transferred to conical centrifuge tubes and spun in an Eppendorf 5810R 

centrifuge at 4000 rpm for 5 minutes at 4°C.  The resulting supernatant was discarded and the 

pellet was washed with a volume of cold, sterile 10% glycerol equivalent to the initial culture 

volume.  This spin was repeated three times with subsequent glycerol wash volumes decreasing 

by half and the last centrifuge spin requiring only 5 minutes.  After the last spin, supernatant was 

discarded, the pellet was resuspended in 0.5 to 1.0 ml cold 10% glycerol and separated into 50 µl 

aliquots.  All freshly competent cells were stored at -80°C for no more than four months. 

 A similar procedure (adapated from that of McLaughlin and Ferretti, 1995) was used to 

prepare electrocompetent S. aureus cells, with initial resuspension of the pellet in cold sterile 

MQ water instead of cold 10% glycerol.  The exact protocol was as follows: A bacterial culture 

was first grown overnight in TSB or BHI media.  Media was inoculated with overnight culture as 

50 µl culture in 500 ml of liquid media.  The culture was grown at 32°C with gentle shaking to a 

point at which the optical density was determined by a reading on a Klett colorimeter to be 

approximately 95.  At this point, the culture was chilled on ice for 15 minutes and pelleted in an 

Eppendorf 5810R centrifuge at 4000 rpm for 15 minutes at 4°C.  The resulting supernatant was 

discarded, the pellet was resuspended in 25 ml of cold, sterile MQ water, and the spin was 

repeated.  This wash step was performed twice.  The wash step was then repeated twice with 30 

ml and 15 ml of cold, sterile 10% glycerol.  Following the final wash step, the supernatant was 

discarded and the cell pellet was resuspended in 500 µl of cold 10% glycerol and separated into 

50 µl aliquots.  Each aliquot was stored at -70°C. 
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Transformation.  Chemically competent E. coli NEB 5-alpha (New England Biolabs, Ipswitch, 

MA) was transformed by first adding 1 µl of plasmid DNA or 2 µl of a 10 µl ligation reaction to 

a 50 µl aliquot of cells thawed on ice.  Cells and DNA were incubated on ice for 30 minutes then 

placed in a 42°C water bath for 30 seconds.  Heat-shocked cells were placed on ice for 5 minutes 

before addition of 750 µl SOC media and incubation at 37°C for 1 hour with shaking at 200 rpm.  

Cells were plated on solid selective media after the outgrowth incubation. 

 Electrocompetent E. coli and S. aureus were also transformed by electroporation.  

Competent E. coli were either prepared as described above or were TOP10 cells purchased from 

Invitrogen (Carlsbad, CA).  Electrocompetent S. aureus SA178RI cells were prepared as 

described above.  All cells were electroporated using a Bio-Rad (Hercules, CA) Micropulser 

Electroporation Apparatus and 2 µl of DNA for each 50 µl aliquot of cells thawed on ice.  E. coli 

cells were electroporated in cold 0.1 cm electroporation cuvettes with the “Ec1” setting (for a 

time constant of about 5 msec). Electroporation was followed with addition of 750 µl SOC 

medium (prewarmed to 37°C) and incubation at 37°C for 1 hour with shaking at 200 rpm.  Cells 

were plated on solid selective media after the outgrowth incubation.  Electroporation of S. aureus 

was performed in the same manner but with cold 0.2 cm electroporation cuvettes and 750 µl TSB 

for the post-electroporation outgrowth medium 

                 

Complementation assays in ΔrpmA E. coli.  Full-length and truncated forms of Staphylococcus 

aureus rpmA gene were tested for complementation in E. coli strain IW312, in which genomic 

rpmA had been replaced with the gene for kanamycin resistance (Wower et al. 1998).  

Complementation was assayed by the ability of cells to grow overnight at 37ºC or 42ºC on solid 
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media.  The higher temperature was reported by Wower et al. (1998) to be non-permissive for 

growth in IW312 E. coli lacking functional L27 but permissive for growth in IW312 in which the 

deletion has been complemented, though uncomplemented IW312 also grows slowly at 37ºC.  

 

Expression of proteins in S. aureus.  Growth of bacterial strains used in this study were 

monitored by measurement of optical density on a Klett Model 900 colorimeter.  All optical 

density readings at any one point in time were performed after calibrating the Klett reader 

against a blank containing media only.   

Plasmid constructs based on the pG164 backbone (originally created by D'Elia et al., 2006) 

contain the phage T7 promoter and T7 terminator and as such require a host strain with the 

ability to produce T7 RNA polymerase.  The strain used for this purpose was S. aureus SA178RI 

(D'Elia et al., 2006).  Cultures of this strain were grown overnight in TSB media with 

chloramphenicol (5 µg/ml) and tetracycline (2 µg/ml) at 30ºC with shaking at 200 RPM.   

Overnight cultures were then diluted (1:100) in fresh TSB with the same antibiotic 

concentrations and grown to the middle of logarithmic-phase growth, as determined by a Klett 

reading of 95 or an OD
600

 value of approximately 0.6.  At this point, 0.5 ml pre-induction 

samples were removed from each total sample volume and pelleted using an Eppendorf 5418 

benchtop centrifuge at 14,000 rpm.  The supernatant was removed from each sample and the 

remaining cell pellet was stored at 4ºC for no longer than 48 hrs.  Protein overexpression was 

induced at this point through the addition of 1 mM IPTG.  Post-induction samples were collected 

at 1, 2, and 3 hours after the addition of IPTG; each sample was collected in the same manner as 

the pre-induction sample.  After collection of the final 0.5 ml sample the remaining sample 
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volume was pelleted in a Sorvall centrifuge with GSA rotor (10000 x g, 30 min, 4ºC) and stored 

at -20ºC.    

 Proteins were isolated and purified from collected cell pellets.  Cells were lysed using an 

Emulsiflex C3 homogenizer.  Each cell pellet was resuspended in 50 ml of lysis buffer 

containing a single Complete EDTA-free protease inhibitor cocktail tablet (Roche Diagnostics, 

Indianapolis, IN) and passed through the homogenizer three times at a pressure of 30000 PSI.  

Cell lysates were clarified in a Sorvall centrifuge with a GSA rotor (20000 x g, 30 min, 4ºC) and 

separated into aliquots such that half of the volume was returned to 4ºC and the remaining 

volume was stored at -20ºC.  All samples stored at 4ºC were purified within the following 48 

hours.    

 Each protein sample was initially analyzed on Criterion XT pre-cast 12% bis-tris 

acrylamide gels on a Criterion electrophoresis apparatus filled with 1X XT MES running buffer 

(all from Bio-Rad, Hercules, CA) using a constant voltage of 120V for approximately 1 hour and 

20 minutes. Further size comparisons were performed in the same way but with 16.5% tris-

tricine acrylamide gels in tris-tricine-SDS buffer. 

 

Phylogenetic comparison of protein sequences.  The sequences of the predicted gene products 

of L27 genes from 37 bacterial species were compared to the arrangement of the 16S rRNA 

sequences.  Gene sequences annotated as coding for L27 were located in the NCBI Genbank 

Gene database and verified for sequence similarity by nucleotide BLAST alignment.  A 

nucleotide range of 500 bases upstream and 500 bases downstream of the predicted gene was 

extracted from the genome sequence.  A 16S rRNA sequence each species examined was also 
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obtained from the Ribosome Database Project (RDP).  Each L27 gene region was compared by 

nucleotide sequence alignment, adjusted by hand, and examined to verify the position of start 

codons.   Individual DNA and protein sequences were examined using BioEdit software (Hall, 

1999).  Sequences of putative ORFs upstream of rpmA in each bacterial genome were compared 

with Staphylococcus aureus ysxB; sequences sharing more than 20% protein sequence identity 

with S. aureus predicted ysxB gene product were determined to have ysxB as well. 

 16S rRNA sequences were used to establish neighbor-joining phylogenic trees using 

MEGA version 5 (Tamura et al., 2011) with Nanoarchaeum equitans as a root.  Each protein 

sequence was also aligned at the N-terminus.  Finally, L27 sequences were clustered to establish 

whether differences at the N-terminus coordinated with the evolutionary patterns seen with 16S 

rRNA comparisons.  Further phylogenetic arrangements were prepared using publicly available 

sequences aggregated from the Genbank set and sequences present in the 

PhAnToMe/PhageSEED database, an extension of the SEED database (Overbeek et al., 2005). 
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Table 1. Primers used in this study. 

Primer Sequence Purpose DNA Template 

JHCECL27F2 5- CCA AGA ATT CAA GGA GAT ATA CAT ATG 

GCA CAT AAA AAG GCT GGC -3 
Amplification of E. 

coli rpmA 

E. coli DH5α 

JHCECL27R2 5- GGC AAG CTT TTA TTC AGC TTC GAT GCT 

GAT AAA TTT ACG -3 
Amplification of E. 

coli rpmA 

E. coli DH5α 

Ptac-F 5 - TAT AAT GTG TGG AAT TGT GAG CGG 

ATA ACA ATT -3 
Sequencing and 

reamplification of 

pGZ119EH inserts 

pGZ119EH 

constructs 

RrnB-R 5 - GTC TTT CGA CTG AGC CTT TCG TTT 

TAT -3 
Sequencing and 

reamplification of 

pGZ119EH inserts 

pGZ119EH 

constructs 

JHCL27F3 5- CCA AGA ATT CAA GGA GAT ATA CAT ATG 

TTA AAA TTA AAC TTA CAA TTC TTC GCA TC 

-3 
 

Amplification of 

Staph aureus rpmA 

S. aureus 

RN4220 

JHCL27F3_A10 5- CCA AGA ATT CAA GGA GAT ATA CAT ATG 

GCA TCT AAA AAA GGG GTA AGT TCT AC -3 
 

Amplification of 

Staph aureus rpmA 

with 9-codon 

truncation 

S. aureus 

RN4220 

JHCL27R3 5- GGC AAG CTT AGG TAG TTA TTC AGC TAC 

TGC ATA TAC AGA AAC T -3 
Amplification of 

Staph aureus rpmA 

S. aureus 

RN4220 
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Table 2. Sources of DNA and protein sequences specifically mentioned in this study. 

Name Source Accession Number 

ribosomal protein L27 [Staphylococcus aureus subsp. aureus JH1] 
NCBI ABR52581.1 

ribosomal protein L27 [Escherichia coli str. K-12 substr. MG1655] 
NCBI AAC76217.1 

ribosomal protein L27 [Bacillus subtilis subsp. subtilis str. 168] 
NCBI NP_390672.1 

scaffold protein [Staphylococcus phage 80alpha] 
NCBI YP_001285360.1 

 

major head protein [Staphylococcus phage 80alpha] 
NCBI YP_001285361.1 

Staphylococcus phage 80alpha, complete genome NCBI NC_009526.1 

 



 

 

26 

 

Table 3. Bacterial strains and plasmids used in this study. 

S. aureus Strain Description Source 

RN4220 Restriction deficient RN450 derivative Novick et al. (1991). 

SA178RI Derivative of RN4220 carrying the T7 polymerase gene from λDE3 under control 

of the Pspac promoter 
D'elia et al (2006). 

E.coli Strain Description Source 

NEB 5-alpha DH5α derivative cloning strain.  fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ 
(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 

New England Biolabs, 
Ipswitch, MA 

BL21(DE3) T7 Expression strain. fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS  λ DE3 = λ 
sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

New England Biolabs, 
Ipswitch, MA 

IW312 ΔrpmA::kan Wower et al. (1998). 

LG90 Wild-type parent strain of strain IW312. F-, ∆lac pro  XII Wower et al. (1998), 

originally in Guarente et al. 

(1980). 

Plasmid Description Source 

pGZ119EH E. coli cloning and expression plasmid. Lessl et al. (1992). 

pPOT1AE E. coli cloning and expression plasmid. Tenson et al. (1997) 

pL27 Plasmid pPOT1AE containing E. coli rpmA Maguire et al (2005). 

pG164 E. coli / S. aureus cloning and expression plasmid with T7 promoter D'elia et al (2006). 

pJHC23 Plasmid pGZ199EH containing S. aureus rpmA This study 

pJHC24 
Plasmid pGZ199EH containing S. aureus rpmA truncated at 10

th
 codon 

This study 

pJHC25 Plasmid pGZ199EH containing E. coli rpmA This study 

pJHC27 Plasmid pG164 containing S. aureus rpmA This study 

pJHC28 
Plasmid pG164 containing S. aureus rpmA truncated at 10

th
 codon 

This study 

pJHC29 Plasmid pG164 containing E. coli rpmA This study 

pJHC35M Plasmid pG164 containing S. aureus rpmA coding for mutation in putative 

cleavage site 
(MLKLNLQFFASKK... → MLKLNLQAAASKK...) 

This study (site-directed 

mutagenesis performed by 
Mutagenex, Hillsborough, 

NJ) 
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CHAPTER 3 

Post-translational processing of ribosomal protein L27 in Staphylococcus aureus and 

implications for its expression in Escherichia coli 

  

 E. coli L27 shows strong sequence similarity with other L27 proteins in most bacterial 

species, yet a critical difference exists at the N-terminal region.  Post-translational processing of 

S. aureus L27 at the N-terminus would leave mature proteins resembling those seen in E. coli.  If 

S. aureus L27 is cleaved after the two phenylalanines in its predicted cleavage site, the mature 

protein should align at the N-terminus with the protein sequence of E. coli L27 following 

removal of its N-terminal methionine.  Bacterial species with L27 sequences similar to S. aureus 

(that is, containing the “extended” N-terminus and the putative cleavage site) may also process 

this ribosomal protein.  Comparisons of L27 from different species present the likelihood of this 

activity (Figure 3).  The mature L27 protein sequence in nearly all bacterial species should then 

resemble that of E. coli, even in species coding for L27 with a longer N-terminus.  The proximity 

of the L27 N-terminus to the P-site within the 50S ribosomal subunit suggests that failure to 

remove the additional amino acids from longer L27 proteins may impede peptide transfer.  

Maguire et al. (2005) have shown that extended modification at the E. coli L27 N-terminus leads 

to growth defects and charge differences, though tRNA retains its ability to bind at the P site. 
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Figure 3. Protein sequence alignment of Bacillus subtilis L27, Staphylococcus aureus L27,  

and Escherichia coli L27.  All sequences from NCBI protein database – see Materials and 

Methods for accession numbers.  Red line indicates predicted cleavage site. Amino acids on 

colored background indicate identity between at least one other sequence. 
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B. subtilis L27 
S. aureus L27 

E. coli L27 
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My initial attempts to show a requirement for post-translational processing of S. aureus 

ribosomal protein L27 relied upon complementation in an E. coli strain missing rpmA, the gene 

coding for L27. The hypothesis was as follows: if S. aureus L27 in its full-length form is 

expressed in the E. coli L27 deletion mutant (IW312), the defect will not be complemented, but 

expression of S. aureus L27 with a 10 amino acid truncation in the protein sequence will 

complement the deletion.  This hypothesis was primarily based on sequence alignments, as the 

L27 protein sequences from S. aureus and E. coli were found to have more than 50% sequence 

identity when the predicted N-terminal extension is ignored.  Strain IW312 is unable to grow at 

42ºC, so growth at this temperature, or robust growth at 37ºC, was expected to signify 

complementation. 

 Subsequent experiments investigating L27 processing relied upon the effects of 

expression of mutant forms of the protein in S. aureus.  Protein expression was checked by 1-

dimensional gel electrophoresis of His-tagged proteins purified from S. aureus lysates.  Plasmids 

were induced in E. coli with and without rpmA and in S. aureus with rpmA (deletion of the L27 

gene is presumed to be lethal in S. aureus; a knockout of gene expression in S. aureus by 

antisense RNA proved lethal (Ji et al. 2001)). 

 Plasmid constructs were designed to express different forms of S. aureus and E. coli 

rpmA within E.coli (see Table 3 for the full list).  Though a plasmid designed by Maguire et al. 

(2005) containing E. coli rpmA reportedly complements the rpmA deletion at 37ºC, attempts to 

construct vectors with the same pPOT1AE backbone were unsuccessful.  The cloning vector 

pGZ119EH was used instead as the backbone for pJHC23, pJHC24, and pJHC25.  It was chosen 
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primarily for its tac promoter, which was the same promoter used in plasmids constructed by 

Maguire et al. (2005) for their complementation assays in rpmA deletion strain IW312.  The 

same work had found that high levels of overexpression of L27 appear to cause growth 

deficiencies, even in IW312.  These vector inserts contained a specific ribosome binding site 

(AGGAAG) to more closely match expression conditions seen in wild-type E. coli.  No further 

additions to each gene except for restriction sites were included unless otherwise specified.  

Plasmid pJHC23 contains S. aureus rpmA as amplified from S. aureus RN4220 genomic DNA 

(prepared by K. Lane).  Plasmid pJHC24 is identical to pJHC23 with the exception of a gene 

truncation of 10 aa corresponding to the N-terminus of L27.  The product of this gene as coded is 

expected to resemble E. coli rpmA at its amino terminus and was expected to complement the 

rpmA deletion in strain IW312.  The N-terminus of this protein, by hypothesis, should also 

resemble that of the mature S. aureus L27 after N-terminal processing.  Plasmid pJHC25 

contains E. coli rpmA as amplified from strain NEB5-alpha (New England Biolabs, Ipswitch, 

MA).  This plasmid was intended to be a positive control. 

 When expressed in E. coli, it was expected that the plasmid pJHC23 (coding for full-

length S. aureus L27) would prove deleterious or lethal, as E. coli has not shown any ability to 

post-translationally process L27.  The expressed proteins were expected be useless at best and 

incorporate into 50S ribosomal subunits at worst, hampering growth by interfering with peptidyl 

transferase activity.  Conversely, pJHC24 (coding for 9-amino acid truncated S. aureus L27) and 

pJHC25 (coding for wild-type E. coli L27) were expected to complement the rpmA deletion in 

IW312 and allow growth at 42ºC. 

 Results of complementation assays were inconclusive.  Complementation did occur with 
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plasmid pL27, coding for wild-type E. coli rpmA, at 37ºC as seen by Maguire et al. (2005) (see 

Figure 4).  Growth at 42ºC under induction conditions showed only limited growth with this 

plasmid; Maguire et al. had not tested pL27 at this temperature but it was expected to 

complement the temperature sensitivity.   

The empty pGZ119EH vector alone did not complement (see Figure 5).  Transformation 

of IW312 E. coli with plasmids containing wild-type E. coli rpmA may complement the growth 

defect, as after an overnight incubation at 37ºC, pJHC25 transformants yielded larger colonies 

than the same transformants under induction conditions (Fig. 6).  This could be the result of a 

leaky promoter enabling limited expression of wild-type E. coli L27.  All colonies were 

approximately the same size (about 1 mm in diameter) after 36 hours at 37ºC.  Re-streaking 

single colonies of IW312 transformants onto media containing 1 mM IPTG was expected to 

induce plasmids, hastening growth at 37ºC and permitting growth at 42ºC.  Induction conditions 

do appear to enhance growth at 37ºC for truncated S. aureus rpmA-containing strains after 18 

hours (Fig. 6).  Under the same conditions, IW312 with full-length S. aureus rpmA yieded no 

colonies and wild-type E. coli rpmA constructs yielded colonies less than 1 mm in diameter.  No 

transformant was found to grow at 42ºC under induction conditions, even after incubation times 

of 48 hours or more.  Lower temperatures – between 30ºC and 32ºC – also prohibited growth of 

all transformants.   

Plated colonies of the IW312 parent strain, LG90, were prepared as a control. LG90 grew 

to single colonies within 12 hours at both 37ºC or 42ºC with or without addition of 1 mM IPTG. 

LG90 transformed with pGZ119EH plasmids containing full-length E. coli rpmA or 9-codon 

truncated S. aureus rpmA showed no difference in growth from untransformed LG90.  
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Transforming this strain with a pGZ119EH plasmid encoding full-length S. aureus rpmA resulted 

in no growth in one out of every three transformation attempts.  While this may be the result of 

leaky expression of a toxic peptide (or, in the case of unaffected growth, gene inactivation), the 

cloning strains of E. coli used to prepare plasmid lysates showed no impact on growth. 

 Cultures of rpmA deletion strain IW312 may be subject to compensatory mutations.  The 

deletion of the L27 gene is highly deleterious yet nonlethal, so cultures of the strain subjected to 

further selection by antibiotics may drive generation of mutations in genes coding for other 

ribosome-associated proteins.  These mutations may even arise during preparation of chemically 

competent cells of the deletion strain.  This possibility also means that growth rates of 

complemented deletion strains may be difficult or impossible to accurately compare.   

 Technical limitations prevent further interpretations of the effects of mutant or non-native 

L27 expression in E. coli.  It is clear that providing ΔrpmA E. coli with a copy of the wild-type 

gene on a plasmid can complement its growth deficiency at 37ºC yet growth at 42ºC still remains 

weaker than the parental strain.  Repeating the assay with pGZ119EH plasmids encoding an 

identical wild-type gene did not appear to complement, though a S. aureus rpmA mutant similar 

in sequence to the E. coli gene did appear to restore growth at 37ºC.  A plasmid encoding full-

length S. aureus rpmA did not complement the defect but rather appeared toxic.  Despite these 

results, it remains possible that these plasmids experienced mutations, creating pseudorevertants 

and presenting a false-positive complementation phenotype. 
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Figure 4. Complementation of E. coli rpmA-containing plasmids in E. coli ΔrpmA strain 

IW312. Both plates contain LB medium with ampicillin (100 µg/ml), kanamycin (60 µg/ml) and 

IPTG (1 mM). Left plate was incubated overnight at 42ºC; right plate was incubated overnight at 

37ºC. Bottom of each plate shows highly limited growth of empty plasmid pPOT1AE.  Top of 

left plate shows complementation but limited growth of one sample of IW312 with plasmid 

carrying E. coli rpmA. Top of right plate shows shows complementation of two samples of 

IW312 with plasmid carrying E. coli rpmA. 
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Figure 5. Transformation of E. coli ΔrpmA strain IW312 with empty vector pGZ119EH. 

Plate contains LB medium with chloramphenicol (12.5 µg/ml) and was incubated at 37ºC 

overnight. 
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Figure 6. Complementation assays of pGZ119EH plasmids carrying rpmA in E. coli ΔrpmA 

strain IW312. Plates contain LB medium with chloramphenicol (12.5 µg/ml) and were 

incubated at 37ºC overnight. 
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A second approach to the issue of L27 cleavage involved examination of proteins 

expressed in S. aureus. A set of plasmids was constructed using the pG164 backbone to express 

L27 mutants under control of the T7 promoter system.  The pG164 plasmid also includes the 

ability to incorporate a C-terminal 6xHis tag for protein purification (this His tag is not codon-

optimized for S. aureus, however, potentially reducing tagged protein concentrations).  A means 

of purifying expressed protein is necessary to distinguish the plasmid-encoded versions of rpmA 

from the native one.  Constructs pJHC27 (wild-type S. aureus rpmA), pJHC28 (9-codon 

truncated S. aureus rpmA), pJHC29 (wild-type E. coli rpmA), and pJHC35M (S. aureus rpmA 

with cleavage site mutation) were assembled using sequences from the plasmids detailed above 

(except for pJHC35M, which encodes S. aureus L27 with point mutations causing two 

phenylalanine codons to instead code for alanine; see Table 3). 

 The growth of cultures containing the L27 mutant-encoding plasmids was measured over 

time in order to monitor any negative impact expression of these proteins may have on viability.  

It was expected that expressing wild-type S. aureus L27 would not produce any deleterious effect.  

Overexpression of mutant forms of S. aureus L27 also appeared to produce no observable impact 

on growth.  Plasmids were induced in S. aureus strain SA178RI with 1 mM IPTG for 3 hours, 

pelleted, and lysed by high-pressure homogenizer.  The 6xHis-tagged proteins were then purified 

by Ni-NTA column and viewed on an acrylamide gel. See Fig. 7 for initial purification results. 

 Further examination of purified 6xHis-tagged proteins (Fig. 8) on a 16.5% tris-tricine 

acrylamide gel reveals that the peptide expressed from pJHC27 appears as two distinct bands, 

likely indicating that some of the overexpressed wild-type L27 was cleaved though a portion of 

uncleaved peptide remains.  Only one band is visible in this range for overexpressed truncated 
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L27 from pJHC28, corresponding to the shorter polypeptide.  Interestingly, only the smaller band 

is seen for the overexpressed L27 with the predicted cleavage site mutation, encoded by 

pJHC35M.  This suggests that the dual phenylalanine to alanine mutation in the cleavage site 

does not prevent cleavage or is cleaved by a protease different from that cleaving wild-type L27. 

All fractions from this overexpression, including those shown in Fig. 6, also contain additional 

material at the <10 kDa range.  These bands have been seen in multiple sets of lysates of 

pJHC35M overexpressions in SA187RI and have only been observed in those lysates.  It is 

possible that this mutant is still cleaved but produces an excess of leftover peptides (the cleaved 

N-terminal sequence is about 1.1 KDa) not recognized by any downstream protein interactions.   
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Figure 7. PAGE of protein fractions from expression from plasmids pJHC27, pJHC28, and 

pJHC35M in S. aureus strain SA178RI.  Gel is XT Criterion 12% bis-tris acrylamide (Bio-

Rad).  Marker is Bio-Rad Dual Color Precision Plus protein marker (Bio-Rad).  Samples are 

marked as follows: FT are column flow-through, W is wash fraction, and E is elute fraction.  

Lower inset shows bands of purified protein. Overexpression products are denoted as follows: 27 

is from full-length S. aureus rpmA, 28 is from 9-codon truncated S. aureus rpmA, and 35M is 

from S. aureus rpmA with cleavage site mutation. 
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Figure 8. High-resolution PAGE of protein fractions from expression from plasmids 

pJHC27, pJHC28, and pJHC35M in S. aureus strain SA178RI compared by peptide size.  
Gel is XT Criterion 16.5% tris-tricine acrylamide (Bio-Rad).  Marker is Bio-Rad Dual Color 

Precision Plus protein marker (Bio-Rad).  Overexpression products are denoted as follows: 27 is 

from full-length S. aureus rpmA, 28 is from 9-codon truncated S. aureus rpmA, and 35M is from 

S. aureus rpmA with cleavage site mutation. 
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CHAPTER 4 

Extent of potential for L27 processing across divergent bacterial species 
 

 

 Differences between L27 protein sequences across bacterial species allow for grouping of 

species into two main groups: those coding for “long” L27 with an N-terminus resembling that 

coded for in S. aureus, or “short” L27 with an N-terminus resembling that coded for in E. coli.  

Species with similar  16S rRNA were found to be more likely to share a long or short L27 N-

terminus (see Figure 9 for phylogenic tree), with a few notable exceptions.  Interestingly, most 

long L27 species, like S. aureus, are Gram-positive.  The Mycoplasma species were found to 

divert from this trend; the M. mycoides and M. genitalium genomes both appear to code for long 

L27, while M. hyopneumoniae rpmA appears to code for short L27.  M. hyopneumoniae has been 

previously found to be similar to M. suipneumoniae, a species characteristically different from 

most other Mycoplasma known at the time (Goodwin et al., 1967) but a physical dissimilarity 

within the otherwise highly conserved ribosome structure suggests a need for further phylogenic 

clarification of the Mycoplasma species.  This difference is especially interesting when viewed in 

context of M. genitalium, as the minimal genome of this species contains very few nonessential 

genes. 

 Bacterial species in which rpmA codes for a longer protein also carry the gene in a 

different genetic context from those coding for a shorter protein.  This could simply be due to 

differences in entire ribosomal structures, but each context nonetheless appears to be conserved 

(see Figures 9 and 10).  Genomes containing rpmA coding for L27 with a short or E. coli-like 
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L27 appear to carry a bicistronic operon containing the gene and rplU, coding for ribosomal 

protein L21. In E. coli, deletion of L27 leads to formation of ribosomal particles deficient in 

several other ribosomal proteins including L21 (Wower et al., 1998).  Genomes containing rpmA 

coding for L27 with a longer N-terminus – with a few exceptions noted below – contain the gene 

as the last member of a set of three genes including not only rplU but also an ortholog of the 

Bacillus subtilis gene ysxB (see NCBI Gene ID 937961) (Fig. 10). The gene ysxB may have a 

ribosome-associated function as it is sandwiched by two ribosomal protein genes.  It is highly 

conserved in sequence yet bears little similarity to any known protein or functional domain. It 

may have a function in the stringent response in B. subtilis, as ysxB transcription in this species is 

downregulated by the ribosome-bound (p)ppGpp synthetase RelA, a sensor of amino acid 

starvation (Eymann et al., 2002).  It is possible that rpmA, ysxB, and rplU are transcribed 

together, though there may not be a direct transcriptional relationship between rpmA and rplU 

(Nomura et al., 1984).  

 Mycoplasma hyopneumoniae appears to be an outlier in the phylogeny, with an L27 N-

terminus unlike the other Mycoplasma species examined.  This was included as an interesting 

exception, as it may be genetically related to other Mycoplasma species in 16S rRNA sequence  

but has phenotypic differences distinguishing it from other mycoplasmas (Goodwin et al., 1967).  

Interestingly, work by Garcia-Vallvé et al. (2002) shows how Arthrobacter species may have 

acquired an L27 gene from a Bacillus species through horizontal gene transfer.  Horizontal 

transfer may be responsible for acquisition of ribosomal proteins in other species as well. 

 It should be noted that the genomes of Thermotogae species Thermotoga maratima and 

Thermosipho africanus do appear to contain a ysxB gene between those coding for L27 and L21.  
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In both cases, this gene bears little sequence identity to that of ysxB in S. aureus or B. subtilis but 

does show some sequence similarity to ysxB in other members of Firmicutes such as 

Eubacterium eligens. Work by Nesbø et al. (2009) observed numerous instances of potential 

lateral genetic transfer between Thermosipho africanus and Firmicutes.  This gene of unknown 

function may have originated with the Firmicutes and was later transferred laterally to a species 

of Thermotogae. 

 The bacterial species examined here demonstrate a clear dichotomy of L27 types.  Most 

species within Firmicutes appear to code for L27 with an N-terminal extension while other 

bacterial species do not code for this extension.  The sequence of this extension is highly 

conserved but is not identical in all species.  Additionally, presence of the gene ysxB is almost 

exclusive to Firmicutes and may be related to presence of long L27, if only in proximity to the 

gene rpmA.   
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Figure 9. Phylogenic comparison of bacterial species by 16S rRNA gene, L27 protein N-

terminus, and presence of ysxB.  Strain names in blue contain rpmA coding for an L27 protein 

with no N-terminal extension.  Strain names in red contain rpmA coding for an L27 protein with 

an N-terminal extension. The column ‘ysxB’ indicates whether a given genome appears to 

contain a ysxB gene immediately adjacent to rpmA.  ‘L27 N-terminus’ displays an alignment of 

the L27 protein from its N-terminal end to one amino acid after its predicted cleavage site.  Tree 

was produced by neighbor-joining method with Jukes-Cantor distance model using MEGA 5 

software package (Tamura et al., 2011).  Nanoarchaeum equitans Kin4-M sequence is included 

as root. 
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Figure 10. Genomic context of rpmA genes in three representative species. Genomes continue 

beyond these segments to the left and the right. 
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CHAPTER 5 

 

DISCUSSION 

 

 

 It is clear that the ribosome serves a purpose critical to the life of every bacterial cell.  

This complex incorporates RNA and proteins in a flexible structure with numerous transitional 

states.  It does appear that not every 70S ribosome is equivalent: while the division of ribosomal 

subtypes into the eukaryotic 80S ribosome and the prokaryotic 70S ribosome may provide a 

convenient classification method, 70S ribosomes may show important distinctions among 

divergent bacterial species.  The genes coding for ribosomal RNAs are known to be more highly 

conserved in some sequence regions than others when compared across species.  This work 

shows how a ribosomal protein may be processed in some, but not all, bacterial species. 

 The results of this study show that ribosomal protein L27 likely undergoes processing in 

S. aureus.  The extent of this processing may vary by species.  E. coli appears to code for a 

shorter L27 protein sufficiently similar to S. aureus L27 to allow an N-terminally truncated 

version of the S. aureus protein to be used in place of the native protein. Unmodified S. aureus 

L27 cannot be used in the same way, potentially due to poor fit into the ribosome at the peptidyl 

transferase center. It is clear that extensive further study will be necessary to properly explain 

how L27 reaches its mature position in ribosomes. 

 The ribosome structure is conserved throughout bacteria, so conservation of the structure 

of each ribosomal protein is expected.  The comparisons in this study show how otherwise 

conserved proteins may participate in different interactions within different branches of a 

phylogenetic tree.  E. coli appears to produce an L27 protein corresponding to the size of the 
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gene rpmA. S. aureus and B. subtilis, however, carry a longer gene but produce an L27 protein of 

the same size as that produced by E. coli. Bacterial species related to S. aureus and B. subtilis 

carry L27 genes coding for the same conserved N-terminal extension though the full length of 

the coded sequence would be unlikely to fit into a ribosomal structure (see Ban et al., 2000).  An 

overall conclusion can be made: species more genetically similar to S. aureus code for L27 with 

an extended N-terminal domain not seen in species more genetically similar to E. coli.  Most if 

not all of the extended L27 proteins likely undergo post-translational cleavage of their extensions, 

yielding proteins similar in sequence to that of E. coli.  Extrapolating from observations of 

bacteriophage 80α, it also appears possible that phages of other hosts may require this post-

translational modification during their own assembly stages.    

 Genomic context may be critical to understanding the relationships between L27 and 

other gene products.  Upstream of rpmA is a very short IGR (intergenic region) and a 

hypothetical protein-coding gene.  Further upstream is the gene for ribosomal protein L21, rplU.  

Further upstream from this point is an IGR of approximately 250 bp, followed by a non-

ribosomal protein gene (rod-shape determining protein MreD).  The hypothetical gene is 

conserved in S. aureus and has protein sequence similarity to putative ribosomal protein genes in 

a number of other organisms, including Staphylococcus lugdunensis and Bacillus amylolique, as 

determined by tBLASTx search.  This gene is not present in E. coli or most other Gram negative 

organisms.  Downstream of rpmA in Staphylococcus aureus is a roughly 400 bp IGR and a non-

ribosomal protein coding gene (obgE, for GTPase ObgE).  The genes rplU and rpmA may form 

an operon with the hypothetical protein-coding gene.  If this gene is a protease and is essential to 

processing of the ribosomal protein, it would make sense for it to be transcribed along with the 
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ribosomal protein (and at the high rate of transcription expected for that a ribosomal protein 

gene).  This gene is also highly conserved throughout species of Firmicutes. 

 Post-translational processing of a bacterial ribosomal protein would qualify as a novel 

observation not only for bacteriologists but for phage researchers.  This particular instance of 

post-translational protein cleavage is likely that which enables cleavage of the capsid and 

scaffold proteins in bacteriophage 80α.  While other bacteriophages are known to require protein 

cleavage during their assembly and maturation, this protein processing is generally thought to 

require a phage-encoded prohead protease.  Phages such as 80α may have lost a prohead protease 

in exchange for a conserved ribosome-associated protease, enabling them to use smaller 

genomes. 

 The next step in this study is to determine which protease in S. aureus may act upon 

ribosomal proteins.  Attempts to produce a distinct phenotype in complementation assays were 

unsuccessful, so other methods may be required to isolate this enzyme.  E. coli rpmA deletion 

strains other than IW312, such as one used by Shoji et al. (2011), exist and have been 

complemented effectively.  These strains may be useful for further complementation assays with 

S. aureus genes. Assaying for protein-protein interactions may prove fruitful.  This could be done 

through a combination of bioinformatics and biomolecular methods: potential S. aureus  protease 

genes could be identified and assayed for binding and/or cleavage of L27.  Expressing these 

genes as part of a bacterial two-hybrid system along with S. aureus L27 – or even the 

bacteriophage 80α capsid and scaffold proteins – could reveal some of the non-transient 

interactions that may occur during N-terminal processing.  

 Any potential protease could currently be a protein of unknown function or functions 
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other than ribosome modification.  Work by Cooper et al. (2009) found that deletion of the gene 

for GTPase YsxC in S. aureus is lethal.  This enzyme was also found to interact with ribosomal 

proteins of the 50S subunit.  Previous work with YsxC in Bacillus subtilis suggested that this 

protein binds to L27 (Wicker-Planquart et al. 2008) and that ribosomal precursors isolated from 

cells depleted of YsxC lacked L27 (Schaefer et al. 2006).  Proteases modifying ribosomal 

proteins may not cleave those proteins exclusively – just as they may also cleave bacteriophage 

proteins. 

 Isolation of the protease in question and assaying its activity could conclusively prove its 

role in post-translational processing. Expression of the protease concurrent with S. aureus L27 in 

E. coli could provide one option, though the E. coli background may differ sufficiently from that 

of S. aureus to limit enzyme activity.  Zymography may serve as a better alternative as it may 

permit a greater degree of control over digestion conditions. 

 Clarification of any mechanisms involving ribosomal protein L27 will reveal further 

details about how bacterial ribosomes assemble and how they perform their essential function in 

cells.  L27 is involved in 50S ribosomal subunit assembly and the peptidyl transferase reaction 

(Wower et al., 1998), stabilization of other ribosomal proteins (Voorhees et al., 2009) as well as 

RNA processing and conformational changes within mature ribosomes (Wower et al., 2005).  

These findings are also relevant to bacteriophage research, as they demonstrate how phages may 

use conserved host processes during virion assembly. 

The location of this protein in the ribosome and its role in stabilizing the peptidyl 

transferase center makes its post-translational processing a potential antibiotic target, especially 

if L27 processing is found to be essential for cell viability.  Indeed, oxazolidinone antibiotics 
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such as linezolid appear to cross-link with L27, interfering with peptide assembly within the S. 

aureus ribosome (Colca et al., 2003).  Linezolid may also interfere with tRNAs during peptide 

formation (Wilson et al., 2007).  Linezolid has been shown to be effective against highly 

pathogenic strains of Gram-positive bacterial species (Perry and Jarvis, 2001).  Studies using 

combinations of linezolid, vancomycin, and imipenem have also proven effective in a mouse 

model controlling S. aureus infections (Ribes et al., 2010).   

Even the oxazolidinone compounds are not “silver bullet” antibiotics, as some clinical 

isolates of S. aureus have shown resistance to linezolid after just three weeks of treatment 

(Wilson et al., 2003).  Understanding how to reliably control pathogenic Staphylococcus aureus 

infections remains a challenge, so L27 processing may serve as a novel additional target for 

potential antibiotic therapies.  Life depends upon ribosomes, so we may need to depend upon the 

differences between ribosomal proteins to control Staphylococcus or other bacterial infections. 
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