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The zona incerta in control of novelty seeking and
investigation across species
Ilya E. Monosov1, Takaya Ogasawara1, Suzanne N. Haber2,3,
J. Alexander Heimel4 and Mehran Ahmadlou4,5

Abstract
Many organisms rely on a capacity to rapidly replicate,
disperse, and evolve when faced with uncertainty and novelty.
But mammals do not evolve and replicate quickly. They rely
on a sophisticated nervous system to generate predictions
and select responses when confronted with these challenges.
An important component of their behavioral repertoire is the
adaptive context-dependent seeking or avoiding of percep-
tually novel objects, even when their values have not yet been
learned. Here, we outline recent cross-species breakthroughs
that shed light on how the zona incerta (ZI), a relatively
evolutionarily conserved brain area, supports novelty-seeking
and novelty-related investigations. We then conjecture how
the architecture of the ZI’s anatomical connectivity – the
wide-ranging top-down cortical inputs to the ZI, and its
specifically strong outputs to both the brainstem action con-
trollers and to brain areas involved in action value learning –

place the ZI in a unique role at the intersection of cognitive
control and learning.
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Introduction
The intersection of neuroscience and machine learning
has shed light on the intuition that to perform multiple,
statistically heterogenous, and embedded behavioral
tasks, the brains of animals evolved multiple mechanisms

for learning, planning, and acting e that is, distinct cir-
cuits that learn and forget on different time scales, uti-
lizing distinct learning rules [1e11]. These efforts
expanded our understanding of neural mechanisms of
reflex-like behaviors as well as of the relatively slower
mechanisms of value learning and value-based decision-
making [12e15]. But to date, little is known about how
neural circuits support adaptive behavior in situations in
which higher-order cognitive computations must be
rapidly linked to ongoing motor control, particularly when
the value of ongoing action has yet to be determined.

One example is the experience of and response to
perceptually novel objects. Novel objects need to be
detected, their values need to be learned, and behavioral
selection must occur rapidly even though their behav-
ioral value has yet to be fully determined. But, despite
the importance of novelty seeking in the daily lives of
humans and animals, the neurobiological mechanism of
novelty-driven behaviors, such as novelty seeking, re-
mains poorly understood [16].

The purpose of this review is to discuss emerging evi-
dence for a role of the zona incerta (ZI) in specific
components of novelty-related behavior: in the seeking
out of future perceptual novelty and subsequent in-
spection and investigation of perceptually novel objects.
We discuss how the ZI links ongoing cognitive
processing of objects, including predictions of future
novel objects, with online control of action in the
brainstem. We show that many ZI neurons’ activity in-
corporates information about action (e.g., location and
action timing) and information about the prediction and

detection of novel objects.

We then conjecture how the architecture of the ZI
anatomical connectivity e particularly, the wide-ranging
top-down cortical inputs to the ZI and the specifically
strong outputs of the ZI to both the brainstem action
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controllers and to brain areas involved in action value
learning e could place the ZI in a unique role at the
intersection of cognitive control and learning, including
learning the values of novel objects and novelty-
seeking actions.

ZI anatomy and functions
ZI cytoarchitecture and circuits
The ZI, first described by Forel [17], is a relatively
conserved structure found in both mammals and other
vertebrates [18e22]. Developmentally, it is part of the
prethalamus [23]. It is a long, horizontally oriented
structure that lies dorsal to the subthalamic nucleus
(STN), and medial to the reticular nucleus (RT),
extending from the rostral pole of the thalamus to the

rostral subgeniculate nucleus in rodents, nonhuman pri-
mates (NHP), and humans [18] (Figure 1aeb). The ZI
in both rodents and primates is roughly divided into four
components: a rostral portion (ZIr), a central portion that
is divided into dorsal and ventral regions (ZId and ZIv),
and the caudal portion (ZIc). The ZIr extends from its
rostral pole to the emergence of the STN. The central
portion lies dorsal to the STN and ventral to the thal-
amus nucleus. The ZIc sits at the posterior end of the
STN and lies between the STN and ventroposterior
thalamic nucleus (Figure 1aeb). In rodents, there are

differences in connectivity among the medial and lateral
parts [24]. Recently, the medial component, ZIm, has
been recognized as possibly functionally distinct [25,26].

Cell-types in the ZI
Most generally speaking, in terms of neurotransmitters
and neuromodulators, ZI contains at least four groups of
cell types: GABAergic (w85% of ZI neurons), gluta-
matergic, dopaminergic, and melanin-concentrating
hormone (MCH) neurons. The ZI includes large pro-
jection neurons that make up w90% of the ZI cells and
local interneurons. ZI projection neurons have long
extensive dendrites, oriented along the principal axis of
the nucleus, and are presumed to be primarily

GABAergic [25] (Figure 1bec) which sets it apart from
the thalamus dorsally and STN ventrally. These neurons
are involved in a variety of behaviors and states,
including sleep [27], fear [28], defensive behavior [29],
food eating [30], and hunting [25]. There are also
populations of glutamatergic neurons, most prominently
in the caudal ZI (Figure 1c). In both rodents and pri-
mates, tyrosine hydroxylase (TH) is concentrated in a
dopaminergic region called A13 in the ZIrm (Figure 1c).
A majority of these TH-positive neurons co-express
GABA [31]. While their functions are poorly under-

stood, some studies have implicated them in fear and
nociception-related functions [32]. MCH-expressing
and dopaminergic neurons are distinct but intermingled
in the A13 area [33]. The functional role of the MCH-
positive neurons in ZI and whether they are involved in
motivational behaviors [34] remains to be understood.

The functional diversity of the ZI neurons is beyond the
heterogeneity of neurotransmitters and neuro-
modulators. Parvalbumin (PV)-expressing neurons are
most prominent in the lateral ZIv with almost no overlap
with somatostatin (SST) and calretinin (CR)-expressing
neurons [35]. The PV-positive neurons are required for
fear memory acquisition and recall of remote fear
memory [36]. PV-positive neurons are also involved in

itch processing [37]. Another subpopulation of inhibi-
tory neurons, located in ZIv, expresses LIM homeo-
domain factor Lhx6 and bidirectionally regulates sleep
time [38]. Yet, another subpopulation of GABAergic
neurons, which are distinct from PV- and SST-
expressing neurons, is tachykinin precursor 1 (Tac1)-
expressing neurons. These neurons are required in
investigatory and novelty-seeking behaviors that we
discuss in detail subsequently in this article [26].

ZI connections in rodents
The ZI receives input from across the brain [24,39]
(Figure 1dee). Most inputs come from the ipsilateral
side, but there is also input from the contralateral

hemisphere [39,40]. Direct visceral and somatosensory
inputs from the spinal cord and trigeminal nucleus arrive
in ZIv [24,39,41]. ZId and ZIr receive input from many
brainstem nuclei, in particular, the midbrain reticular
nucleus, periaqueductal gray (PAG), raphe nuclei, and
the substantia nigra (SN) [24,39,42], but also from the
pons, medulla, and deep cerebellar nuclei in the hind-
brain [39,42]. The ZIrm receives input from the later-
odorsal tegmental nucleus in the brain stem and the
anterior pole of the superior colliculus (SC) [43]. ZIv
receives input from the pretectal nucleus [44] and from

the deep layers of SC in rodents and primates
[24,39,45]. The lateral SC, responding to the stimuli in
the lower visual field projects to the medial ZIv. The
medial SC, responding to the upper visual field, projects
to the lateral ZIv.

Importantly, most areas of the cerebral cortex project to
the ZI (Figure 1d) [46]. There are particularly strong
projections from the cingulate, frontal, motor, and pari-
etal areas [46,47] and topographically organized pro-
jections from sensorimotor cortex [46,48]. There is also

input from temporal cortex [49,50]. The cortical input
comes largely from layer 5b neurons [46,51] and ter-
minates non-homogenously in the ZI. The ZId and ZIr
receive projections from the cingulate cortex, ZIr from
medial prefrontal [29], ZIrm from frontal eye field like
area [43], and ZIm from prelimbic and medial prefron-
tal [26,29].

Many of the connections of the ZI are reciprocal (Figure
1e). The ZI sends output to the spinal cord and many
brainstem nuclei [40,42,52]. The ZIv projects to the

intermediate and deep layers of the SC [39]. The main
projection is GABAergic, but the ZIr TH neurons also
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Figure 1

Anatomy of the zona incerta (ZI). a. Zona incerta (ZI) is wedged between the subthalamic nucleus (STN) and the thalamus. Bottom panel shows the
position of the ZI and the STN in the Macaque (on photos taken from the block before each section is cut). Outlines indicate ZI (red) and STN (blue) b.
Mouse zona incerta (ZI) is at the same location but relatively larger. Bottom panels show Allen Institute ISH (exp. 72081554) for Vgat. c. Sagittal slices
with ISH from the Allen Institute showing that Gad2 is dense in ZI, but sparser in the medial ZIc (exp. 79903740); Vglut2 is sparse in ZI, but present in
medial ZIc (exp. 71724696); Th is present in the medial Zir (exp. 1058); Pvalb is present in lateral Ziv (exp. 75457579). d. Collection of all viral injections in
the Allen Institute mouse connectivity database with projections to the right ZI. e. Scheme showing the connections of ZI with other areas. Colors match d.
f. Projections from neurons transfected with AAV-GFP from a single injection in ZI (exp. 156315468) with the ZI, thalamus, PAG, and motor parts of the
superior colliculus (SCm) overlayed.
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project to the dopamine-receptor-expressing layers of
the SC [53]. The ZI has strong cell type- and zone-
specific projections to the PAG (Figure 1f). The ZIr
innervates excitatory neurons across the PAG [29]. The
GABAergic ZIm neurons send projections to the
GABAergic and glutamatergic neurons in lPAG and
vlPAG [25,54]. Neurons positive for TH or SST also
project to the PAG [35,55]. The ZIr, Ziv, and ZId have

strong and distinct patterns of projection to many nuclei
in the thalamus, in particular, the vLGN and high-order
association and intralaminar nuclei, such as posterior
medial nucleus of the thalamus (POm) and reuniens
nucleus (RE) [28,56e59]. Also, ZI sends projections to
regions enriched with dopamine neurons, many of which
signal reward prediction errors (RPEs) for learning the
value of states and actions [60].

ZI connections in non-human primates and humans
There are only a few connectivity studies that focus on
the ZI specifically in NHPs [8,45,61,62]. Several tracer
studies do mention fiber terminals in the ZI in the
overall description of connections. Based on these, it can
be surmised that the ZI in primates receives input from

a wide range of cortical and subcortical areas, with some
significant homology to the rodents. Cortical areas that
project to the ZI include motor control and sensory areas
(primary somatosensory cortex, temporal regions,
premotor and motor cortex [8,45,63e68]; medial pre-
frontal and posterior medial cortices [69e72] and
anterior, ventromedial temporal regions [8]). Subcor-
tical inputs include PAG [73], SC [45], interstitial nu-
cleus of Cajal [74], pontine nuclei [75], and the spinal
cord [76e78]. Finally, the descriptions of dopaminergic
terminals in the ZI [79] and recent tracer data indicate

that the ZI has reciprocal connectivity with the SN and
the ventral tegmental area [62].

This recent work in particular corroborated the many
observations about the primate ZI and largely extended
our knowledge of ZI connectivity [62]. They showed
that in monkeys, the rostral ZI (ZIr) receives a wide
range of prefrontal inputs, but not sensorimotor inputs
(which based on other work likely is sent more
caudally). Finally, the same paper also demonstrated a
strong projection from the ZIr to the lateral habenula.

Functional diversity of the ZI
While the purpose of this review is to discuss recent

findings linking the ZI to novelty seeking, it is worth
first mentioning that the ZI has many other functions
supported by different ZI regions and cell types. For
example, the ZI is thought to be involved in feeding
[30,60,80e82], hunting [25,83], sleep [27,38], and
processing various emotional and motivational
states [28,36,80,84].

This diversity may be supported by the topographical
gradients in ZI connectivity and distinct cell types

within the ZI. For example, while the stimulation of the
ZIr drives mice toward food and not novelty, more
caudal stimulation of the ZI makes even a fasted mouse
choose novelty over food [26], suggesting some func-
tional distinction among ZI subregions in their
processing of novelty and other motivational drives.
Rodent ZI has also been implicated in fear and vigilance-
related behavioral responses. For example, the activation

of GABAergic ZIrGad2 neurons reduces noise-induced
flight and conditioned freezing [29], and the stimula-
tion of ZIVgat terminals in the thalamic reuniens (RE)
attenuates fear generalization and reduces fear response
after extinction [32]. Again, there are differences be-
tween zones or cell types in the ZI, because PV-positive
neurons in the ZIv are required for fear memory acqui-
sition [36], and the activation of these neurons en-
hances, rather than reduces, noise-induced flight [85].
While some results suggest that the ZI is associated with
positive valence, as the pairing of activation of

GABAergic cells in the ZIr and ZIm with place or nose
poking induces place preference and persistent nose
poking [25,26,30], other results suggest a relationship of
ZI with negative affect, as ZIvPV neurons regulate itch
[37], and implicate ZI in pain processing [86].

In contrast to what is known about the functional di-
versity of the ZI in rodents, we know very little about
the functional diversity of the ZI in NHPs and humans.
For example, the relatively caudal ZI contains neurons
with oculomotor signals that selectively predict gaze

shifts to novel objects [8]. But, it is likely that the same
neurons could also be involved in other gaze-related
behavior beyond novelty seeking [61]. Also, another line
of research that further highlights the heterogenous
nature of the ZI is on the effects of deep brain stimu-
lation (DBS) of the ZI in humans. For example, the
caudal ZI has become a DBS target for a wide number of
disorders [87e89], such as various tremor disorders and
Parkinson’s disease, a disorder known to have motor and
non-motor components [90]. It is widely reported that
DBS of the ZI has wide-ranging effects, including
cognition and mood [91e93]. The rostral ZI on the

other hand is a promising target for obsessive-
compulsive disorder [62,94] e a complex disease that
includes many cognitive and emotional compo-
nents [95e97].

ZI in novelty-related behaviors
Overall, the pattern of connectivity of the ZI in primate
and rodents indicates (1) that ZI neurons integrate a
large variety of cortical inputs, but that this cortical
input has some topographical and functional organiza-
tion (2) that ZI neurons have direct access to motor

output controllers in the brainstem, and (3) that ZI
neurons have direct access to brain areas that mediate
reinforcement learning. We next creview emerging data
on how the caudal ZI contributes to novelty seeking and
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inspection and relate this discussion to previous work on
the anatomy and function of the ZI.

Novelty related behavioral responses
Before discussing novelty-related behavioral control by
the ZI, we will take a few paragraphs to discuss the

importance of novelty in behavior more generally and
define which aspects of novelty-related behavior is
regulated by ZI activity.

The exploration of perceptually novel objects is an
important component of learning and curiosity [98,99].
Novel objects motivate behavior, attract attention and
inspection-related behaviors, and mediate learning
[16,100e108], and these occur even when novel objects
have no bearing on obtaining reward or avoiding punish-
ment, that is when novelty seeking is non-instrumental

[8,99,108]. Previous studies have shown that neurons in
many brain areas respond to novel stimuli more strongly
than to familiar stimuli [2,109]; however, how the pref-
erence and the search for future novelty are controlled
has remained unclear.

Novelty-related behaviors can be separated into at least
two components: a motivational component (seeking or
avoiding future novelty) and an investigative component
(choosing and inspecting novel objects in the environ-
ment). To mediate the motivational component of

novelty seeking, a neural network must make pre-
dictions about the probability or possibility of future
novelty. This is akin to the control of reward seeking,
where neural circuits, signal reward predictions to
invigorate actions that produce more reward and sup-
press actions that produce less reward or result in pun-
ishments. We define the second component e novelty
investigation e as behaviors that occur after the novel
stimulus is present, particularly the sequences of
approach and engagement. In theory, novelty investi-
gation must be supported by detection mechanisms that

classify stimuli as novel or familiar (which may take
place through at least several related but distinct com-
putations [2]) and a series of dynamic states that pro-
cess action selection and give rise to novelty-related
behavioral variability [26,110].

In the following sections of this article, we provide ev-
idence in primates and rodents for the notion that one of
the functions of the ZI is to regulate novelty seeking and
investigating, even when novelty has no extrinsic reward
value. We then hypothesize how the ZI could also sup-

port context-dependent adaptive behavior, including
various forms of learning, through its connections to the
basal ganglia and to neuromodulators.

Novelty-seeking and investigation in primates
To study circuits of novelty seeking and inspection/
investigation, a recent study designed a paradigm that
presents novel or familiar objects as outcomes,

contingent on gaze shifts. This behavioral procedure
included novelty-seeking trials and novelty-inspecting
trials. In novelty-seeking trials, monkeys could shift
their gaze to a familiar peripheral fractal object to gain
the opportunity to view a novel fractal object (Figure
2a). The task is akin to studies of reward seeking in
which monkeys shift their gaze to obtain reward; how-
ever, here they made gaze shifts to obtain the oppor-

tunity to gaze at novel or familiar objects. The reward
amount, timing, or overall rate were not contingent on
these gaze shifts. Monkeys displayed a strong prefer-
ence to receive the chance to view novel objects versus
familiar objects. They were faster to shift their gaze onto
familiar objects that delivered the opportunities to view
novel objects versus those that delivered other familiar
objects. When given an option to choose among the
opportunity to gaze at a novel object in the future versus
a familiar one, monkeys displayed a significant prefer-
ence for future novelty, indicating that novelty had an

intrinsic value [8].

Many ZI neurons, particularly in the caudal lateral re-
gions above the STN, conveyed information that is
necessary and sufficient to control novelty seeking. One
example of a neuron’s activity is shown in Figure 2b.
This neuron selectively increased its activity in antici-
pation of gaze shifts to obtain novel objects. This se-
lective novelty predicting activation was spatially
selective. It was only observed before gaze shifts to
objects appearing on the contralateral side of the visual

field (see Figure 1 of Ogasawara et al., 2022). And,
during trials in which novel objects appeared in the
periphery, the neuron responded selectively to novel
objects versus familiar objects and anticipated gaze
shifts to inspect these novel objects (Figure 1 of
Ogasawara et al., 2022). Like this ZI neuron, many
neurons recorded in the ZI signaled information that
was well suited to guide novelty seeking and investi-
gating gaze shifts. And, accordingly, pharmacological
disruption of the ZI areas enriched with such novelty-
related neurons disrupted novelty-seeking behavior
(Figure 2b, right panel).

In contrast to what we observed in the ZI, many value
prediction errors-related dopamine neurons did not
signal novelty predictions or respond to novel objects.
We propose that this is the case because novel objects
have no reward value in this task and do not predict
opportunities to learn about upcoming reward. Also, the
basal forebrain, a region that signals surprises about re-
wards and punishments [101,111,112], contains phasic
bursting neurons that do differentiate novel versus
familiar objects with very short latency [101]. These

neurons may play important roles in the rapid deploy-
ment of novelty-investigating behaviors or attention
more generally. However, like dopamine neurons, they
did not convey predictions about future novelty that is
required to guide novelty seeking behavior [8].

Zona incerta in control of novelty seeking and investigation across species Monosov et al. 5
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Figure 2

ZI mediates novelty-related behavior in primates. a. Behavioral conditions to measure the motivation to obtain the opportunity to gaze upon future
novel objects. Two trial types are shown based on Ogasawara et al., 2022. In one, termed novelty-predicting trials, a familiar object predicts the op-
portunity to gaze at a novel object, contingent on a gaze shift. In the second one, termed familiarity-predicting trials, distinct familiar object predicts the
opportunity to gaze at another familiar object. b. Single ZI neuron’s activity shown for novelty-seeking trials. Because the ZI is spatially selective (e.g., it
did not respond selectively when stimuli appeared on the ipsilateral side), here, we show trials in which the objects appeared on the contralateral side
relative to the recording electrode. B-right panel. Inactivation of the ZI reduces novelty-seeking. Each dot is a session. Error bar is SEM. c. Schematic of
novelty seeking in primate brain based on Ogasawara et al., 2022. Anterior ventral temporal cortex signals novelty predictions and detects novel objects
(detection not depicted here). The ZI processes novelty prediction and novelty detection related information, and integrates it with action control variables
(e.g., displaying spatial selectivity for object location and anticipating the time of the gaze shift to the object) to modulate the superior colliculus (SC) which
controls gaze behavior and spatial attention.
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Because of the lack of novelty prediction signals among
reward prediciton error signalling dopamine neurons and
phasic basal forebrain neurons, Ogasawara and colleagues
sought to identify the sources of novelty predictions in
the primate brain. High-channel count recordings
revealed that the anterior ventral medial temporal cortex
(AVMTC)was a prominent source of novelty predictions.
AVMTC includes the anterior medial inferotemporal

cortex and the perirhinal cortex [106], which have
established roles in detecting novel objects, in several
forms of object memory, and in object-to-object associa-
tions [106,113e117]. The new data expanded the role of
AVMTC beyond the detection of novel objects: AVMTC
neurons signaled novelty predictions, and this signal was
observable earlier in AVMTC than in the ZI. Moreover,
the AVMTC did not have motor preparation-related sig-
nals as observed in the ZI, consistent with the idea that
the novelty-prediction signals from AVMTC are inte-
grated with motor plans elsewhere, including promi-

nently in the ZI.

How does AVMTC generate or learn novelty pre-
dictions? While the answer is currently unknown, we
propose that this signal can be generated due to the
association of familiar objects with abstract categories of
novelty and familiarity. That is, in our task, distinct
familiar objects predicted subsequent novel or familiar
objects, and novelty predictions in AVMTC may reflect
this learned object-to-category association.

A final point worth noting is that the caudal ZI receives
diverse inputs from many premotor cortical regions
[62]. Indeed, Ogasawara and colleagues found that
during novelty-seeking actions, other regions known to
be involved in attention and gaze control [118e121]
were recruited, for example, 45b/8v, globus pallidus,
and some neurons in the anterior caudate nucleus.
These regions may form a functional network with the
ZI in support of novelty-seeking gaze behavior.

Novelty-seeking and investigation in mice
A recent study also linked the ZI to novelty seeking in
rodents [26]. Ahmadlou and colleagues studied novelty
seeking while mice displayed innate investigatory be-
haviors. In mice, hunting, foraging, and object investi-
gation overlap in their action sequences (approaching,

sniffing, grabbing, and biting), and most novelty-seeking
studies in mice summarize the investigatory behavior as
the duration of time spent nearby or in interaction with
novel objects (or conspecifics) compared with familiar
objects (or conspecifics), regardless of what actions are
taken. To gain insight into brain mechanisms underlying
novelty seeking in mice, it was essential to study the
precise actions or sequence of actions mice take to
investigate novel objects.

Ahmadlou and colleagues uncovered that mice display

distinct sequences of actions when they interact with

novel objects (or novel conspecifics) compared to the
familiar ones. Mice often leave familiar objects after
sniffing, but when novel objects are presented, they
often continue interacting with them, through biting,
carrying, and grabbing actions (Figure 3a). Therefore,
the level of motivational drive and interest to investigate
novel objects can be characterized by the sequence of
actions taken by the mice: lower motivation leads to only

approaching and sniffing the objects, or shallow investi-
gation, and higher motivation results in the continuation
of the interaction by means of other actions (i.e., biting,
carrying, and grabbing), or deep investigation. These
behavioral differences were then used to link ZI activity
and novelty-related behavioral responses.

Ahmadlou et al. (2021) found that optogenetically
activating ZIm GABAergic neurons in the presence of
novel and familiar objects resulted in a dramatic increase
of behavioral interaction with novel objects. Free-access

rodent choice paradigms were then used to examine the
motivational drive underlying the novel object interac-
tion and dissociate novelty-related interaction from
other types of interactions, for example, hunting (Figure
3b). ZIm activation caused a preference for interaction
with novel objects over food or prey. Moreover, the
activation of ZIm increased the depth of investigation
and the inactivation of ZIm decreased the investigation
depth (Figure 3c). Therefore, the ZI directly modulates
the depth of novelty investigation.

A major input to the ZIm, the mPFC, was similarly
activated during shallow and deep investigation,
suggesting the unique role of ZIm in novelty investi-
gation. Ahmadlou et al. (2021) also found that when
ZIm is activated, its inhibitory inputs are transmitted to
PAG during deep investigation (Figure 3d) suggesting
that the ZIm to PAG circuitry is important for investi-
gatory behaviors in rodents (Figure 3e).

Novelty and reward
Circuits supporting the interaction of novelty-seeking
and reward
We propose that the ZI can play an important role in
behaviors that require the integration of higher order
cortical computation to rapidly control action responses

and new learning (Figure 4). Novelty seeking and
investigation are crucial examples of such behaviors. We
next discuss how this system can interact with neural
circuits involved in reward-driven behavior and reward
value learning.

Available data suggest that many brain areas contain
neurons that are involved in processing both novelty and
reward or value [101,122,123]. Furthermore, many brain
areas linked to reward circuitry in rodents and primates
[2,8,101,113,124e130] are believed to contribute to

different forms of novelty detection and investigation.
Here, we opted to concentrate on one of these brain
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areas e the basal ganglia because it has been widely
investigated in the context of reinforcement learning
theory, linked to object-based action selection and
object-value learning, is involved in processing object
novelty, and is regulated by dopamine e a modulator
with a demonstrable role in action value learning and
motivation [13,110,131e138].

The primate basal ganglia guide eye movements toward

learned or familiar valuable objects and repel eye
movements from behaviorally unimportant objects in at
least several different ways [139], such as, for example,

based on fast and slow timescales of learning within
different regions of the striatum [3]. The ventral pos-
terior striatal neurons could be well suited to mediate
investigational behavior in response to novel and other
motivationally salient or important objects. They
receive inputs from the AVMTC and other temporal
cortical areas [2,136], and robustly discriminate novel
versus familiar objects present in the environment
[8,126] e a signal which can be readily sent to the su-

perior colliculus through the SN pars reticulata [139] to
control gaze shifts and spatial attention [140] to
novel objects.

Figure 3

ZIm mediates novelty-related behavior in mice. a. Mice investigate novel objects by biting, grabbing, and carrying. b. Optogenetic activation of
GABAergic neurons in the ZIm induces deep investigation of novel objects and conspecifics. c. Activation of GABAergic neurons in ZIm increases the
investigation depth, while inactivation decreases the investigation depth. d. Calcium levels in axons from prelimbic cortex (PL) to ZIm increase when mice
start investigating (top). Calcium levels in GABAergic neurons in ZIm increase much more for deep investigation (middle). Calcium levels in axons from
ZIm to PAG increase only for deep investigation (bottom). e. Scheme showing the transformation of the motivation to investigate to deep investigation.
Panels adapted from Ahmadlou et al. (Science, 2021).
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The posterior ventral striatal regions learn the impor-
tance of visual objects relatively slowly, but stably and
encode their importance in a manner that is resistant
to many forms of devaluation or interference, over long
time scales without continuous training [139]. One
hypothesis worth addressing is that the facilitation of
behavioral responses to novel objects through these
striatal areas could take place via a learned stable

representation of object categories and their impor-
tance, which in principle could be triggered by the
AVMTC. This type of representation could be learned
through salience or surprise-driven learning for
example during childhood and stably implemented
throughout life.

The posterior ventral basal ganglia in rodents are also
part of a novelty response circuit [138,141]. The tail of
the striatum in rodents receives a unique dopaminergic

teaching signal, transmitting physical salience
[138,141]. Dopamine release in this area suppresses
engagement with novel objects and predicts responses
to novel objects on a mouse-by-mouse basis [110]. The
fact that the primate posterior ventral basal ganglia may
orient the eyes to novel objects while the rodent pos-
terior ventral basal ganglia may repel mice from them,
does not mean the inherent computations differ. Rather,

a likely explanation is that the two species are optimized
to respond to novelty with different motor programs for
different objectives.

Also, some neurons in relatively anterior regions of the
basal ganglia, in areas involved in predicting future re-
wards and in fast and flexible trial-by-trial reward value
learning, were engaged during actions that resulted in
the availability of future novel objects [8]. This more
anterior area of the basal ganglia may also be involved in

Figure 4

Hypothetical structure of behavioral control over multiple timescales. Sensory systems (top) detect and process ongoing events. These are used to
control fast reflex-like behavior (right) or slower value learning (left). Also, ongoing cortical computations in higher-order areas that process sensory
inputs and internal states can access behavioral control directly and rapidly through the ZI, which acts as a relay and integrator (middle). The organization
of ZI connectivity allows it to provide temporally precise signals, such as about novelty, conveying the timing and location of novelty-seeking actions
(Figure 2). These signals could be simultaneously sent to the brainstem to trigger actions or behavioral states, to dopamine neurons that transmit teaching
signals for reinforcement learning, and to basal ganglia neurons that learn action values from those teaching signals. We propose that this architecture
places ZI in a unique role in action selection and in learning and credit assignment (red arrows).
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novelty seeking and could be a site of the interaction
between trial-by-trial reward value reinforcement
learning and novelty-based behavioral control.

We propose that to reveal how novelty seeking and
value-based motivation interact, the next experiments
must assess the interactions between the ZI and the
distinct regions or compartments of the striatum, as well

as the interaction of the ZI with different groups of
dopamine neurons that send teaching signals to poste-
rior ventral and to anterior striatum, for example, such as
those signaling physical or motivational salience versus
value-based prediction errors [11,138,141,142]. We
discuss this issue further in the following section.

Novelty and value learning
Learning theory describes how agents learn extrinsic
reward values of actions and states to select future ac-
tions to gain more or better rewards and proposes that
agents update action value from RPEs e a comparison
between predicted and received reward. RPEs are
signaled by many medial SN dopamine neurons which

are regulated by the lateral habenula [143]. Recent work
proposed that novelty could increase RPEs when nov-
elty and reward co-occur [144] to boost the exploration
of novel objects. But how this takes place at the level of
algorithm or neural circuit remains unknown. Also, how
to make algorithms that adaptively explore many con-
texts that contain differential and variable levels of
reward and novelty remains a major challenge.

When animals have not yet learned the meaning or
value of novel stimuli, encounters with these stimuli

evoke strong dopaminergic responses in many contexts
[145,146], but a detailed understanding of this novelty-
driven modulation is lacking. For example, it is uncer-
tain if it is additive or gain-like, and the circuit and
computational principles that underlie it are unknown.

Understanding these computations could be funda-
mental for systems neuroscience, artificial intelligence,
and may shed light on broader questions regarding the
architectures of flexible behavior and value learning. As
an example, novelty can be aversive or rewarding or have

no extrinsic value at all, depending on the external and
internal state of the agent. Knowing how the interaction
among novelty computations and valuation occurs to
facilitate adaptive action selection may shed light on the
architectures and algorithms of behavioral flexibility.

We believe an important insight into this question
comes from the observation that many RPE coding
dopamine neurons do not signal novelty prediction
errors when novelty has no extrinsic reward value and
does not predict potential opportunities to learn about

future rewards [8,141]. Together with other data we
have reviewed here, it suggests that the brain has a

capacity to signal signed reward value prediction errors
and information about novelty through different neu-
rons. And, this may be critical for context-dependent
adaptive learning in novel environments. In particular,
the interactions among functionally distinct but
anatomically connected circuitry signalling novelty and
reward predictions may underlie the amazing capacity of
mammals to negotiate many different and variable novel

and rewarding environments, for example, by flexibly
increasing or decreasing the magnitude of RPEs in
response to rewards and novelty in a context-dependent
or internal-state-dependent manner (e.g., during
exploration versus exploitation).

Beyond the possibility that novelty prediction and
detection signals in the ZI can boost or decrease RPEs,
there may be at least one more crucial aspect to the
interaction between dopaminergic basal ganglia systems
and the ZI. To assign credit to actions that result in

future novelty or that investigate novel objects, it would
be convenient for the brain to contain a temporally
precise signal to trigger novelty-driven actions such as
observed in single ZI neurons (Figure 2) and to convey
this signal simultaneously or in some structured manner
to reward prediction and learning circuitry that mediates
action value learning to reinforce future behavior
(Figure 4). To assess whether the ZI can support a hy-
pothetical credit assignment mechanism, it will be
important to understand whether the neurons in the ZI
that signal novelty predictions project to both the

brainstem action controllers as well as to the basal
ganglia and dopamine neurons.

Remarks on future investigations of the
relationship of novelty seeking and other
curiosity-related behaviors
Perceptual novelty seeking is one component, or
dimension, of curiosity which also includes instrumental
and non-instrumental information-seeking behaviors
that aim to reduce uncertainty about future outcomes
[5,147]. Thus far, the relationship of perceptual novelty
seeking/investigation and uncertainty-reducing infor-
mation-seeking remains highly underexplored at the
level of behavior or neural circuits. For this reason, in

this review, we concentrated on novelty seeking but not
on other behaviors that together form curiosity-
related traits.

ZI receives topographically organized, but overlapping,
input from the neocortex along its rostral-caudal
extent. While the caudal ZI has been linked to nov-
elty seeking and receives relatively strong inputs from
motor and sensory-processing areas of the neocortex,
the anterior parts of the ZI receive relatively more
inputs from the anterior cingulate cortex e a region

that plays a key role in deliberative or cognitive
behavior and regulates uncertainty-reducing

10 Systems Neuroscience

Current Opinion in Neurobiology 2022, 77:102650 www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


information seeking [148]. Therefore, it maybe that
novelty seeking and other forms of curiosity are medi-
ated through a gradient in cortical connectivity to
different regions in the ZI via a common architecture
that facilitates the linkage between high-level cogni-
tive computations and action value learning and
behavioral output (Figure 4). Notably, reward uncer-
tainty selectivity e a key signal for information seeking

[5,147] e was observed in relatively more caudal ZI
(Figure S8 in Ref. [8]). One possibility is that this
tendency would increase in more anterior regions of the
ZI which receive more inputs from the ante-
rior cingulate.

In general, to better understand how neural circuits in
the ZI support different forms of curiosity-related
behavior, the next experiments will need to clarify the
functional properties of the inputs to the ZI across a
variety of tasks with circuit and cell-type specificity.
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