207 research outputs found

    Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment

    Get PDF
    Understanding the controls on event-driven dissolved organic carbon (DOC) export is crucial as DOC is an important link between the terrestrial and the aquatic carbon cycles. We hypothesized that topography is a key driver of DOC export in headwater catchments because it influences hydrological connectivity, which can inhibit or facilitate DOC mobilization. To test this hypothesis, we studied the mechanisms controlling DOC mobilization and export in the Große Ohe catchment, a forested headwater in a mid-elevation mountainous region in southeastern Germany. Discharge and stream DOC concentrations were measured at an interval of 15 min using in situ UV-Vis (ultraviolet–visible) spectrometry from June 2018 until October 2020 at two topographically contrasting subcatchments of the same stream. At the upper location (888 m above sea level, a.s.l.), the stream drains steep hillslopes, whereas, at the lower location (771 m a.s.l.), it drains a larger area, including a flat and wide riparian zone. We focus on four events with contrasting antecedent wetness conditions and event size. During the events, in-stream DOC concentrations increased up to 19 mg L−1 in comparison to 2–3 mg L−1 during baseflow. The concentration–discharge relationships exhibited pronounced but almost exclusively counterclockwise hysteresis loops which were generally wider in the lower catchment than in the upper catchment due to a delayed DOC mobilization in the flat riparian zone. The riparian zone released considerable amounts of DOC, which led to a DOC load up to 7.4 kg h−1. The DOC load increased with the total catchment wetness. We found a disproportionally high contribution to the total DOC export of the upper catchment during events following a long dry period. We attribute this to the low hydrological connectivity in the lower catchment during drought, which inhibited DOC mobilization, especially at the beginning of the events. Our data show that not only event size but also antecedent wetness conditions strongly influence the hydrological connectivity during events, leading to a varying contribution to DOC export of subcatchments, depending on topography. As the frequency of prolonged drought periods is predicted to increase, the relative contribution of different subcatchments to DOC export may change in the future when hydrological connectivity will be reduced more often.</p

    Host-specific assembly of sponge-associated prokaryotes at high taxonomic ranks

    Get PDF
    Sponges (Porifera) are abundant and diverse members of benthic filter feeding communities in most marine ecosystems, from the deep sea to tropical reefs. A characteristic feature is the associated dense and diverse prokaryotic community present within the sponge mesohyl. Previous molecular genetic studies revealed the importance of host identity for the community composition of the sponge-associated microbiota. However, little is known whether sponge host-specific prokaryotic community patterns observed at 97% 16S rRNA gene sequence similarity are consistent at high taxonomic ranks (from genus to phylum level). In the present study, we investigated the prokaryotic community structure and variation of 24 sponge specimens (seven taxa) and three seawater samples from Sweden. Results show that the resemblance of prokaryotic communities at different taxonomic ranks is consistent with patterns present at 97% operational taxonomic unit level

    Preliminary Jitter Stability Results for the Large UV/Optical/Infrared (LUVOIR) Surveyor Concept Using a Non-Contact Vibration Isolation and Precision Pointing System

    Get PDF
    The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100nm to 2.5 um. Wavefront error (WFE) stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Through the utilization of an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure, a system design is realized that maximizes the telescope dynamic stability performance without driving stringent technology requirements on spacecraft structure, sensors or actuators. Through analysis of the LUVOIR finite element model and linear optical model, the wavefront error and Line-Of-Sight (LOS) jitter performance is discussed in this paper when using the Vibration Isolation and Precision Pointing System (VIPPS) being developed cooperatively with Lockheed Martin in addition to a multi-loop control architecture. The multi-loop control architecture consists of the spacecraft Attitude Control System (ACS), VIPPS, and a Fast Steering Mirror on the instrument. While the baseline attitude control device for LUVOIR is a set of Control Moment Gyroscopes (CMGs), Reaction Wheel Assembly (RWA) disturbance contribution to wavefront error stability and LOS stability are presented to give preliminary results in this paper. CMG disturbance will be explored in further work to be completed

    Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles

    Get PDF
    Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the β-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.National Institutes of Health (U.S.) (Grant EB002175)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026

    Wide Field Infrared Survey Telescope (WFIRST) Observatory Overview

    Get PDF
    NASA's Wide Field Infrared Survey Telescope (WFIRST) is being designed to deliver unprecedented capability in dark energy and exoplanet science, and to host a technology demonstration coronagraph for exoplanet imaging and spectroscopy. The observatory design has matured since 2013; we present a comprehensive description of the observatory configuration as refined during the WFIRST Phase-A study. The observatory is based on an existing, repurposed 2.4 meter space telescope coupled with a 288 megapixel near-infrared (0.6 to 2 microns) HgCdTe focal plane array with multiple imaging and spectrographic modes. Together they deliver a 0.28 square degree field of view, which is approximately 100 times larger than the Hubble Space Telescope, and a sensitivity that enables rapid science surveys. In addition, the coronagraph technology demonstration will prove the feasibility of new techniques for exoplanet discovery, imaging, and spectral analysis. A composite truss structure meters both instruments to the telescope assembly, and the instruments and the spacecraft are flight serviceable. We present configuration changes since 2013 that improved interfaces, improved testability, and reduced technical risk. We provide an overview of our Integrated Modeling results, performed at an unprecedented level for a phase-A study, to illustrate performance margins with respect to static wavefront error, jitter, and thermal drift

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe
    corecore