24 research outputs found

    Horseradish and soybean peroxidases: comparable tools for alternative niches?

    Get PDF
    Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful biotechnological tools. HRP is often termed the classical plant heme peroxidase and although it has been studied for decades, our understanding has deepened since its cloning and subsequent expression, enabling numerous mutational and protein engineering studies. SBP, however, has been neglected until recently, despite offering a real alternative to HRP: SBP actually outperforms HRP in terms of stability and is now used in numerous biotechnological applications, including biosensors. Review of both is timely. This article summarizes and discusses the main insights into the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and outlines its use in a variety of applications. It also reviews the current knowledge and applications to date of SBP, particularly biosensors. The final paragraphs speculate on the future of plant heme-based peroxidases, with probable trends outlined and explored

    Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp

    Get PDF
    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300 g L−1) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200 mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8 mL min−1. A mixture containing all four monosaccharides (1.08 g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2 h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery

    Eliminación de Cu2+ de efluentes acuosos

    No full text
    Se presenta un estudio de eliminacibn de Cuw por adsorcidn sobre pasta de celulosa al sulfato. Se han obtenido las isotermas de equilibrio a la temperatura de 30'0" C y pH 4,5 y 6, respectivamente. En los tres casos las curvas se ajustan a funciones del tipo Koble-Corrigan, con n = 2. Para los mismos pH y concentraciones de 1, 3, 5, 7 y 10 ppm de Cua* se .han trazado los hentes de adsorci6n. Finalmente, siguiendo el rtatamiento de Michaels se han calculado, a partir de dichos frentes, las .distintas características del proceso: LUB, V. E, G,N ~ Gy ,H m,r espectivamente

    Loss of dyskerin facilitates the acquisition of metastatic traits by altering the mevalonate pathway

    No full text
    The initial dissemination of cancer cells from many primary tumors implies intravasation to lymphatic nodes or blood vessels. To investigate the mechanisms involved, we analyzed the expression of small non-coding RNAs in cutaneous squamous cell carcinoma (cSCC), a prevalent tumor that mainly spreads to lymph nodes. We report the reduced expression of small nucleolar RNAs in primary cSCCs that metastasized when compared to non-metastasizing cSCCs, and the progressive loss of DKC1 (dyskerin, which stabilizes the small nucleolar RNAs) along the metastasis. DKC1 depletion in cSCC cells triggered lipid metabolism by altering the mevalonate pathway and the acquisition of metastatic traits. Treatment of DKC1-depleted cells with simvastatin, an inhibitor of the mevalonate pathway, blocked the expression of proteins involved in the epithelial-to-mesenchymal transition. Consistently, the expression of the enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 1 was associated with pathological features of high metastatic risk in cSCC patients. Our data underpin the relevance of the mevalonate metabolism in metastatic dissemination and pave the possible incorporation of therapeutic approaches among the antineoplastic drugs used in routine patient care
    corecore