305 research outputs found

    Formation of trimetallic compounds containing redox-active nitrosyl molybdenum tris(3,5-dimethylpyrazolyl)-borato groups. Schiff base complexes containing two molybdenum centres linked by <i>meta</i> hydroxy copper schiff base ligands

    Full text link
    The reaction of [Mo(NO)Tp*Cl2] [Tp* = tris(3,5-dimethyl-pyrazolyl)borate] with copper(II) Schiff base complexes derived by condensation of two mole equivalents of 2,4-dihydroxybenzaldehyde with a diamine [1,2-C6H4(NH2)2, NH2(CH2)nNH2, n = 2-5] affords trimetallic species containing three potential redox centres. The IR, UV-vis and EPR spectroscopic properties of these compounds are described and it is shown that, with increasing polymethylene bridges of the Schiff base ligands, the complexes distort from planarity probably towards tetrahedral structures. From cyclic and differential pulse voltammetry it is shown that the trimetallic species primarily undergo two sequential one electron reduction associated with the reduction of [Mo(NO)Tp*Cl]+ centres. By determination of conproportionation constants for the mono-reduced species, it is established that there is very weak interaction between the two [Mo(NO)Tp*Cl]+ centres in the trimetallic complexes. It is also demonstrated that the meta-substituted [Mo(NO)Tp*Cl]+ centres reduce at potentials more anodic than their para-substituted analogues. Reduction potentials of these complexes are also shown to be solvent dependent

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W&lt;sup&gt;0&lt;/sup&gt;(PMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;6&lt;/sub&gt;], [W&lt;sup&gt;II&lt;/sup&gt;Cl&lt;sub&gt;2&lt;/sub&gt;(PMePh&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;4&lt;/sub&gt;], [W&lt;sup&gt;III&lt;/sup&gt;Cl&lt;sub&gt;2&lt;/sub&gt;(dppe)&lt;sub&gt;2&lt;/sub&gt;][PF&lt;sub&gt;6&lt;/sub&gt;] (dppe = 1,2-bis(diphenylphosphino)ethane), [W&lt;sup&gt;IV&lt;/sup&gt;Cl&lt;sub&gt;4&lt;/sub&gt;(PMePh&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;], [W&lt;sup&gt;V&lt;/sup&gt;(NPh)Cl&lt;sub&gt;3&lt;/sub&gt;(PMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;], and [W&lt;sup&gt;VI&lt;/sup&gt;Cl&lt;sub&gt;6&lt;/sub&gt;] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L&lt;sub&gt;3,2&lt;/sub&gt;-edges and the L&lt;sub&gt;1&lt;/sub&gt; rising-edge energy with metal Z&lt;sub&gt;eff&lt;/sub&gt;, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W&lt;sup&gt;IV&lt;/sup&gt;(mdt)&lt;sub&gt;2&lt;/sub&gt;(CO)&lt;sub&gt;2&lt;/sub&gt;] and [W&lt;sup&gt;IV&lt;/sup&gt;(mdt)&lt;sub&gt;2&lt;/sub&gt;(CN)&lt;sub&gt;2&lt;/sub&gt;]&lt;sup&gt;2–&lt;/sup&gt; (mdt&lt;sup&gt;2–&lt;/sup&gt; = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W&lt;sup&gt;IV&lt;/sup&gt; species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z&lt;sub&gt;eff&lt;/sub&gt; in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z&lt;sub&gt;eff&lt;/sub&gt; or, as in the case of [W&lt;sup&gt;IV&lt;/sup&gt;(mdt)&lt;sub&gt;2&lt;/sub&gt;(CO)&lt;sub&gt;2&lt;/sub&gt;], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    Zds2p Regulates Swe1p-dependent Polarized Cell Growth in Saccharomyces cerevisiae via a Novel Cdc55p Interaction Domain

    Get PDF
    A C-terminal region in Zds2p (ZH4) is required for regulation of Swe1p-dependent polarized cell growth and this region is necessary and sufficient for interaction with protein phosphatase 2A regulatory subunit, Cdc55p. Our results indicate that the Zds proteins regulate the Swe1p-dependent G2/M checkpoint in a CDC55-dependent manner

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described

    Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14

    Get PDF
    The modified nucleosides N2-methylguanosine and N22-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m2G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m2G at position 6 in tRNACys. The 381 amino acid Trm14 protein possesses a canonical RNA recognition THUMP domain at the amino terminus, followed by a γ-class Rossmann fold amino-methyltransferase catalytic domain featuring the signature NPPY active site motif. Trm14 is associated with cluster of orthologous groups (COG) 0116, and most closely resembles the m2G10 tRNA methylase Trm11. Phylogenetic analysis reveals a canonical archaeal/bacterial evolutionary separation with 20–30% sequence identities between the two branches, but it is likely that the detailed functions of COG 0116 enzymes differ between the archaeal and bacterial domains. In the archaeal branch, the protein is found exclusively in thermophiles. More distantly related Trm14 homologs were also identified in eukaryotes known to possess the m2G6 tRNA modification
    corecore