172 research outputs found
Determination of Arsenic, Mercury and Barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry
A dynamic ultrasound-assisted extraction method using Atomic Absorption and Atomic Flourescence spectrometers as detectors was developed to analyse mercury, arsenic and barium from herbarium mount paper originating from the herbarium collection of the National Museum of Wales. The variables influencing extraction were optimised by a multivariate approach. The optimal conditions were found to be 1% HNO3 extractant solution used at a flow rate of 1 mL min-1. The duty cycle and amplitude of the ultrasonic probe was found to be 50% in both cases with an ultrasound power of 400 W. The optimal distance between the probe and the top face of the extraction chamber was found to be 0 cm. Under these conditions the time required for complete extraction of the three analytes was 25 min. Cold vapour and hydride generation coupled to atomic fluorescence spectrometry was utilized to determine mercury and arsenic, respectively. The chemical and instrumental conditions were optimized to provide detection limits of 0.01ng g-1 and 1.25 ng g-1 for mercury and arsenic, respectively. Barium was determined by graphite-furnace atomic absorption spectrometry, with a detection limit of 25 ng g-1. By using 0.5 g of sample, the concentrations of the target analytes varied for the different types of paper and ranged between 0.4â2.55 ”g g-1 for Ba, 0.035â10.47 ”g g-1 for As and 0.0046â2.37 ”g g-1 for Hg
Resonant laser tunnelling
We propose an experiment involving a gaussian laser tunneling through a twin
barrier dielectric structure. Of particular interest are the conditions upon
the incident angle for resonance to occur. We provide some numerical
calculations for a particular choice of laser wave length and dielectric
refractive index which confirm our expectations.Comment: 15 pages, 6 figure
Surface circulation in the Liguro-Provençal basin as measured by satellite-tracked drifters (2007-2009)
The surface circulation in the Liguro-Provençal basin (Northwestern Mediterranean)
is studied using satellite-tracked drifters in 2007-2009. Complex circulation patterns
prevailed in the eastern Ligurian Sea, before the drifters eventually joined the
Northern Current (NC) in the coastal area off Genoa. Between 5°E and 7°E30â, most
drifters were advected offshore before heading to the east and eventually closing a
basin-wide cyclonic circulation. This offshore turning is related to the wind and wind
stress curl during Mistral events. Although the Western Corsican Current was well
delineated by the drifters, no signature of the Eastern Corsican Current was shown,
indicating limited connectivity between the Tyrrhenian and Ligurian seas in summer
2007. Pseudo-Eulerian velocity statistics were calculated in the coastal region
extending between Genoa and the Gulf of Lyons. Fast currents are evident on the
shelf break, especially off Imperia (maximum of 90 cm/s) where the bathymetric
slope is larger and the NC is closer to shore and narrower. In contrast, a stagnation
area inshore of the NC near Fréjus is characterized by little mean flow and low
velocity fluctuations. Mean currents are also reduced off Menton-Nice where the
variability is maximum. More to the west, the NC broadens and slightly reduces in
strength
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
Violation of multi-particle Bell inequalities for low and high flux parametric amplification using both vacuum and entangled input states
We show how polarisation measurements on the output fields generated by
parametric down conversion will reveal a violation of multi-particle Bell
inequalities, in the regime of both low and high output intensity. In this case
each spatially separated system, upon which a measurement is performed, is
comprised of more than one particle. In view of the formal analogy with spin
systems, the proposal provides an opportunity to test the predictions of
quantum mechanics for spatially separated higher spin states. Here the quantum
behaviour possible even where measurements are performed on systems of large
quantum (particle) number may be demonstrated. Our proposal applies to both
vacuum-state signal and idler inputs, and also to the quantum-injected
parametric amplifier as studied by De Martini et al. The effect of detector
inefficiencies is included.Comment: 12 pages, 12 figure
Health Status After Cancer: Does It Matter Which Hospital You Belong To?
Background
Survival rates are widely used to compare the quality of cancer care. However, the extent to which cancer survivors regain full physical or cognitive functioning is not captured by this statistic. To address this concern we introduce post-diagnosis employment as a supplemental measure of the quality of cancer care.
Methods
This study is based on individual level data from the Norwegian Cancer Registry (n = 46,720) linked with data on labor market outcomes and socioeconomic status from Statistics Norway. We study variation across Norwegian hospital catchment areas (n = 55) with respect to survival and employment five years after cancer diagnosis. To handle the selection problem, we exploit the fact that cancer patients in Norway (until 2001) have been allocated to local hospitals based on their place of residence.
Results
We document substantial differences across catchment areas with respect to patients' post-diagnosis employment rates. Conventional quality indicators based on survival rates indicate smaller differences. The two sets of indicators are only moderately correlated.
Conclusions
This analysis shows that indicators based on survival and post-diagnosis employment may capture different parts of the health status distribution, and that using only one of them to capture quality of care may be insufficient
A stochastic local search algorithm with adaptive acceptance for high-school timetabling
Automating high school timetabling is a challenging task. This problem is a well known hard computational problem which has been of interest to practitioners as well as researchers. High schools need to timetable their regular activities once per year, or even more frequently. The exact solvers might fail to find a solution for a given instance of the problem. A selection hyper-heuristic can be defined as an easy-to-implement, easy-to-maintain and effective 'heuristic to choose heuristics' to solve such computationally hard problems. This paper describes the approach of the team hyper-heuristic search strategies and timetabling (HySST) to high school timetabling which competed in all three rounds of the third international timetabling competition. HySST generated the best new solutions for three given instances in Round 1 and gained the second place in Rounds 2 and 3. It achieved this by using a fairly standard stochastic search method but significantly enhanced by a selection hyper-heuristic with an adaptive acceptance mechanism. © 2014 Springer Science+Business Media New York
White matter integrity in hospitalized COVID-19 patients is not associated with short- and long-term clinical outcomes
Objectives: SARS-CoV-2 infection is associated with a decline in functional outcomes; many patients experience persistent symptoms, while the underlying pathophysiology remains unclear. This study investigated white matter (WM) integrity on brain MRI in hospitalized COVID-19 patients and its associations with clinical outcomes, including long COVID. Materials and methods: We included hospitalized COVID-19 patients and controls from CORONavirus and Ischemic Stroke (CORONIS), an observational cohort study, who underwent MRI-DWI imaging at baseline shortly after discharge (<3 months after positive PCR) and 3 months after baseline scanning. We assessed WM integrity using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) and performed comparisons between groups and within patients. Clinical assessment was conducted at 3 and 12 months with functional outcomes such as modified Rankin Scale (mRS), Post-COVID-19 Functional Status scale (PCFS), Visual Analogue Scale (VAS), and long COVID, cognitive assessment was conducted by the Modified Telephone Interview for Cognitive Status (TICS-M), and the Hospital Anxiety and Depression Scale (HADS) was used to assess mood disorder. Associations between WM integrity and clinical outcomes were evaluated using logistic regression and linear regression. Results: A total of 49 patients (mean age 59.5 years) showed higher overall peak width of skeletonized mean diffusivity (PSMD) (p = 0.030) and lower neurite density index (NDI) in several WM regions compared with 25 controls at the baseline (p < 0.05; FWE-corrected) but did not remain statistically significant after adjusting for WM hyperintensities. Orientation dispersion index (ODI) increased after 3-month follow-up in several WM regions within patients (p < 0.05), which remained significant after correction for changes in WMH volume. Patients exhibited worse clinical outcomes compared with controls. Low NDI at baseline was associated with worse performance on the Post-COVID-19 Functional Status scale after 12 months (p = 0.018). Conclusion: After adjusting for WMH, hospitalized COVID-19 patients no longer exhibited lower WM integrity compared with controls. WM integrity was generally not associated with clinical assessments as measured shortly after discharge, suggesting that factors other than underlying WM integrity play a role in worse clinical outcomes or long COVID
- âŠ