45 research outputs found

    The Role of GABAergic Inhibition in Ocular Dominance Plasticity

    Get PDF
    During the last decade, we have gained much insight into the mechanisms that open and close a sensitive period of plasticity in the visual cortex. This brings the hope that novel treatments can be developed for brain injuries requiring renewed plasticity potential and neurodevelopmental brain disorders caused by defective synaptic plasticity. One of the central mechanisms responsible for opening the sensitive period is the maturation of inhibitory innervation. Many molecular and cellular events have been identified that drive this developmental process, including signaling through BDNF and IGF-1, transcriptional control by OTX2, maturation of the extracellular matrix, and GABA-regulated inhibitory synapse formation. The mechanisms through which the development of inhibitory innervation triggers and potentially closes the sensitive period may involve plasticity of inhibitory inputs or permissive regulation of excitatory synapse plasticity. Here, we discuss the current state of knowledge in the field and open questions to be addressed

    The zona incerta in control of novelty seeking and investigation across species

    Get PDF
    Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI\u27s anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning

    Applicants Survey on CCD Project Application

    No full text
    Results of a survey about the chain of IvD-DEC-CCD in the application of a CCD project license from the perspective of the researche

    Candidate genes in ocular dominance plasticity

    No full text
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Many studies have been devoted to the identification of genes involved in experiencedependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. We propose that genes with a high correlation are likely to play a role in OD plasticity. We have tested this hypothesis for genes whose inactivation is known to affect OD plasticity. The expression levels of these genes indeed correlated with OD plasticity if their levels showed strong differences between the BXD strains.To narrow down our candidate list of correlated genes, we have selected only those genes that were previously found to be regulated by visual experience and associated with pathways implicated in OD plasticity. This resulted in a list of 32 candidate genes. The list contained unproven, but not unexpected candidates such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A) receptor, acetylcholine esterase, and the catalytic subunit of cAMP-dependent protein kinase A. This demonstrates the viability of our approach. More interestingly, the following novel candidate genes were identified: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. Whether all these novel candidates indeed function in OD plasticity remains to be established, but possible roles of some of them are discussed in the article

    Visual Cortex Limits Pop-Out in the Superior Colliculus of Awake Mice

    No full text
    We detect objects more readily if they differ from their surroundings in motion, color, or texture. This increased saliency is thought to be related to increased responses in the visual cortex. The superior colliculus is another brain area involved in vision and especially in directing gaze and attention. In this study, we show that differences in texture orientation also increase responses in the superficial layers of the superior colliculus that receive retinal and cortical input. We found that gratings evoke more neural response when surrounded by orthogonal gratings than when surrounded by parallel gratings, particularly in the awake mouse. This pop-out is not originating from the visual cortex, and silencing visual cortex increased the relative difference in response. A model shows that this can result from retinotopically matched excitation from visual cortex to the superior colliculus. We suggest that the perceptual saliency of a stimulus differing from its surround in a low-level feature like grating orientation could depend on visual processing in the superior colliculus
    corecore