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SUMMARY 

Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor 

them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue protein 

GvpA, arranged in an ordered array.  Solid-state NMR spectra of intact, collapsed gas vesicles 

from the cyanobacterium Anabaena flos-aquae show duplication of certain GvpA resonances, 

indicating that specific sites experience at least two different local environments. Interpretation 

of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting 

features of the primary, secondary, tertiary and quaternary structures of the gas vesicle protein. 

In particular, the asymmetric dimer can explain how the hydrogen bonds in the β–sheet portion 

of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and 

electrostatic side-chain interactions among highly conserved residues and creating a large 

hydrophobic surface suitable for preventing water condensation inside the vesicle. 
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INTRODUCTION 

Gas vesicles are buoyancy organelles that are found in a wide range of aquatic microorganisms. 

By assembling and disassembling these vesicles, organisms are able to regulate their depth in the 

water column according to their needs for light, air and nutrients.  

 

The gas content of the hollow vesicles reflects passive equilibrium with gas molecules dissolved 

in the aqueous phase. Given that permeable species include not only such small, non-polar 
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molecules as H2, N2, O2, Ar, and CO2, but also the polar CO molecule and the large 

perfluorocyclo-butane, C4F8 molecule (6.3 Å diameter)1, it is assumed that H2O is also 

permeable and that the absence of condensed water inside the vesicles reflects a highly 

hydrophobic and highly concave inner surface without suitable nucleation sites1; 2. This view is 

supported by accumulating evidence that proximal hydrophobic surfaces in bulk water produce 

bubbles between them3. 

 

Electron microscopy of intact vesicles4; 5 shows shapes ranging from acorn-like spindles to 

regular cylinders with conical end caps. In Anabaena flos-aquae, the cylinders dominate (see 

Figure 1) and are typically about 5000 Å long and 750 Å wide. Close examination shows that the 

vesicle is bipolar, with ribs forming a low-pitch helix6 on each side of an apparent insertion seam 

located in the cylindrical region. A 45.7 Å rib-rib distance has been measured by X-ray 

diffraction7 and by atomic force microscopy.8 

 

The gas vesicle wall comprises a shell formed almost exclusively by repeats of the 70-residue 

gas vesicle protein A9 (GvpA) with a small amount of the ~3-fold larger gas vesicle protein C 

(GvpC) adhering loosely to the outer surface10. However, little is known about the GvpA fold: 

high resolution electron microscopy is not possible because of multiple scattering, and solution 

NMR of intact vesicles is not possible because of their large size. Furthermore, since gas vesicles 

dissolve only under denaturing conditions and subsequent dialysis yields only amorphous 

precipitates, neither crystallographic nor solution NMR studies have been feasible. However, 

FTIR spectra (obtained in collaboration with Mark Braiman) provide indications of anti-parallel 

β–sheet, and X-ray diffraction7 and AFM8 agree that β–strands are tilted 36° from the cylindrical 
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axis of the vesicle. The corresponding orientation of the inter-strand hydrogen bonds at 54° to 

the cylinder axis, is the ideal for mechanical stability in both the length and width directions1.  

 

Figure 2 shows the amino acid sequence of GvpA in Anabaena flos-aquae. There are six 

positively charged residues (three R and three K) and nine negatively charged residues (three D 

and six E), for a net charge of –3. A MALDI-TOF study11 has shown that (1) there is no post-

translational modification of GvpA, (2) the only one of the three R-X and K-X bonds that is 

accessible to trypsin is the one in the N-terminus, (3) none of nine D-X and E-X bonds are 

accessible to endoproteinase GluC, and (4) the C-terminus is accessible to carboxypeptidase only 

as far as the S65-A66 bond.  

 

Secondary structure prediction using PSIPRED12 (and other algorithms, not shown) defines 

likely  α–helix and β–sheet regions with high confidence (as shown in Figure 2a). A coil 

prediction approximately midway through a long β–sheet stretch (too long to fit in one rib of the 

vesicle) suggests the location of a β–turn. Charges in each half of the predicted β–sheet are 

conspicuously arranged as oppositely charged pairs (D26,R30 and E52,R54) that could form salt 

bridges with the same pairs in a neighboring anti-parallel strand. This arrangement would also 

allow the unique tryptophan (W28) in each subunit to interact with that of a neighboring subunit.  

 

BLAST13 results comparing the Anabaena flos-aquae GvpA sequence with those of other 

cyanobacteria and with aquatic micro-organisms generally (Figure 2b) show a remarkably 

conserved core in the sequence, coinciding with the predicted α–helix and β–sheet segments.  

The putative β–turn region is absolutely conserved and the flanking β–sheet segments show 
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absolute conservation or conservative substitution of all the aromatic and charged residues, 

including the tryptophan and all of the charge pairs noted above. This conservation suggests the 

importance of aromatic and electrostatic interactions for the structure of gas vesicles. 

 

However, it is not so easy to satisfy these side chain interactions for the anti-parallel β–strands 

while also orienting the strands at the observed tilt of 36° from the vesicle axis, which requires a 

translation of four residues over two subunits (as shown in Figure 3). Figure 4 shows that this 

can be done with an even-numbered β–turn centered between V34 and G35, but even-numbered 

turns put charged side chains on both sides of the β–sheet which precludes participation of the 

sheet in the hydrophobic inner surface of the gas vesicle. The alternative, that the hydrophobic 

faces of the amphipathic α–helices make up the inner surface of the vesicle, seems unlikely, 

given that both the N- and C-termini are accessible to digestion by proteases11. 

  

Figures 5-7 show options for odd-numbered β–turns. Centering the turn on G35 or I36 (Figure 

5a,b) leads to a translation of two residues over two subunits in either direction, resulting in a tilt 

of only 20°. On the other hand, centering an odd-numbered turn on V34, (Figure 5c) leads to a 

translation of six residues over two subunits, resulting in a tilt of 48°. Evidently achieving the 

correct tilt with odd-numbered turns requires either shifting the register of subunits or relaxing 

the assumption of equivalent subunits. These two approaches are illustrated in Figures 6 and 7, 

respectively. Figure 6 shows the same turn as in Figure 5a with a two-residue shift in one subunit 

interface or the other: in Figure 6a, the DAWVR registration is preserved, while the EAR motifs 

are two residues out-of-register, whereas in Figure 6b, the DAWVR motifs are two residues out-

of-register, while the EAR registration is preserved. In both cases, interactions between the out-
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of-register residues would require side chains to be stretched along a diagonal between the 

strands.  In contrast, the model in Figure 7 preserves the close aromatic and electrostatic 

interactions while achieving the correct tilt by centering the odd-numbered β–turns in alternating 

subunits on different residues, specifically V34 and G35, to give the correct translation of four 

residues over two subunits.  

 

The model in Figure 7 uniquely invokes an asymmetric dimer as the fundamental building block 

of gas vesicles. In this case, NMR spectra would exhibit two different chemical shifts for at least 

some residues. Since solid-state NMR does not rely on fast molecular tumbling or large three-

dimensional crystals, it is ideally suited technique for studying gas vesicles. Here we present the 

first solid-state NMR results for vesicles from Anabaena flos-aquae in their intact, collapsed 

state. Our data indicate that there are inequivalent GvpA subunits in the gas vesicle structure, 

lending plausibility to the β–sheet structure proposed in Figure 7. 

 

RESULTS  

We have obtained NMR data with line widths (full width at half height) of 70-110 and 60-80 Hz 

in the 13C and 15N dimensions. The 13C line widths are comparable to those in the 

microcrystalline proteins BPTI14 and ubiquitin15 (in both cases 100 Hz). Like amyloid fibrils, 

such as α-synuclein16; 17 and HET-s(218-289)18, where 13C lines widths in the 30-100 Hz range 

are observed, gas vesicles can be regarded as natural 2-dimensional protein crystals with a high 

degree of short-range order, producing narrow NMR lines. Still narrower line widths, such as 

those observed for the microcrystalline proteins GB119 and Crh20 (15-30 Hz line widths) are 

required in order to resolve one-bond 13C-13C J-couplings. With the line widths that we observe 
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in gas vesicles, spectroscopy at high field is required to resolve the peaks. Therefore, the data in 

this paper were acquired at 1H Larmor frequencies of 700 to 900 MHz. Partial assignments have 

been obtained, and will be reported in a later paper. 

 

Figure 8 shows the 44-47 ppm 13C/105-117 ppm 15N region of a NCACX correlation spectrum, 

where only Gly CA-N cross peaks are expected. There are 3 glycine residues in the sequence, but 

6 peaks are observed in this region. It is possible to assign three of these peaks sequentially to 

G22, G35, and G61. The remaining peaks are labeled A, B, and C. While it is not yet possible to 

assign peaks A, B, and C sequentially, it has been determined that peak C has a valine neighbor 

and therefore must be due to either G35 or G61. 

 

Figure 9 shows N-C correlations for the unique A-S pair in the GvpA sequence. The left two 

panels show the N-CA and N-CB correlation of S49 in a NCACX spectrum, and the two right 

panels show the correlations of the S49 N to the preceding A48 CA and CB sites in a NCOCX 

spectrum. Since there is only one A-S pair in the sequence, all peaks must be assigned to this 

pair. In the 15N dimension, it is clear that all the correlation signals are found at two distinct 

chemical shifts for S49, 1.8 ppm apart. In the 13C dimension, two distinct chemical shifts are also 

observed for S49-CB, 0.5 ppm apart. On the other hand, at S49-CA, A48-CA, and A48-CB 

different chemical shifts are not distinguishable within the experimental error. 

 

Figure 10 shows N-C correlations for the unique T-Y pair in the GvpA sequence.  The left panel 

shows the N-CA correlation of Y53 in a NCACX spectrum, and the right panel shows the 

correlations of the Y53 N to the preceding T52 CA and CB sites in a NCOCX spectrum. Since 
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there is only one T-Y pair in the sequence, all peaks must be assigned to this pair. In the 15N 

dimension, it is clear that all the correlation signals are found at two distinct chemical shifts for 

Y53, 1.0 ppm apart. In the 13C dimension, two distinct chemical shifts are also observed for Y53-

CA, 0.4 ppm apart, and T52-CA, also 0.4 ppm apart.  

 

Figure 11 shows the alanine CA-CB region of an RFDR spectrum. Although there are only 11 

alanine residues in the sequence, at least 14 peaks are observed in this region, of which at least 

one represents two residues. From the distribution of the peaks, with secondary chemical shifts21; 

22 for both α-helix and β-sheet, it is clear that GvpA is a protein with mixed secondary structure. 

Although all three predicted α-helical alanine residues are assigned to one peak each, two peaks 

(D and E) still remain unassigned in the α-helix region.  

In addition, at least 10 peaks are observed for the 8 predicted coil and β-sheet residues, 

indicating duplication of peaks in various parts of the sequence. 

  

We note that the duplicated peaks in Figures 8-11 have comparable line widths in both the 13C 

and 15N dimensions. Hence, the extra peaks appear to represent two well-ordered, but structurally 

different, protein fractions.  

 

DISCUSSION  

Several sites in GvpA especially lend themselves to the identification of subunit inequivalence in 

gas vesicles. The glycine NCA correlations are found in a spectral region that does not contain 

other resonances, and there are only three glycine residues in this 70-residue protein. The unique 

AS and TY pairs are resolved in NCACX spectra. Of these residues, G22, G35, A48 and T52 are 
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absolutely conserved across all organisms, while S49, Y53 and G61 are absolutely conserved 

among cyanobacteria, but not conserved more generally.  All of these residues are located at or 

near predicted transitions in secondary structure (Figure 2). 

 

As expected, the duplicated signals show larger variations in 15N chemical shifts than in 13C 

chemical shifts: the lone pair of nitrogen makes its shielding much more sensitive to changes in 

the local environment23. A sensitive reporter on the peptide backbone is clearly ideal for 

detecting secondary structure variations, although it may also reflect higher order variations. 

 

The peaks in Figures 9 and 10 offer unambiguous evidence for structural variations in the GvpA 

subunits of Anabaena flos-aquae at the C-terminal end of the predicted β-sheet region. Given the 

similar intensities within the pairs, it is likely that each peak in a duplicated pair comes from the 

same number of subunits, consistent with the asymmetric dimer model shown in Figure 7. The 

alternative of sample heterogeneity is implausible since x-ray diffraction shows just one 

characteristic distance in each of the three dimensions of the wall (i.e., the rib spacing, the wall-

thickness, and the subunit repeat along a rib) and electron microscopy also shows just one rib 

spacing. Of course, electron microscopy also shows conical end-caps on otherwise cylindrical 

vesicles.  However, Anabaena vesicles are long and the relatively small content of the end-caps 

is not expected to give signals of the strength of those seen in our duplicated peaks. 

 

Figure 8 also shows peak duplication, with larger 15N chemical shift variations, but it is more 

difficult to interpret. There are two options for assigning peak C because both G35 and G61 are 

preceded by a valine residue. However, given the strength of the peak already assigned to G61, it 

seems unlikely that any other peak belongs to G61 and reasonable to infer instead that the G61 
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signal is not split. With the alternative assignment of peak C to G35, the two G35 peaks are of 

comparable intensity and there is a difference in 15N and 13C chemical shifts of 4.5 and 1.0 ppm, 

respectively, indicating a significant difference in the two different subunit conformations at 

G35. In this scenario, the intensities of the remaining peaks A and B are most reasonably 

assigned to G22. The chemical shift differences between peaks A, B, and G22 are small, and 

suggest correspondingly small conformation variations at this position. 

 

The tentative glycine peak assignments obtained by the above consideration of peak intensities 

are in good agreement with the duplications expected for the asymmetric dimer model shown in 

Figure 7. G35 will be in significantly different local environments in alternating subunits 

depending on whether it is or is not at the center of the β-turn. In the above assignment, this is 

the glycine residue that displays the largest chemical shift change between the duplicated peaks. 

G22 is situated in a loop at the N-terminal end of the predicted β–sheet region and, like A48 at 

the C-terminal end, is expected to be less affected by the different turn positions in alternating 

subunits. G61, located on the C-terminal side of the C-terminal α-helix, would be affected still 

less. Thus, the asymmetric model shown in Figure 7 provides a clear rationale for the glycine 

peaks seen in Figure 8. 

 

Taken together, the multiplicity of cross-peaks observed in well-resolved regions of 

heteronuclear 2D solid-state NMR spectra of intact gas vesicles support a model of the β-sheet 

portion of GvpA that achieves one completely hydrophobic face, complimentary charges and 

aromatic-aromatic interactions at subunit interfaces, and the stabilizing 36° strand tilt, all by a 

small folding variation in alternating GvpA subunits. That two conformations appear to 
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contribute to function, places GvpA in a growing group of “metamorphic” proteins that adopt 

different folded states under native conditions24. 

 

CONCLUSIONS 

Uniformly 13C and 15N labeled gas vesicles from Anabaena flos-aquae provide well-resolved 

solid-state NMR spectra at high magnetic fields. The sensitivity of the amide 15N shifts provides 

a probe of subtle differences in protein structure.  In gas vesicles we find that it distinguishes at 

least two different forms of the GvpA subunits.  In particular, 15N-13C correlation spectra detect 

two different environments for the amides of S49 and Y53, and at least two different 

environments for the amides of G22 and G35. Thus the GvpA monomers are incorporated into 

gas vesicles in at least two different ways. The simplest explanation is that gas vesicles are 

formed by asymmetric dimers of GvpA. Such dimers can explain how the β–strands can be tilted 

at 36° relative to the vesicle axis while accommodating stabilizing interactions between highly 

conserved residues and forming a large hydrophobic surface suitable for inhibiting water 

condensation inside the vesicle. Future resonance assignments and structural constraints will test 

this interpretation and provide a larger context. 

 

METHODS 

 

Sample Preparation 

To uniformly 13C and 15N label gas vesicles in Anabaena flos-aquae (Cambridge Collection of 

Algae and Protozoa (CCAP), Cambridge, UK, strain 1403/13f), the cells were grown under 

13CO2 and 15N2. Floating cells were collected and lysed by osmotic shrinkage of the protoplasts 
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using 0.7 M sucrose25. The released vesicles were isolated and washed by several rounds of 

centrifugally accelerated floatation at 100 x g in 5.0 mM NaCN, 10 mM potassium phosphate 

buffer at pH 8.026, followed by filtration on Millipore membrane filters with 0.65 and 0.45 µm 

pores27. No attempt was made to retain GvpC and any that might be retained would not disturb 

NMR experiments as a signal from less than 5 mol% of the sample is not detectable. 

 

The isolated gas vesicles were collapsed by a sudden application of pressure to the plunger of a 

syringe holding a suspension of vesicles. Vesicle collapse was observed by clearing of the initial 

milky appearance. The collapsed vesicles were pelleted by 45 min of centrifugation at 158,420 x 

g, washed with 50 mM NaH2PO4, 1 mM NaN3, pH 7.0, and then resuspended in the same buffer 

with 15% (w/w) D8-glycerol (Cambridge Isotope Laboratories, Andover, MA). Glycerol 

prevents protein dehydration, and the deuteration prevents cross-polarization of the natural 

abundance carbon. This suspension was centrifuged for 24 hours at 324,296 x g, and the 

resulting gel-like pellet was drained and packed into rotors using a tabletop centrifuge. 10.8 and 

23.7 mg sample were packed into 2.5 and 3.2 mm rotors, respectively, and we estimate that less 

than half of this is protein. After closing the rotors, there was no dehydration over several months 

(as monitored by weight). 

 

NMR Spectroscopy 

CP/MAS (cross-polarization/magic-angle-spinning) NMR spectra were acquired on custom-

designed spectrometers (courtesy of D. J. Ruben, Francis Bitter Magnet Laboratory, 

Massachusetts Institute of Technology) operating at 700 MHz and 750 MHz 1H Larmor 

frequencies and a Bruker spectrometer (Billerica, MA) operating at 900 MHz 1H Larmor 
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frequency. The 700 MHz spectrometer was equipped with triple-resonance 1H/13C/15N Varian-

Chemagnetics (Palo Alto, CA) probe with a 3.2 mm stator, and the 750 and 900 MHz 

spectrometers were equipped with Bruker (Billerica, MA) probes with 2.5 mm stators. Samples 

were cooled with a stream of air during experiments, maintaining the exit gas temperature at –5 

to 5°C. The MAS frequency was controlled to ±5 Hz using Bruker spinning speed controllers. 

All spectra were referenced to external DSS according to IUPAC convention28, using the Ξ 

conversion factor29. 

 

The 2D NCOCX correlation spectrum was obtained at 900 MHz 1H Larmor frequency, with 20 

kHz MAS and 100 kHz TPPM 1H decoupling30, using 1H-15N CP, followed by specific DCP31 

for 15N-13CO polarization transfer, and PDSD32 for subsequent 13CO-13CX transfer. 128 real and 

128 imaginary points were acquired in the indirect dimension with a dwell time of 100 µs, and 

2048 points were acquired in the direct dimension with a dwell time of 10 µs. 384 scans were 

acquired for each t1 point.  

 

The 2D NCACX correlation spectrum was obtained at 700 MHz 1H Larmor frequency, with 12.5 

kHz MAS and 83 kHz TPPM 1H decoupling30, using 1H-15N CP, followed by specific DCP31 for 

15N-13CA polarization transfer, and 2.56 ms RFDR33; 34 with 20 kHz 13C pulses for mixing from 

CA to other aliphatic 13C nuclei. At this field, the typical 120-ppm difference between CO and 

CA resonances corresponds to 21 kHz and since the bandwidth of a 20 kHz pulse is less than 20 

kHz, mixing occurs only between aliphatic carbons. This is advantageous in terms of sensitivity, 

as the magnetization is spread among fewer sites. 192 real and 192 imaginary points were 
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acquired in the indirect dimension with a dwell time of 80 µs, and 1536 points were acquired in 

the direct dimension with a dwell time of 16 µs. 296 scans were acquired for each t1 point. 

 

The 2D RFDR33; 34 spectrum was obtained at 750 MHz 1H Larmor frequency, with 18.182 kHz 

MAS and 83 kHz XiX 1H decoupling35. 13C RFDR pulses of 40 kHz were used, and the 13C-13C 

mixing time was 3.52 ms. 512 real and 512 imaginary points were acquired in the indirect 

dimension with a dwell time of 28 µs, and 2048 points were acquired in the direct dimension 

with a dwell time of 12 µs. 112 scans were acquired for each t1 point. 

 

The data were processed using NMRPipe36, and examined using Sparky37. 
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Figure 1.  

Electron micrograph (~150,000 x) of gas vesicles from Anabaena flos-aquae (courtesy of N. 

Grigorieff and A.E. Walsby). 

 

Figure 2.  

a) Amino acid sequence of A. flos-aquae GvpA and corresponding PSIPRED12 secondary 

structure prediction (where H indicates α–helix, E β–sheet, and C coil) with associated 

estimates of confidence (where 0 = low, 9 = high). 

b) BLAST13 results for residue conservation among GvpA in cyanobacteria (middle row) and 

cyanobacteria, other bacteria, and archaea (bottom row). Letters indicate absolute conservation, 

+ indicates conservative substitutions, and blank spaces no conservation. 

 

Figure 3.  

Dependence of the strand tilt relative to the vesicle cylinder axis (vertical) on the alignment of 

strands in the putative β-sheet (blue triangles).  Whereas strands are tilted just 20° when the 

primary sequence is translated by just two residues over two monomers (left), they are tilted 36° 

when the primary sequence is translated by four residues over two monomers (right). 

 

Figure 4. 

Model of the β–sheet portion of GvpA with even-numbered turns in identical subunits and in-

register arrangement of the conserved aromatic and charged residues at subunit interfaces. Short 

gray bars indicate stabilizing side chain-side chain interactions, and [c] and [n] indicate C- and 

N-terminal ends of the polypeptide chain. The translation of four residues over two subunits 
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gives the correct strand tilt. However, with an even-numbered turn, the two sets of salt bridges 

are on opposite sides of the sheet. 

 

Figure 5. 

Models of the β–sheet portion of GvpA with all the salt bridges on one side of the sheet, 

identical subunits, and in-register arrangement of conserved aromatic and charged residues at the 

subunit interfaces. The notation is as in Figure 2. The tilts of the strands are wrong in all cases: 

(a) odd-numbered turns centered on G35 give a translation of two residues over two subunits; (b) 

odd-numbered turns centered on V34 also give a translation of two residues over two subunits, 

but in the other direction; and (c) odd-numbered turns centered on I36 give a translation of 6 

residues over two subunits.  

 

Figure 6. 

Models of the β–sheet portion of GvpA with all salt-bridges on one side of the sheet, identical 

subunits, and correctly tilted strands obtained by shifting subunits relative to each other. The 

notation is as in Figure 2. (a) The EAR segments are shifted. (b) The DAWVR segments are 

shifted. 

 

Figure 7. 

Model of the β–sheet portion of GvpA with all salt-bridges on one side of the sheet, in-register 

alignment of conserved aromatic and charged residues at the subunit interfaces, and correctly 

tilted strands, obtained by allowing inequivalent subunits with odd-numbered turns centered 

alternately on G35 and V34. The notation is as in Figure 2. 
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Figure 8. 

NCACX glycine region. The spectrum was acquired at 700 MHz. G22, G35, and G61 have been 

sequentially assigned, whereas the duplicated peaks A, B, and C have not.  However, peak C 

must be due to either G35 or G61. 

 

Figure 9. 

Correlations of S49 CA and CB and A48 CA and CB with two distinct S49 amide 15N signals 

(grey lines). The two left panels are from a NCACX spectrum acquired at 700 MHz, while the 

two right panels are from a NCOCX spectrum acquired at 900 MHz. There is a significant 

difference in line width in the data acquired at the two different fields and MAS frequencies. 

 

Figure 10. 

Correlations of Y53 CA and T52 CA and CB with two distinct Y53 amide 15N signals (grey 

lines). The left panel is from a NCACX spectrum acquired at 700 MHz, while the right panel is 

from a NCOCX spectrum acquired at 900 MHz. There is a significant difference in line width in 

the data acquired at the two different fields and MAS frequencies. 

 

Figure 11. 

Alanine CA-CB region of RFDR spectrum acquired at 750 MHz. At least 14 peaks are observed, 

although there are only 11 alanine residues in the sequence. The chemical shift dispersion clearly 

shows that both αα-helix and β-sheet conformation is present in GvpA. 

 


