
Wide Field Infrared Survey Telescope (WFIRST) Observatory 

Overview 

ABSTRACT 

NASA’s Wide Field Infrared Survey Telescope (WFIRST) is being designed to deliver unprecedented 

capability in dark energy and exoplanet science, and to host a technology demonstration coronagraph for 

exoplanet imaging and spectroscopy.  The observatory design has matured since 2013[1]; we present a 

comprehensive description of the observatory configuration as refined during the WFIRST Phase-A 

study.  The observatory is based on an existing, repurposed 2.4m space telescope coupled with a 288 

megapixel near-infrared (0.6 to 2 microns) HgCdTe focal plane array with multiple imaging and 

spectrographic modes.  Together they deliver a 0.28 square degree field of view, which is approximately 

100 times larger than the Hubble Space Telescope, and a sensitivity that enables rapid science surveys.  In 

addition, the coronagraph technology demonstration will prove the feasibility of new techniques for 

exoplanet discovery, imaging, and spectral analysis.  A composite truss structure meters both instruments 

to the telescope assembly, and the instruments and the spacecraft are flight serviceable.  We present 

configuration changes since 2013 that improved interfaces, improved testability, and reduced technical 

risk.  We provide an overview of our Integrated Modeling results, performed at an unprecedented level 

for a phase-A study, to illustrate performance margins with respect to static wavefront error, jitter, and 

thermal drift. 
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INTRODUCTION 

The Wide Field Infra-Red Survey Telescope (WFIRST) Mission Study has been previously described at 

the mission level in detail1.  The purpose of this paper is to refresh this previously published overview 

with details of configuration changes adopted during the recently completed WFIRST Phase-A study. 
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WFIRST relies on the reuse of an existing 2.4M aperture Forward Optics Assembly (FOA) donated to 

NASA by another agency in 2013.  The FOA consists of the first two mirrors of a three-mirror 

Anastigmat2 optical form along with their supporting structure. With only minor modifications to this 

existing FOA hardware, WFIRST will enable wide area multi-band NIR surveys via imaging and 

spectroscopy to explore the expansion history of the universe, investigate the growth of large scale 

structures within the universe, and perform a microlensing survey to discover and catalog extra-solar 

planets within our galaxy.  In addition, WFIRST will accommodate a technology demonstration of a 

starlight suppression coronagraph enabling direct imaging and spectroscopy of exoplanets and debris 

disks.  Scheduled for launch in 2025, WFIRST will fly in a Sun-Earth L2 orbit with a mission life of 5 

years. 

Recent program milestones include: 

 WFIRST Science Investigation Teams (SITs) selected December 2015 

 Completed KDP-A in February 2016 

 Completed of Wide Field Opto-Mechanical Assembly (WOMA) Phase-A studies in May 2017 

 TRL-6 on WFI H4RG detectors achieved December 2016 

 Coronagraph testbed achieved dynamic contrast of 10-08 in Jan 2017 

This paper will present an overview of the WFIRST Phase-A configuration, summarize three key 

innovations resulting from our Phase-A study, and document integrated modeling results performed in 

support of these changes.  The three configuration modifications include: 

1. The implementation of an Instrument Carrier structure to meter the WFI and Coronagraph 

independently of the donated FOA structure. 

2. The relocation of the tertiary mirror from the WFI to the Optical Telescope Assembly (OTA). 

3. The change from active to passive cooling for the ~100K WFI focal place assembly. 

As will be seen, the combined efforts of the WFIRST team in Phase-A on these key trades have resulted 

in significant risk reduction for the WFIRST program. 

 

WFIRST OBSERVATORY OVERVIEW 

The WFIRST Observatory consists of an Integrated Payload Assembly (IPA; see Figure One) and a 

Spacecraft (S/C).  As will be discussed below, the IPA consists of components of the Optical Telescope 

Assembly (OTA), an Instrument Carrier (IC), components of the Wide Field Instrument (WFI) and the 

Coronagraph Instrument (CGI).  A Hardware Breakdown Structure for the WFIRST is shown in Figure 

Two. 



 
Figure One:  WFIRST Hardware Breakdown Structure 

 

 
Figure Two:  The WFIRST Integrated Payload Assembly (Expanded View) 

  

The OTA consists of the donated Forward Optics Assembly (FOA) integrated with an Aft Optics Module 

(AOM) and supported by the Instrument Carrier (IC) via FOA mounts.  The OTA is controlled by its 

Telescope Control Electronics (TCE) mounted within the WFIRST Spacecraft.  Functionally, the first two 

optics of the OTA’s three mirror anastigmat imaging system is in the common path for all WFIRST 

science modes.  The existing FOA will undergo a minor optical prescription change for the WFIRST 

mission via optical re-polishing.  The passively isolated FOA Mounts and the AOM are new hardware 



specifically designed for WFIRST.  As a result of one of the trades described in this paper, the Tertiary 

Mirror of the three mirror Anastigmat is now mounted in the AOM instead of the WFI.  A functional 

block diagram of the WFIRST payload is illustrated in Figure Three. 

 

 
Figure Three:  WFIRST Payload Functional Block Diagram 

 

As shown in the block diagram, numerous on-orbit optical compensators are available to ensure the 

WFIRST Payload meets on-orbit alignment, optical quality, and long term optical stability requirements.  

The FOA secondary mirror provides a five degree-of-freedom rigid body adjustment capability.  In the 

WFI channel the IFM provides alignment and focus adjustment, enabling on-orbit focus diversity phase 

retrieval during Observatory commissioning and as required thereafter.   

 



The flight serviceable WFI consists of a Cold Sensing Module (CSM), a Warm Electronics Module 

(WEM) mounted within the spacecraft (not shown), and a Facility Cryogenic Radiator (FCR) mounted to 

the Spacecraft’s Outer Barrel Assembly (not shown).  All optical functions of the WFI are contained 

within the CSM. 

 

The Transmissive Optics Selection Assembly (TOSA) consists of 10 selectable modes; seven filters 

covering 0.48 to 2.00 microns, a grism for spectrographic studies, a cold dark for calibration, and an 

engineering filter used for ground AI&T. 

  

The Coronagraph Instrument (CGI) consists of the flight serviceable Optical Bench Assembly (CGI-

OBA) and the Tertiary Collimator Assembly (TCA).  The TCA optically and mechanically interfaces 

with the FOA to provide a collimated (infinite conjugate) input to the CGI.  The TCA mounts directly to 

the FOA, and is hence not flight serviceable. 

 

INSTRUMENT CARRIER 

Early in the pre-Phase A study it was quickly realized that the combined launch loads of the WFI and CGI 

would exceed the heritage design capability of the donated telescope.  Various configurations of an 

Instrument Carrier (IC) to meter the WFIRST instruments off the spacecraft deck were subsequently 

traded.  Our selected IC architecture (Figure Four) leverages GSFC recent experience with the James 

Webb Space Telescope Integrated Science Instrument Module (ISIM) structure.  The IC accommodates 

the IOA, WFI, CGI, and the Spacecraft’s Star Tracker/Inertial Reference Unit via flight serviceable 

mounting interfaces (Figure Two). 

 
Figure Four:  The WFIRST Instrument Carrier 

 

The IC is kinematically mounted to the WFIRST Spacecraft and consists of a carbon fiber/cyanate ester 

composite (M55J/954-6) truss assembly to achieve high levels of structural strength and stability in a 

lightweight structure. This is the same material used for the JWST ISIM, with the same lay-up but with 

some of the composite tubes having a larger OD.  Truss members are joined with a combination of 

titanium fittings and composite gussets and clips; again with design heritage in the JWST/ISIM; however 

WFIRST will use titanium fittings in lieu of invar to conserve mass.  Analysis has shown that titanium 

works at expected IC temperatures throughout the WFIRST mission, and our analysis will be augmented 



by test articles currently in fabrication.  Dynamic isolation of the IC from the Spacecraft is achieved using 

Honeywell D-struts. 

 

WFI OPTICAL INTERFACE 

In the original WFIRST concept presented in 2013 (Ref. 1, Content, op. cit.) the third mirror of the three 

mirror anastigmat was mounted within the WFI assembly for the Wide Field Channel (AKA the WFC 

AOM TM in Figure Three).  When the WFI was moved off of the OTA and into the IC, analysis revealed 

an increased sensitivity to observatory thermal and dynamic perturbations due to the metering of the WFC 

TM independently of the OTA.  Trades (Ref. 2, Pasquale, op. cit.) supported the decision to reduce risk 

by moving the WFC TM out of the WFI and back to the OTA.  

 

Key outcomes of the move of the WFC TM from the WFI to the OTA included reduced OTA to WFI 

alignment tolerances, simplification of Payload AI&T by establishing a test point in the AI&T flow that 

allowed double pass interferometry of the entire image formation system (“test-as-you-fly”), and the 

elimination of costly support equipment intended to compensate for the absence of the TM during 

Payload AI&T.  However, the most important outcome of the WFC TM move was not initially 

anticipated.  The packaging of the OTA and WFI now allowed for the positioning of the WFI Mosaic 

Plate Assembly (AKA the WFI’s 95K focal plane) much farther outboard towards the anti-sun side of the 

Observatory.  It was quickly realized that this could enable the largest risk reduction achieved for 

WFIRST since 2013, the elimination of the Observatory’s cryo-cooler in favor of passive cooling of the 

WFI cold electronics. 

PASSIVE COOLING TRADE 

 

The use of passive cryo-cooling to operate the WFC and IFC SCA s at ≤100 K was first seriously 

considered when the WFIRST mission orbit was changed from GEO to L2 in 2015.   That change was 

based primarily on considerations related to SCA radiation tolerance, but it also afforded the mission with 

a more stable thermal environment.  In particular, it offered the possibility of a true cold side of the 

observatory that would only be exposed to deep space. 

 

Mechanical Cryo-cooling (MC) using a NICMOS-heritage Turbo-Brayton system was the baseline at the 

time, primarily due to the extremely low vibration of its non-reciprocating design, the ability of its heat 

transfer lines to provide cooling to focal planes located deep within the Payload, the tolerance of the high 

temperature (nearly room temperature) MC radiator to GEO thermal loading variations, and the relatively 

high technological maturity of the planned implementation. 

 

With the move to L2, a trade was conducted to evaluate the MC concept against Passive Cryo-cooling 

Systems (PCS) employing either cryo heat pipes or traditional thermal straps. The recommendation at the 

time was to retain the MC concept, as the cryo heat pipes were a less mature technology, and the 

temperature gradient in the thermal straps given the inboard location of the SCAs was too large to allow 

an acceptable cryo radiator size.  However, it was specifically noted in the trade closure that a PCS option 

could be reconsidered if the SCAs could be located closer to a PCS radiator, and the telescope outer barrel 

assembly could be made to support a large (~9 m^2) PCS radiator, and/or the SCA operational 

temperature could be increased to ~120 K. 

 

The optical redesign activity to relocate the WFC TM offered the possibility of developing and evaluating 

configurations that would also move the SCAs radially outboard, much closer to the potential location of 

a PCS radiator (dubbed the Facility Cryogenic Radiator, or FCR, which would remain as part of the 



observatory if/when the WFI were changed out during servicing).  When this SCA relocation proved 

practical, the mechanical vs. passive cryo-cooling trade was reopened and resulted in a change from MC 

to PCS SCA cooling.  The primary advantages of the PCS concept were the unlimited life and zero 

intrinsic vibration, and the lower cost and complexity relative to MC. 

  

It was realized that the PCS concept needed time to mature, so the MC and PCS options were carried in 

parallel for ~9 months in case unanticipated PCS issues were discovered.  The new optical design was 

specifically chosen to be compatible with either a MC or PCS approach, enabling a change back to MC 

later in Phase A, should it be needed.  Fortunately, the PCS design has remained robust, with parasitics 

margins fluctuating in the 110% to 130% range despite a lowering of the SCAs operational temperature 

from 100 K to 95 K (to improve SCA production yield), and a reduction in the size of the FCR from its 

original 9.5 m^2 to its current 7 m^2. 

 

1. INTEGRATED MODELING RESULTS 

Integrated Modeling (IM) is analysis that includes multiple disciplines and uses a flight observatory 

model to provide end-to-end perturbation to performance predictions. The WFIRST Project has 

developed the IM processes and capabilities in the last several years to validate requirements that cannot 

be verified by test on the ground.  The tool is also used to support system-level trades by performing 

observatory performance evaluation for different proposed designs.   During Phase A of the mission, the 

IM analyses focus on the thermal elastic effects due to ground-to-orbit and on-orbit temperature changes 

which distort structures and lead to optical alignment and surface figure errors, and the mechanical 

vibration effect that is generated from the spacecraft reaction wheels and propagated through the 

observatory structure which also degrades the optical performance.   

For thermal distortion mitigations, WFIRST employs a thermal control system with proportional heaters 

on the optical telescope assembly.   For reducing jitter disturbances, WFIRST implements a two-stage, 

passive vibration isolation system, where the first stage is co-located with the reaction wheels, and the 

second stage is between the spacecraft and payload interface. In order to maintain stable performance, 

WFIRST plans to avoid moving any mechanisms (e.g. spacecraft high gain antenna actuators and 

instrument filter wheel) during science exposures.  All other errors due to long-term material changes or 

dry-out effects can be compensated by flight alignment actuators as necessary.     

The key stability requirements for the WFIRST Wide Field Instrument and Coronagraph Instrument 

(CGI) are summarized in Table 1. The CGI has internal control systems that can correct for line-of-sight 

(LOS) and wavefront (WFE) drift, outside of the observatory stability mitigation capabilities.  In Phase A, 

to simplify the modeling approach, the CGI control systems are modeled as simple high-pass rejection 

filters.  Both CGI requirements and performance predictions include these closed-loop rejection filters 

where appropriate, as shown in Table 1.      

As part of the IM process, all prediction results include appropriate model uncertainty factors (MUFs).  

The MUFs are determined from heritage data and relevant past experience at this stage of the program.  

More extensive analyses will be performed during Phase B of the mission to ensure that the MUFs chosen 

are sufficient for WFIRST.  With the MUFs included, the IM current best estimates as shown in Table 1 

demonstrate that all key stability requirements can be met with reasonable margin.  To meet the CGI LOS 

and WFE jitter requirements, the observatory wheel speed range is limited to 5-19 rev/sec, from the 

nominal +/- 40 rev/sec.  This wheel speed range is predicted to allow CGI to achieve its technology 

demonstration goals.   



Table 1 WFIRST Key Stability Requirements 

Wide Field Instrument (WFI) 

Title Performance Requirement Current Best Estimate  

Wide Field Imaging Mode (WIM) 

Wavefront Error (WFE) Stability (< 

180 sec) 

1.0 nm RMS 0.7 nm RMS 

WIM Long Term WFE Stability (> 

24 hours) 

26.5 nm RMS 7.2 nm RMS 

WIM Line-of-Sight (LOS) Jitter 12 mas RMS 5.5 mas RMS 

WIM WFE Jitter 0.9 nm RMS 0.7 nm RMS 

Coronagraph Instrument (CGI) 

Title Performance Requirement Current Best Estimate  

CGI WFE Drift (includes closed-

loop filter) 

Z4: 2.0 nm RMS  

RSS(Z5-Z11): 0.25  nm RMS 

0.45 nm RMS 

0.05 nm RMS 

CGI LOS Jitter (includes closed-

loop filter) 

0.57 mas RMS 0.42 mas RMS  

(wheel speed: 5-19 rev/sec) 

CGI WFE Jitter 0.25 nm RMS 0.07 nm RMS 

(wheel speed: 5-19 rev/sec) 

 

SUMMARY 

 

In summary, great progress has been made by the entire WFIRST team of scientists, engineers, and our 

empowering staff of managers to progress the design of the WFIRST observatory while reducing 

technical and programmatic risk, meet all science objectives, and satisfy our stakeholder commitments on 

mission cost and schedule.  Since 2013 notable advances in observatory design, packaging, and 

performance has been achieved as reported herein, and the WFIRST Mission is now poised for an 

exciting and productive Phase B, leading to Mission PDR in late 2019. 
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