1,022 research outputs found

    A temporal waterline approach to mapping intertidal areas using X-band marine radar

    Get PDF
    Mapping the morphology of intertidal areas is a logistically challenging, time consuming and expensive task due to their large expanse and difficulties associated with access. A technique is presented here that uses standard marine navigational radar operating at X-band frequency. The method uses a series of time-exposure radar images over the course of a two-week tidal cycle to identify the elevation of the wetting and drying transitions at each pixel in the radar images, thereby building up a morphological map of the target intertidal area. This “Temporal Waterline” method is applied to a dataset acquired from Hilbre Island at the mouth of the Dee Estuary, UK, spanning March 2006 to January 2007. The radar gathered data with a radial range of 4 km and the resulting elevation maps describe the intertidal regions of that area. The results are compared with airborne LiDAR data surveyed over the same area and within the radar survey time period. The residual differences show good agreement across large areas of beach and sandbanks, with concentrations of poor estimations around points that are shadowed from the radar or likely to suffer from pooling water. This paper presents the theoretical framework of the method and demonstrates its stability and accuracy. The Temporal Waterline radar method is aimed at providing a useful tool for the monitoring and operational management of coastlines

    The role of hand size in body representation:a developmental investigation

    Get PDF
    Knowledge of one’s own body size is a crucial facet of body representation, both for acting on the environment and perhaps also for constraining body ownership. However, representations of body size may be somewhat plastic, particularly to allow for physical growth in childhood. Here we report a developmental investigation into the role of hand size in body representation (the sense of body ownership, perception of hand position, and perception of own-hand size). Using the rubber hand illusion paradigm, this study used different fake hand sizes (60%, 80%, 100%, 120% or 140% of typical size) in three age groups (6- to 7-year-olds, 12- to 13-year-olds, and adults; N = 229). We found no evidence that hand size constrains ownership or position: participants embodied hands which were both larger and smaller than their own, and indeed judged their own hands to have changed size following the illusion. Children and adolescents embodied the fake hands more than adults, with a greater tendency to feel their own hand had changed size. Adolescents were particularly sensitive to multisensory information. In sum, we found substantial plasticity in the representation of own-body size, with partial support for the hypothesis that children have looser representations than adults.</p

    Atypical biological kinematics are represented during observational practice

    Get PDF
    The present study investigated the effect of stimulus-response compatibility on the representation of atypical biological kinematics during observational practice. A compatible group observed an atypical model that moved rightwards, whereas an incompatible group observed an atypical model that moved leftwards. Both groups were instructed to observe the model with the intention to later reproduce the movement trajectory. This was examined in a post-test where participants were asked to move rightwards with a kinematic profile that matched the atypical kinematics. Compared to a control group that did not engage in practice, and irrespective of whether the stimulus was observed in a spatially compatible or incompatible orientation, participants from both experimental groups reproduced velocity profiles that were comparable, and similar to the atypical biological kinematics. Bayesian analysis indicated equality between the two experimental groups, thus suggesting comparable sensorimotor processing. Therefore, by rotating the incompatible stimulus by 180 degrees during observational practice, the current study has isolated the processing and representation of atypical biological kinematics to the underlying sensorimotor processes, rather than spatial encoding of peak velocity via processes associated with stimulus-response compatibility

    Geospatial modeling of child mortality across 27 countries in Sub-Saharan Africa

    No full text
    Preventable mortality of children has been targeted as one of the UN’s Sustainable Development Goals for the 2015-30 period. Global decreases in child mortality (4q1) have been seen, although sub-Saharan Africa remains an area of concern, with child mortality rates remaining high relative to global averages or even increasing in some cases. Furthermore, the spatial distribution of child mortality in sub-Saharan Africa is highly heterogeneous. Thus, research that identifies primary risk factors and protective measures in the geographic context of sub-Saharan Africa is needed. In this study, household survey data collected by The Demographic and Health Surveys (DHS) Program aggregated at DHS sub-national area scale are used to evaluate the spatial distribution of child mortality (age 1 to 4) across 27 sub-Saharan Africa countries in relation to a number of demographic and health indicators collected in the DHS surveys. In addition, this report controls for spatial variation in potential environmental drivers of child mortality by modeling it against a suite of geospatial datasets. These datasets vary across the study area in an autoregressive spatial model that accounts for the spatial autocorrelation present in the data. This study shows that socio-demographic factors such as birth interval, stunting, access to health facilities and literacy, along with geospatial factors such as prevalence of Plasmodium falciparum malaria, variety of ethnic groups, mean temperature, and intensity of lights at night can explain up to 60% of the variance in child mortality across 255 DHS sub-national areas in the 27 countries. Additionally, three regions - Western, Central, and Eastern Africa - have markedly different mortality rates. By identifying the relative importance of policy-relevant socio-demographic and environmental factors, this study highlights priorities for research and programs targeting child mortality over the next decade. <br/

    Application of marine radar to monitoring seasonal and event-based changes in intertidal morphology

    Get PDF
    This paper demonstrates the application of marine radar and a newly developed waterline mapping technique to the continued surveillance and monitoring of inter- and intra-annual intertidal morphological change, thus capturing new detail on coastal system behaviours. Marine radar data from 2006 to 2009 are used to create a sequence of waterline elevation surveys that show clear morphological evolution of two different sites in the Dee estuary, UK. An estimate of volumetric change was made at two locations: West Hoyle sandbank and the NW Wirral beach. Both sites exhibited a similar cyclic pattern of volumetric change, with lowest volumes in autumn and winter, respectively. The average beach elevations above Admiralty Chart Datum clearly reflect the observed change in sediment volume, with reduced elevations in winter and increased elevations in summer, suggesting a trend of high-energy storm waves in autumn and winter that remove sediment and simultaneously moderate the vertical dimension of bedforms in the intertidal area. Data at this temporal and spatial scale are not easily obtainable by other current remote sensing techniques. The use of marine radar as a tool for quantifying coastal change over seasonal and event timescales in complex hydrodynamic settings is illustrated. Specifically, its unique application to monitoring areas with dynamic morphology or that is vulnerable to erosion and/or degradation by storm events is exemplified

    Alpha-fetoprotein detection of hepatocellular carcinoma leads to a standardized analysis of dynamic AFP to improve screening based detection

    Get PDF
    Detection of hepatocellular carcinoma (HCC) through screening can improve outcomes. However, HCC surveillance remains costly, cumbersome and suboptimal. We tested whether and how serum Alpha-Fetoprotein (AFP) should be used in HCC surveillance. Record linkage, dedicated pathways for management and AFP data-storage identified i) consecutive highly characterised cases of HCC diagnosed in 2009-14 and ii) a cohort of ongoing HCC-free patients undergoing regular HCC surveillance from 2009. These two well-defined Scottish patient cohorts enabled us to test the utility of AFP surveillance. Of 04 cases of HCC diagnosed over 6 years, 42% (129) were identified by a dedicated HCC surveillance programme. Of these 129, 47% (61) had a detectable lesion first identified by screening ultrasound (US) but 38% (49) were prompted by elevated AFP. Despite pre-HCC diagnosis AFP >20kU/L being associated with poor outcome, 'AFP-detected' tumours were offered potentially curative management as frequently as 'US-detected' HCCs; and had comparable survival. Linearity of serial log10 -transformed AFPs in HCC cases and in the screening 'HCC-free' cohort (n = 1509) provided indicators of high-risk AFP behaviour in HCC cases. An algorithm was devised in static mode, then tested dynamically. A case/control series in hepatitis C related disease demonstrated highly significant detection (p-5) of patients at high risk of developing HCC. These data support the use of AFP in HCC surveillance. We show proof-of-principle that an automated and further refineable algorithmic interpretation of AFP can identify patients at higher risk of HCC. This approach could provide a cost-effective, user-friendly and much needed addition to US surveillance

    HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis.

    Get PDF
    notes: PMCID: PMC3875725This is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version. © 2013 American Society of Plant Biologists. All rights reserved.Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.Biotechnology and Biological Science Research Counci

    Atypical biological kinematics are represented during observational practice

    Get PDF
    The present study investigated the effect of stimulus-response compatibility on the representation of atypical biological kinematics during observational practice. A compatible group observed an atypical model that moved rightward, whereas an incompatible group observed an atypical model that moved leftward. Both groups were instructed to observe the model with the intention to later reproduce the movement trajectory. This was examined in a posttest where participants were asked to move rightward with a kinematic profile that matched the atypical kinematics. Compared to a control group that did not engage in practice, and irrespective of whether the stimulus was observed in a spatially compatible or incompatible orientation, participants from both experimental groups reproduced velocity profiles that were comparable and similar to the atypical biological kinematics. Bayesian analysis indicated equality between the 2 experimental groups, thus suggesting comparable sensorimotor processing. Therefore, by rotating the incompatible stimulus by 180 degrees during observational practice, the current study has isolated the processing and representation of atypical biological kinematics to the underlying sensorimotor processes, rather than spatial encoding of peak velocity via processes associated with stimulus-response compatibility. (PsycINFO Database Recor
    corecore