1,307 research outputs found

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity

    Tumor Necrosis Factor Alpha Mediates GABAA Receptor Trafficking to the Plasma Membrane of Spinal Cord Neurons In Vivo

    Get PDF
    The proinflammatory cytokine TNFα contributes to cell death in central nervous system (CNS) disorders by altering synaptic neurotransmission. TNFα contributes to excitotoxicity by increasing GluA2-lacking AMPA receptor (AMPAR) trafficking to the neuronal plasma membrane. In vitro, increased AMPAR on the neuronal surface after TNFα exposure is associated with a rapid internalization of GABAA receptors (GABAARs), suggesting complex timing and dose dependency of the CNS's response to TNFα. However, the effect of TNFα on GABAAR trafficking in vivo remains unclear. We assessed the effect of TNFα nanoinjection on rapid GABAAR changes in rats (N = 30) using subcellular fractionation, quantitative western blotting, and confocal microscopy. GABAAR protein levels in membrane fractions of TNFα and vehicle-treated subjects were not significantly different by Western Blot, yet high-resolution quantitative confocal imaging revealed that TNFα induces GABAAR trafficking to synapses in a dose-dependent manner by 60 min. TNFα-mediated GABAAR trafficking represents a novel target for CNS excitotoxicity

    The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2

    Get PDF
    We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency

    Machine Intelligence Identifies Soluble TNFa as a Therapeutic Target for Spinal Cord Injury

    Get PDF
    Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target

    Cluster Performance reconsidered: Structure, Linkages and Paths in the German Biotechnology Industry, 1996-2003

    Get PDF
    This paper addresses the evolution of biotechnology clusters in Germany between 1996 and 2003, paying particular attention to their respective composition in terms of venture capital, basic science institutions and biotechnology firms. Drawing upon the significance of co-location of "money and ideas", the literature stressing the importance of a cluster's openness and external linkages, and the path dependency debate, the paper aims to analyse how certain cluster characteristics correspond with its overall performance. After identifying different cluster types, we investigate their internal and external interconnectivity in comparative manner and draw on changes in cluster composition. Our results indicate that the structure, i.e. to which group the cluster belongs, and the openness towards external knowledge flows deliver merely unsystematic indications with regard to a cluster's overall success. Its ability to change composition towards a more balanced ratio of science and capital over time, on the other hand, turns out as a key explanatory factor. Hence, the dynamic perspective proves effective illuminating cluster growth and performance, where our explorative findings provide a promising avenue for further evolutionary research

    Chain-store pricing and the structure of retail markets

    Get PDF
    This paper examines competition between chain-stores and independent retailers in the UK retail opticians' market. We demonstrate that the pricing policy adopted by chain-stores can determine the impact their entry has on independent retailers. Crucially, in this market the chain-store retailers set an identical national price across all local markets. Our results suggest that this pricing strategy lessens the detrimental effect competition from chain-stores has on independent retailers
    corecore