157 research outputs found

    Extra patient movement during mammographic imaging : an experimental study

    Get PDF
    Objectives: To determine if movement external to the patient occurring during mammography may be a source of image blur. Methods: Four mammography machines with seven flexible and nine fixed paddles were evaluated. In the first stage, movement at the paddle was measured mechanically using two calibrated linear potentiometers. A deformable breast phantom was used to mimic a female breast. For each paddle, the movement in millimeters and change in compression force in Newton was recorded at 0.5 and 1 second intervals respectively for 40 seconds with the phantom in an initially compressed state under a load of 80N. In the second stage, clinical audit on 28 females was conducted on one mammography machine with the 18x24cm and 24x29cm flexible paddles. Results: Movement at the paddle followed an exponential decay with a settling period of approximately 40 seconds. The compression force readings for both fixed and flexible paddles decreased exponentially with time while fixed paddles have a larger drop in compression force than flexible paddles. There is a linear relationship between movement at the paddle and change in compression force. Conclusions: Movement measured at the paddle during an exposure can be represented by a second order system. The amount of extra-patient movement during the actual exposure can be estimated using the linear relationship between movement at the paddle and the change in compression force. Advances in knowledge: This research provides a possible explanation to mammography image blurring caused by extra patient movement and proposes a theoretical model to analyze the movement

    Slow light for deep tissue imaging with ultrasound modulation

    Get PDF
    Slow light has been extensively studied for applications ranging from optical delay lines to single photon quantum storage. Here, we show that the time delay of slow-light significantly improves the performance of the narrowband spectral filters needed to optically detect ultrasound from deep inside highly scatteringtissue. We demonstrate this capability with a 9 cm thick tissue phantom, having 10 cm^(−1) reduced scattering coefficient, and achieve an unprecedented background-free signal. Based on the data, we project real time imaging at video rates in even thicker phantoms and possibly deep enough into real tissue for clinical applications like early cancer detection

    Flat-panel detectors: how much better are they?

    Get PDF
    Interventional and fluoroscopic imaging procedures for pediatric patients are becoming more prevalent because of the less-invasive nature of these procedures compared to alternatives such as surgery. Flat-panel X-ray detectors (FPD) for fluoroscopy are a new technology alternative to the image intensifier/TV (II/TV) digital system that has been in use for more than two decades. Two major FPD technologies have been implemented, based on indirect conversion of X-rays to light (using an X-ray scintillator) and then to proportional charge (using a photodiode), or direct conversion of X-rays into charge (using a semiconductor material) for signal acquisition and digitization. These detectors have proved very successful for high-exposure interventional procedures but lack the image quality of the II/TV system at the lowest exposure levels common in fluoroscopy. The benefits for FPD image quality include lack of geometric distortion, little or no veiling glare, a uniform response across the field-of-view, and improved ergonomics with better patient access. Better detective quantum efficiency indicates the possibility of reducing the patient dose in accordance with ALARA principles. However, first-generation FPD devices have been implemented with less than adequate acquisition flexibility (e.g., lack of tableside controls/information, inability to easily change protocols) and the presence of residual signals from previous exposures, and additional cost of equipment and long-term maintenance have been serious impediments to purchase and implementation. Technological advances of second generation and future hybrid FPD systems should solve many current issues. The answer to the question ‘how much better are they?–is ‘significantly better– and they are certainly worth consideration for replacement or new implementation of an imaging suite for pediatric fluoroscopy

    Study of Increased Radiation When an X-ray Tube is Placed in a Strong Magnetic Field

    Get PDF
    When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial frequencies for B {le} 0.5 T

    Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity.</p> <p>Methods</p> <p>Growing pigs (<it>N </it>= 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal.</p> <p>Results</p> <p>Image analysis correctly identified the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5 intercostal spaces cranially.</p> <p>Conclusion</p> <p>The approach to image analysis reported permits the creation of various maps showing adipose thickness or correlation of thickness with other variables by location on the surface of the pig. The method identified novel adipose thickness measurement positions that are superior (as predictors of adiposity) to the site which is in current use. A similar approach could be used in other situations to quantify potential links between subcutaneous adiposity and disease or production traits.</p

    Methods for the analysis of ordinal response data in medical image quality assessment.

    Get PDF
    The assessment of image quality in medical imaging often requires observers to rate images for some metric or detectability task. These subjective results are used in optimisation, radiation dose reduction or system comparison studies and may be compared to objective measures from a computer vision algorithm performing the same task. One popular scoring approach is to use a Likert scale, then assign consecutive numbers to the categories. The mean of these response values is then taken and used for comparison with the objective or second subjective response. Agreement is often assessed using correlation coefficients. We highlight a number of weaknesses in this common approach, including inappropriate analyses of ordinal data, and the inability to properly account for correlations caused by repeated images or observers. We suggest alternative data collection and analysis techniques such as amendments to the scale and multilevel proportional odds models. We detail the suitability of each approach depending upon the data structure and demonstrate each method using a medical imaging example. Whilst others have raised some of these issues, we evaluated the entire study from data collection to analysis, suggested sources for software and further reading, and provided a checklist plus flowchart, for use with any ordinal data. We hope that raised awareness of the limitations of the current approaches will encourage greater method consideration and the utilisation of a more appropriate analysis. More accurate comparisons between measures in medical imaging will lead to a more robust contribution to the imaging literature and ultimately improved patient care

    Patient dose reduction during voiding cystourethrography

    Get PDF
    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ‘as low as reasonably achievable–(ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here

    Organ-focused mutual information for nonrigid multimodal registration of liver CT and Gd–EOB–DTPA-enhanced MRI

    Full text link
    Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01)

    Characterizing Hospital Workers' Willingness to Respond to a Radiological Event

    Get PDF
    Terrorist use of a radiological dispersal device (RDD, or "dirty bomb"), which combines a conventional explosive device with radiological materials, is among the National Planning Scenarios of the United States government. Understanding employee willingness to respond is critical for planning experts. Previous research has demonstrated that perception of threat and efficacy is key in the assessing willingness to respond to a RDD event.An anonymous online survey was used to evaluate the willingness of hospital employees to respond to a RDD event. Agreement with a series of belief statements was assessed, following a methodology validated in previous work. The survey was available online to all 18,612 employees of the Johns Hopkins Hospital from January to March 2009.Surveys were completed by 3426 employees (18.4%), whose demographic distribution was similar to overall hospital staff. 39% of hospital workers were not willing to respond to a RDD scenario if asked but not required to do so. Only 11% more were willing if required. Workers who were hesitant to agree to work additional hours when required were 20 times less likely to report during a RDD emergency. Respondents who perceived their peers as likely to report to work in a RDD emergency were 17 times more likely to respond during a RDD event if asked. Only 27.9% of the hospital employees with a perception of low efficacy declared willingness to respond to a severe RDD event. Perception of threat had little impact on willingness to respond among hospital workers.Radiological scenarios such as RDDs are among the most dreaded emergency events yet studied. Several attitudinal indicators can help to identify hospital employees unlikely to respond. These risk-perception modifiers must then be addressed through training to enable effective hospital response to a RDD event
    • …
    corecore