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Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using
both vacuum and entangled input states
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We show how polarization measurements on the output fields generated by parametric down conversion will
reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this
case, each spatially separated system, upon which a measurement is performed, is comprised of more than one
particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the
predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior pos-
sible even where measurements are performed on systems of large qypattiole number may be dem-
onstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected
parametric amplifier as studied by De Martigi al. The effect of detector inefficiencies is included, and
weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with
auxiliary assumptions for the multiparticle situation.
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I. INTRODUCTION Greenberger-Horne-Zeilinger effeld]), have so far prima-
rily been confined to the most microscopic of systems, where
There is increasing evidence for the failure of “local re- each measurement is made on a system comprising only one
alism” as defined originally by Einstein, Podolsky, and particle. There has been very recent interest by Weinfurter
Rosen[1], Bohm [2] and Bell, Clauser and Shimony, and and Zukowski15] in devising and, by Lamas-Linares al.
Greenberge[3-5]. For certain correlated quantum systems,[16], in realizing, strategies to test local realism for multipar-
Einstein, Podolsky, and Ros€éBPR) argued in their famous ticle situations.
1935 EPR paradox that “local realism” is sufficient to imply A predicted incompatibility of quantum mechanics with
that the results of measurements are predetermined. Thekeal hidden variable theories for systems of potentially more
predetermined “hidden variables” exist to describe the valuethan one particle per detector came with the work of Mermin
of a physical variable, whether or not the measurement i§17], Garg and Mermirj17], and Mermin and Schwai4.8]
performed, and as such are not part of a quantum descriptiomho showed violations of Bell inequalities to be possible for
Bell later showed that the predictions of quantum mechanica pair of spatially separated higher-spiparticles, wherg
for certain ideal quantum states could not be compatible witttan be arbitrarily large. The violation of a Bell inequality for
such local hidden variable theories. It is now widely ac-multiphoton macroscopic systems was put forward by Drum-
cepted therefore, as a result of Bell's theorem and relatechond[19]. Such manifestations of irrefutably quantum be-
experimentg 6], that local realism must be rejected. havior are contradictory to the notion that classical behavior
Recently three-photon states demonstrating a contradids obtained in the limit where the quantum numbers, or par-
tion of quantum mechanics with local hidden variables haveicle numbers, become large. The work of Pef2§] has
been generatef®]. A multiparticle entanglement involving shown how the transition to classical behaviocal realism
four trapped ions has also been recently realized by Sacket obtained through measurements that become increasingly
et al. [7], and for atoms and photons in cavities by Raus-fuzzy. To observe the failure of local realism it is generally
chenbeutelet al. [8]. These experiments involve measure-necessary to perform measurements sufficiently accurate so
ments performed on separated subsystems that are micras to resolve the j2+1 eigenvalues. The contradiction of
scopic. Recently, the EPR paradox, itself a demonstration ajuantum mechanics with local realism for multiparticle or
entanglement, has been realized where each measuremenhigher-spin systems has since been explored theoretically in
performed on a macroscopic system. Such experiments weeenumber of work$21—24].
performed initially by Ouet al. [10] using intracavity para- In this paper we present a proposal to test for multiphoton
metric oscillation below threshold, and have now beenviolations of local realism, by way of a violation of a Bell
achieved for intense fields using parametric oscillation abovénequality, using parametric down conversion. Our proposal
threshold by Zhangt al. [11], and for pulsed fields by Sil- involves a four-mode parametric interaction, considered ini-
berhornet al.[12]. There have been further theoretical pro- tially by Reid and Wall§25] and Horneet al. [25], as may
posals to demonstrate the macroscopic nature of EPR corrbe generated for example using two parametric amplifiers, or
lations [13,14]. However experimental efforts using clearly using two competing parametric processes. Such parametric
spatially separated systems, testing local realism directlinteractions were used to demonstrate experimentally viola-
through a violation of a Bell-type inequalitgpr through the tions of a Bell-type inequalityfor the single photon cagéy
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Rarity and Tapstef25], and there has been further experi-  "spin” measurement "spin” measurement

mental work[25,6]. While initially we consider vacuum in- \ A quantum state B /

puts with two parametric amplifiers, our proposal is also for- m E P/ b E ,

mulated for the specific configuration of the quantum - 2 ! d. m

injected parametric amplifigi26]. Here “multiparticle Bell lo>

inequalities” refer to Bell-inequality tests applying to situa-  k & az b2 d- K
T

tions where each measurement is performed on a system of
more than one particle. In our proposal the measurement is FIG. 1. Schematic diagram of the experimental arrangement to
of the number of particles polarized “up” minus the number test the Bell inequality. Heren, k, and m’'k’ are the results of
of particles polarized “down.” Because of the formal anal- measurement otlc,, c'c_, dld,, andd"d_, respectively.
ogy to a pair of spirj particles, our proposal allows a test of Binary outcomest-1 and—1 are defined and we measure joint and
the predictions of quantum mechanics for the higher-spirinarginal probabilitiesP%% (6,¢), P2 (6), andP%(¢) for obtain-
states. ing +1.

We will focus on two regimes of experimental operation. )
The first corresponds to relatively low interaction strength sdocation A are denoted by the boson operatagsand ay,
that the mean signal/idler output is small and we have lowvhile the two modes at locatioB, spatially separated from
incident photon numbers on polarizers which serve as thé. are denoted by the boson operatbisand b,. One can
measurement apparatus. Here it is shown how certain me&€asure ai the photon numbers!c, andc’c_; and
sured probabilities of detection of preciselyphotons trans- similarly at B one can measure, simultaneously, the photon
mitted through the polarizer can violate local realism, andnumbersd’ d, andd’d_, where
represent a test of the established higher-spin results. Previ-

ous calculation$24] of this type were primarily confined to C,=a, cosf+aysind,

situations of extremely low-detection efficiency. Here the re- )

sults are presented for higher efficiencies more compatible C_=—a;sinf+a,coso,

with current experimental proposals. The effect of detection _

efficiencies is calculated artb also provide an experimen- d.=b; cos¢+b,sing,

tal avenue where detection efficiencies are not sufficient to )

allow a test of the original stronger no “loophole” Bell in- d_=—Db;sing+b,cose. 1)

equality we consider a weaker Bell-Clauser-Hor(®ell-

CH) inequality as applied to the multiparticle situation. These measurements may be mE@|2s] with the use of two

Our second regime of interest is that of higher outputS€tS Of polarizers, to produce the transformed fieidsand
signal/idler intensity, where many photons fall incident ond-+: followed by fhotodeteTctors @ andB to determine the
the measurement apparatus. We present a proposal for a viBoton numbers_. ¢, andd. d, , respectively. We note that
lation of a Bell inequality, where one measures the probabil€aCh measurement &t corresponds to a certain choice of
ity of a range of intensity output through the polarizer. TheParameter. Similarly a measurement & corresponds to a
application of Bell inequality theorems, and the effect ofcertain choice ot. In our final proposal, the fields, andb;,
detection inefficiencies on the violations predicted, to situaWill be the correlated signal/idler outputs of a single para-
tions where many photons fall on a detector is relevant to théetric amplifier with HamiltonianH=i#g(ajb]—asb,),
question of whether or not tests of local realism can be conwhile a, andb, are the outputs of a second parametric am-
ducted in the experiments such as those performed bplifier with HamiltonianH =i%g(aib}—asb,).

Smitheyet al.[27]. In the Smitheyet al. experiment, corre- Let us denote the outcome of the photon number measure-
lation of the photon number between two spatially separatechentsc’c, , c'c_, d'd, , andd"d_ asm, k, m’, andk’,

but very intense fields is sufficient to give “squeezed” noiserespectively. We will classify the result of our measurements
levels. Previous studies by Banaszek and WodkieWasi made at each of andB as one of two possible outcomes.
have demonstrated violations of Bell inequalities to be posFor certain outcomes andk at A we will assign the value
sible for certain measurements for the signal/idler outputs of- 1. (This choice of outcomes will be specified latedth-

the parametric amplifier. In these high-flux experiments, deerwise our result is- 1. Similarly atB, certain valuesn’ and
tection losses can be relatively small on a percentage basig, are classified as resuft 1, while all other outcomes are
as compared to traditional Bell inequality experiments in-designated- 1. This binary classification of the results of the
volving photon counting with low-incident photon numbers. measurement is chosen to allow an easy application of Bell's
The exact sensitivity of the violations to loss determines theheorem.

feasibility of a multiparticle, no-loophole violation of a Bell To establish Bell's result, one considers joint measure-
inequality. ments where the photon numberdc,, c'c_, and
dﬂd+ ., d’d_ are measured simultaneously at the spatially
separated location& and B, respectively. A joint measure-
ment will give one of four outcomest+1 or —1 for each
particle. By performing many such measurements over an

We consider a general situation as depicted in Fig. 1 oknsemble, one can experimentally determine the following:
two pairs of spatially separated fields. The two modes aPﬁ(ﬁ, ¢) the probability of obtaining+1 for particle A

II. DERIVATION OF MULTIPARTICLE BELL
INEQUALITIES
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and+1 for particleB upon simultaneous measurement with where the boson operatoes anda, are as in Sec. Il and

9 at A and ¢ at B: F”i(ﬁ) the marginal probability for F|g..1. This state was presented, gnd shown to violate local
realism where each measurement is performed on systems of

N particles(where N can be macroscopicby Drummond

[19]. We introduce the Schwinger spin operators

obtaining the result-1 upon measurement with at A; and
P2 () the marginal probability of obtaining the resuitl
upon measurement witth at B.

Assuming a general local hidden variable theory then, we Sh=(a,ab+alay)/2,
can write the measured probabilities as follows:

S)=(a,a}—aja,)/2i,

PA<0)=f (VP2 (8,N)dN. 2
' PP Si=(aja,~ajay)/2,
The probability of obtaining “1” for B is SB=(bybl+ blb,)/2
B__ T T ;
PE<¢):fp(x)pE<¢,x>dx. 3 Sy =(babz—bsb,)/2i,
SP=(bjb,—blby)/2. (7)

The joint probability for obtaining “+1” for both of two
simultaneous measurements withat A and ¢ at B is The photon number difference measurements at each detec-
tor corresponds in this formalism to a measurement of the

PA%.(0.)= f pOOPA(6M)PS(N)dN. (4 SPINcomponent
si26)=(ctc,—clc )2,
Here, 6 and ¢ denote the choice of measurement at the lo-
cationsA andB, respectively. The independencemf(6,\) Sb(2¢)=(dld, —d d_)2, €]

on ¢, andp? (¢,\) on 6, follows from the locality assump- _ ) A
tion. The measurement madeBatannot instantaneously in- 2S determined by the polarizer angleor ¢. Here, S, (26)

fluence the system & =S) cos ¥+ sin 20 and SZB(Z_¢) =S2 cos 2p+ S sin 2.
It is well known [3,4] that one can derive the following The quantum staté) can be written as
“strong” Bell-Clauser-Horne inequality from the assump- +j
tions of local realism made so far: lon) = D 17, alj,m) 9
Vs AT

PR (0,¢)—PIE.(6,")+PLA(0',¢) +PR(6.4") , _ | N
S= P (6))+ P (d) where|j,m), and|j,m)g are the eigenstates & ,S.', and
+ + S2,S2, respectively, and=N/2. The singlet state

<1. 5)

+]
For situations that we consider in this paper of more than two lon) = (2j + 1)1/;“21. (="M, m)alj,—m)e (10
outcomes, it is pointed out that other more general forms of
Bell inequalities are also possible, and the study of the viostudied by previous authors is obtained upon substituiing
lation of these generalized inequalitigl,22 would be in- with —a,, and interchangingy;, andb, in the definitions of
teresting. For our purposes, in this paper, the use of the tras? S8, ands? . The predictions as given in this paper of the

ditional Bell-CH inequality, as presented originally[it9], is quantum staté6) with measurementé?) and (8) using par-
sufficient to demonstrate that violations are possible for mulyjcy1ar 9 and & will be identical to the predictions of the

tiparticle systems. singlet state(10) above with measurementg) and (8) but
replacing¢ and 6 with ¢y, and s, where 2pgpin=24¢
IIl. MULTIPARTICLE “SPIN” STATE VIOLATING BELL + 7 and ﬂspin= —6.
INEQUALITIES For the purpose of our particular experimental proposal

. o . we first demonstrate the failure of multiparticle local realism
Bell inequality violations have been proposed prewouslyfor the N states(6) as follows. We choose the following

for macroscopic or multiparticle statgs7—-20,22,24 Previ- binary classification of outcomes. If the resmitof the pho-

ous studies by Mermin, Peres, and others have consider%in number measuremeai ¢, is greater than or equal to a
violations by states of arbitrary spip There is a formal 159 q

equivalence by way of the Schwinger representation té:ertamfractlon‘ of the total photon numben+k detected at

bosonic states dfl=2j photons[24]. For example, we con- ?,hthentwe havfe the resuit 1, Otth(irtvr\]nsle Ogé(;es?lt 'S.f.l'd
sider the followingN particle state: e outcome of a measurement at the locaBaa classifie

as +1 or —1 in a similar manner. Violations of the Bell

inequality (5) are found for a range of parameters as illus-

lop) = —————— aIbI+a£bZ)N|O)|0>, (6) trated in Fig. 2. Here we have selected the following relation
NI(N+1)Y? between the anglesp— 0=60'—p=¢'—6'=y andp'— 6
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1.25 inequality of the typd5) has not yet been violatdd] in any
experiment involving photodetection, because of the detec-
1.20 tion inefficiencies which occur in photon counting experi-
ments, although recent experiments by Ratel. [6] vio-
S L1154 late a true Bell inequality for trapped ions, with limited
’ spatial separation.
It is well documented3,4] that it is possible to derive,
1.104 with the assumption of additional premises, a weaker form of
the Bell-Clauser-Horne inequalities which have been vio-
1.05 4 lated in single photon counting experiments. Before proceed-
ing to derive a “weak” Bell inequality for multiparticle de-
1.00 tection, we outline the effect of detection inefficiencies on
0 the violation, as shown in Fig. 2, of the strong Bell inequality

N (5).
We introduce a transmission paramelerdefining T as
FIG. 2. Plot of S showing violation of the Bell inequality5)  the probability that a single incoming photon will be de-
[and Eq.(16)] versusN for the quantum stat), using the arrange-  tected, the intensity of the incoming field being reduced by
ment depicted in Fig. 1. Our outcome Atis designatedt 1 if m  the factorT. T is directly related to the detector efficiengy
ZfN, and+1 for B if m’?fN, Whel’ef iS a preselected fl’aCtion. accordlng toT: 7]2. We model IOSS |n the Standard Way by
The results are optimized with respect to the ai‘@'as defined in  ¢onsidering the measured field to be the transmitted output of
the text. .A violation is obtained whe®>1. F_orf—l, the optimal an imaginary beam splitter with the input being the actual
angle ¢ is 0.39,3.4,0.22,0.19, and 3.1 fb=1,2,3,4, and 80 re- qguantum field incident on the detector. The second input to
spectively. Results for values 6f 0.5—x are identical to those for the imaginary beam splitter is a vacuum field. Calculating
F=0.5+x. the probabilities of this measured field is equivalent to using

—3y. This combination has been shown to be optimal for thestandard photocounting formulas which incorporate detec-

casesN=1 [3,4] and for allN values withf=1 [19]. tion |neff|C|en_C|es. . . i

It is pointed out that other Bell-type inequality tests with The f°”°W'”9 e3<preSS|on gives the final me,as}”ed prob-
multivalued outputs are possibl@8,21,23. Our particular ability P(m,k,m ’Ifr) for oTbtammg reskjltsn,k,mT,k upon
classification in terms of binary events has been chosen inmeasyrement otic,, c,c’, ’ ’ar.ld did,, d.d-, re-.
tially since thef =1 case corresponds to the choice presentedPectively. Hered®o(mg, ko, Mg, ko) is the quantum probabil-
originally [19] which is known to give a strong violation ity for obtainingmg,kq,mg,K, photons, upon measurement
even for high-particle number, and which would seem of cic., clc_, anddid,, d'd_, in the absence of
feasible for moderatd\ values. The violation of the Bell detection losses. This quantum probability is derivable from
inequality (5) is in fact greatest fof =1, where our result Ed. (6):

+1 atA, for example, corresponds to detectinghbhotons -

in the c;, mode. While this value of gives the strongest 't m+k+m' +k’ r+q+s+t
S - A P(mk,m" k")=T 1-T)rrars

violation, the actual probability of the-1 event in this case ( ) r,quo ( )
becomes increasingly small &kincreases especially if de- ) )

tection inefficiencies are to be included as in later calcula- xcrrregtacy eel

tions. From this point of view, to look for the most feasible
macroscopic experiment, the violations with redudelle-
come important.

We see that the magnitude of violation decreases wit
increasingf, so that the asymptotic value &=0.5 is 1,

XPo(m+r,k+q,m +sk’+t). (11

H—|ere,C{“”=(m+r)!/r!m!, andr,q,s,t represent the num-
ber of photons lost. We also consider the measured marginal

meaning that the violation is lost. This case is interestingDrObab'"ty’

since the outcomes here are binned to give two binary out- o

comes that are, in the limit o large, effectively macro- PA(mM,k)=T™k D (1—T)"*acm+rckta
. - .. L ' ~ r q

scopically distinct. This is so because the probability of r.g=0

achieving a result of approximately equal photon numbers
(m=~k, m’'~k’') becomes negligible. In this limit of a
truly macroscopic experiment with macroscopically distinct
outcomes, the violation of the Bell inequality is lost.

X Po(mM+r,k+q), (12)

where Pg(m+r,k+q) represents the quantum probability
for obtaining my,k, photons upon measurement of c,
andc’ c_ in the absence of detection losses. This marginal
guantum probability is derivable from Ep).
With loss present there is a distinction between our actual
The effect of loss through detection inefficiency is impor- quantum photon numben, present on the detectors, and the
tant, since this limits the experimental feasibility of a test offinal readout photon numban, which is taken to be the
the Bell inequality. To date to our knowledge the “strong” result of the photon number measuremdhie must have

IV. EFFECT OF DETECTION INEFFICIENCIES:
DERIVATION OF A WEAKER BELL INEQUALITY
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m=my). Therefore a number of quantum probabilities will p?_((ﬁ,)\)gp?_(—,)\)_ (15)
contribute in the calculation for the final measured probabil-

ity. This complicating effect may be avoided in the following
manner. The outcome &tis labeled+1 only if m=fN and
m+k=N; and atB if m’=fN andm’+k’=N. For N pho-
tons detected at each locatiéror B, we are restricted to the
outcomes satisfyingn+k=m’+k’=N where loss has not
occurred, for the given initial quantum staftey). In this
situation we get for the measured probabiliti@4)

Using the procedure and theorems of the previous works of
Clauser and Hornp4] one may derive from the postulate of
local hidden variables and assumpti¢hb) the following
“weak” Clauser-Horne-Bell inequality, where the marginals
are replaced by “one-sided” joint probabilities. Violation of
this “weaker” Bell-CH inequality will only eliminate local
hidden variable theories satisfying the auxiliafyno en-

P(m,N—m.m’ ,N— m’)=T2NPQ(m,N MM N—m) hancement) assumption(15).

(13)

_PRE(6.9)- P (0.¢)+PIR(0', )+ PIE(0',¢)
PLS(0",—)+PLE(—. )

PA(m,N—m)=TNPG(m,N—m). (14) <1. (16)

and for the marginal

Here, Po(m, N—m, m’, N-m’) is the quantum

probability (in the absence of logsthat measurement of
+

Here we have defined “one-sided” experimental joint prob-
.DAB (g1 _\ i . i
clc, and d1d+, for the statelgy) of Eq. (6), will give abilities as follows:P% 7. (6',—) is the joint probability of

resultsm andm’, respectively. This quantum probability is CP{inNing+1 atA, with the polarizer af set atd', and of

’ ' . N) obtaining a total o’ +k’=N photons aB. The joint prob-
calculated ,from the quantur? amplitudesCy, o apility PAB (—, ) is the probability of obtaining a total of
=T<¢N|m>9|m )¢, Where[m),, [m’), are eigenstates of 1\ k—N photons a, and of obtaining+ 1 atB, with the
c.c. andd.d,, respectively, and is given byo(m, N pojarizer atB set ate.

N . . . cpes
-m, m, N—m')=|Cfn}n/|2- The quantum marginal For the situation where the detected probabilities are
for [oy) is Po(MN-—m)=31,_ |c™ |2, taken to be the quantum probabilities calculated directly

The crucial effect of detection losses is that each meaffom Eqg. (6), so that we are ignoring additional losses and
sured joint probability contains the fact®?N where 2N is  noise which may come from the detection and measurement
the total number of photonsi+k+m’ +k’ detected. This Process, we have the same result for the weak and strong
implies immediately extreme sensitivity of the multiparticle inequalities(5) and (16).
strong Bell inequality(5) to loss, since this inequality in- Now to consider detection losses, we notice that the det-
volves the marginal which scales &8. In the presence of fimental effect of theT-scaling apparent in Eq11) is re-
loss T, the predicted value fo [required to test the strong Moved by considering the weaker inequality, in which the
Bell inequality(5)] is TNS, whereS, is the value “S”for g, ~ Marginal is replgced by the one-sujed joint prqpa}b|l|ty. The
in the absence of loss as given graphically in Fig. 2. It is seefluantum predictions for the one-sided probabilities are for
then that we requir@ to be ~(1/Sy) ™ or larger in order to ~ €xample
obtain the violations of the no loophole inequaliti&s. For

N=2S,=1.18, and this requires at leabt> /1/1.18=0.92. AB N N
This figure is at the limits of current technology, and com- ~ P%3(8",—)= > X P(mN-mm’ N-m)
pares with the requiremefit>0.83 forN=1. M= m’=o

We now derive a multiparticle form of the weaker in- =T2NPg(m,N—m), 17

equality so that we can also examine situations of significant
detection loss. The result dtis +1 if the number of pho-

. . . 2N B
tonsm detected at . is fN or more, and if the total number which we see from Eq(13) is proportional toT™". Noting

- that Po(m,N—m) is precisely the quantum marginal prob-

Sf .phot/?ns m_+kh detekc)tegl_ athh' satisfies _m+kh ability used in the strong inequality, we see that our predic-
__N' p+(¢_9,7\) Is the proba ity of t 1S event given _t € tions then for the violation of the weak inequality for the

hidden variable descriptiorh. We define a propablllty, state (6) are as shown for the strong inequality in Fig. 2
A(—,\), that the total photon numben+k (at locationA) : N

P(—.A), photc _ _ [meaning that the value f&,, of Eq.(16) being given by the

is N, given that the system is described by the hidden variyg|ye ofS as shown in Fig. P

dent of thE? choice of polarizer angkeat A. Similarly we  sjtuation where detection situations are present, but where

define ap>(—,\), the probability that the total number of we use as the input the quantum stég our apparatus is as

photonsm’ +k" at B is N. This total probability is then as- depicted in Fig. 1. We classify our outcome to bd atA if

sumed to be independent of the polarizer anglat B. We ~ m=f{N and alsom+k=N; and+1 atBif m’=fN and also

postulate as an additional premise that the hidden variablg’ + k' =N. A violation of the no-loophole Bell inequality

theories will satisfy (5) is possible only for high-detector efficienci€s: 5?. Vio-
A A lations of the weak inequalit§16) (which involves an addi-
Py (O,N)=<py(—,N), tional auxiliary assumption and therefore admits a loophole
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100

P(N) P(N)

050

0.25 4

FIG. 4. Plot of P(N)=|cy|? the probability that a total oN
photons will be detected at each polarizer location, for the en-
tangled state input.

FIG. 3. Plot of P(N)=|cy|? the probability that a total oN
photons will be detected at each polarizer location.

however are still predicted, even with significant detectorrhe effect of asymmetric absorption on each mode will be to
loss, the predictions being as given by Fig. 2, but replaing degrade the violation of the strong Bell inequalities, though

with Sy . we would expect the violation of the weaker Bell-CH in-
equalities to be less affected.
V. PROPOSED EXPERIMENT TO DETECT VIOLATION Of interest to us is the parametric output with the follow-
OF MULTIPARTICLE BELL INEQUALITY USING ing polarization-entangled state as input:

PARAMETRIC DOWN-CONVERSION WITH AND
WITHOUT ENTANGLED INPUTS

1
|‘P>in:T(|1>a1|l>b1|0>a2|0>b2+|0>a1|0>b1|1>a2|1>b2)-
The prediction by quantum mechanics of the violation of 2
a Bell inequality for the largeiN states(6) has not been (20

tested experimentally. For this reason we investigate NOWjs represents an example of the quantum-injected optical
one may _achleve related ylolat|on§ of Bell inequalities Usingarametric amplifier realized experimentally by De Martini
parametric down-conversion. Previous woB4] has shown o 5 126]. The active nonlinear medium realizing the inter-
how_such V|0Ia_1t|ons are pos_sq:)le in th_e regime of low amp"'action(lS) was a 2 mm BBQObeta-barium-borajenonlinear
fication, but this work was limited to situations of very low- crystal slab excited by a pulsed optical UV beam with wave-
detection efficiencies. _ _length \,=345 nm. The duration of each UV excitation
We model the parametric down conversion by the Hamil, ;qe5 was 150 f sec and the average UV power was 0.3 W.
tonian The UV beam was second-harmonic generation generated by
a mode-locked femtosecond Ti:Sa lag@oherent MIRA
optionally amplified by a high-power Ti:Sa regenerative am-
lifier (Coherent REGA9000 The pulse repetition rate was
6.1¢ and 3.18 Hz, respectively, in absence and in pres-

H=ifg(albl+alb))—ifg(ab;+ab,). (18

Here, we consider two parametric processes to make a fou
modg |ntera_cft|or[25]_, as may be_ achleyed usTng tWO para- gnce of the regenerative amplification. The maximum OPA
metric e_xmphﬁsr? with Hamiltonian$i=i#g(a;by~aib1)  «gain" ohtained by the apparatus was=~0.3 andr~5.1,

andH=ifig(ab, —azby). The two outputs, ,a; are input  yagpectively, in absence and in presence of the laser amplifi-

to the polarizer atA, while the two output®,,b, are input  cation. These figures lead, respectively, to the following val-
to the polarizerg at B. The time-dependent solution for the || .o ¢ the parameter&=1.04, ['=0.29, andC=82, T

parametric process with vacuum inputs is ~1. The typical quantum efficiency of the detectors was in
o the range:?~0.4—0.6. The final output state generated by
lo)= E cnlen), (19) this apparatus is expressed by the multipartif:le entangled
N=0 state (199 but where cy=[(N+1)['N/C?]x[(N
- - - —2%%)/(\2I'C?)]. The probability of am photon output at
where cn=V(N+1)I'N/C? where C=coshr,S=sinhr, T each locationA and B is then given byP(n)=|c,|? as is
=9C, and “gain”: r=gt. The probability that a total oN  plotted in Fig. 4, for various.
photons are detected at each locathoandB is thenP(n) There are a number of approaches one can use to detect
=|cy|? as plotted in Fig. 3. the quantum violation of the Bell inequalities. The particular
The validity of the staté19), on which the predictions are method preferred will depend on the interaction strength
based, depends on how well the Hamilton{dB) describes and the degree of detection efficiengy
the real parametric amplifier. While the model has been suc- We propose here first the following experiment making
cessful in predicting violations of weak Bell-CH inequalities use of the double-channeled polarizers to detect the photon
for N=1, a chief limitation is the omission of absorption or numbers of both orthogonal polarizations. This will allow the
loss which occurs in addition to the detector inefficiencies“selection” of a specified spin stafey) and the observation
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12 tecting m,k,m’ k" photons upon measurements (ﬂic+,
S i / c'c_, dhd,, andd"d_, respectively, in the absence of
loss. Form+k=m’'+k’=N, we have
1.0 —a— r=0.05
09- T r0ent Po(mN-—mm’ N—-m')=[cy2[c 12 (2D
—e— r=15
0.8 /s —0en
o & A bt lcyl? is defined in Eq(19), and|cg'§)m,|2 is the probability
.7 <
that measurement orEJr c, andd’ 1d, for the state|ey)
T ok ob0  ohe 1ho givesm andm’, respectively. Our required probabilities are
T then given as follows P45 (6,¢)=Po(N,0N,0)
=lcpl?COAZ and PR(6) =37, _,Po(N,0m’,N—m’)
FIG. 5. Effect, for various parametric couplimg of detection :2?';1,:0|CN| |C§\1Nr)n’|2' The detection ofmn+k=N at A is

inefficiencies on the violation of the strong Bell inequalig), for correlated withm’ +k’=N at B. Immediately then it is ap-
the scheme depicted in Fig. 1 witth=2. HereT models detector parent that the factor‘&le in the joint and marginal prob-
losses, T being the relative fraction of photons incident on each abilities in the final form of the Bell paramet@ for the
detector that are actually detected. The optimal anigler N=2 is o 00 inaquality(s) will cancel. The predictions for the vio-
~3.41. _The curves labeled “ent” represent predictions for the en'lation of Eq.(5), in the absence of loss, are as for the ideal
tangled input state. spin state|gy). It is important to realize however that the
actual probability of obtaining the evertl is different in
the parametric case, this probability being weightedday?,
Ethe probability of detectingn+k=N, that N photons are
ncident on each polarizer. While the joint probabilities are
h b small, so is the true marginal, and we have a predicted vio-
photon numbers.. i lation of the strong Bell-Clauser-Horne inequali), with-
., c_,dy,d_ aregiven by Eq(1), and label the result®, )+ auxiliary assumptions.
‘gl:l“énzrr‘gfk’_ff\ﬁpsrfé“f'ly-a?;gfOr:]J}C_OIf\I“Zr']ﬁ rln "ﬁ ﬁﬁ’i‘“ The probabilitiesPo(m,k,m’ k') of Eq. (19 depend
N AB , ) o - only on the angle differenceb— 6. We select the angle
We measuré’}” (6,¢) and, if testing the no- Ioophole Bell choice p— 6=0'— =’ — 0' =y and &' — 6=3¢ in line
inequality (5), the marginal probabilitie®” (6) andP%(4).  with previous work[ 19,24 with the statesey).
If testing the weaker Bell |nequallty16) measurement IS Our first objective would be to detect violations of the
made of one-sided joint probabilitieB?(6,~) and PS  inequality for relatively lowN, N=2 say. The choice of
(—.¢). We will show that a violation of the StrOﬂQ"O r~1 gives the maximum probability of obtaining an event
auxiliary- assumptlor)sBeII inequality is possible only for where m+k=2, althoughr~0.5 would give a reasonable
high T=7? (Fig. 5. The predicted violations of a weak in- probability. For the optimal choice of angt¢ (Fig. 2) the
equality (16) will also be calculated and results are shown inprobability of an actual event-1 for N=2 andr~0.5 is
Fig. 6. _ o ~0.01. For perfect detection efficiency the level of violation
The calculation oSas defined in Eq(5) for the paramet- s given byS=1.181 as indicated in Fig. 2.
ric amplifier state proceeds in a straightforward manner. We \We now need to consider the effect of detection ineffi-
define in generaPqo(m,k,m’,k") as the probability of de- ciencies. Our measured probabilities for obtaining
m,k,m’ ,k’ at each detector are given by Edl) where now

of the violation predicted in Fig. 2 for the strong or weak
Bell inequalities. The experimental arrangement is as de

by Eqg. (19). Specifically we detect at locatiodsand B the
Tc,,clc, dld,, andd"d_, where

120 the quantum probabilities are calculated from Etp). We
Sw > note that with the restrictiomn+k=m’+k’=N, and m
1154 =N we get

—a— r=0.05

---0--- r=0.3,ent p(N,O,m’,N—m’)

—e— r=15

1101

---A--- r=2.0,ent ©

:T2Nr q§=o (1_T)r+q+s+tCrN+rCrSn’+s

105+

><C{“’m'“PQ(NJrr,q,m’+s,N—m’+t), (22

FIG. 6. Effect of detection inefficiencies on the violation of the Where from Eq(21) we have
weak Bell inequality(16), for the scheme depicted in Fig. 1 where
N=2. Here,T represents detector lossdsbeing the relative frac- PQ( N+r,gq,m +s,N—m’+t)
tion of incident photons actually detected. The optimal angfer
N=2 is ~3.41. The curves labeled “ent” are predictions for the

_ _ 2| ~(Ng?) 2
entangled input state. =dr+a—(s+t)lley,|9C %, (23)

N+r,m’+s
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whereNy=N+r+qg=N+s+t. We note that for the quan- A point to be made concerns the alternative situation of a
tum state(21) we require for nonzero probabilities-q=s  one-channeled polarizer where only the photon number
+t. The required joint probabilityP’® (6,¢) becomes andm’ can be detected. Here, the prediction is different due
Pﬁ‘i(g,d,): P(N,0N,0). The marginal probabilities needed to the contribution of thé&+ 1 spin state which can contrib-
for the strong Bell inequality(5) become for example ute anm=N event(with k=1) potentially decreasing the

P (6)=PA(N,0) where violation of the inequality.

N < e NereA VI. PROPOSED EXPERIMENT TO DETECT VIOLATION
PAN,O) =T réo (1=-T)™9C, " "Po(N+r,0), (24) OF BELL INEQUALITY USING HIGH-FLUX
’ PARAMETRIC DOWN -CONVERSION

and As one increases the output intensities of the parametric

w device, the actual probability of detectimd¢jphotons trans-
Pg(NJrr’q): D |CN0|2|C(NN+O:)m/|2’ (25 ~ Mmitted through our polarizer decreases. In other words the
m’ =0 : probability of detecting the event 1, described in the last
section, becomes smaller. To combat this we propose in this
whe_reNo=N+r+q- o section that our outcome be a range of photon number val-
Figure 5 reveals the effect on the violation of the strongyes. Here we are interested in the regime of high amplifica-
Bell inequality, for various, and forN=2. For the reasons tion [27] where the output fluxes of signal and idler are high,
discussed in the previous section, because the marginal prognd where one can use highly efficient photodiode detectors.
ablllty scales aQ—N while the jOint prObabi”tieS scale Q'SZN, We now propose the fo”owing experiment_ We detect at
the violation is lost for small detection loss. locationsA andB the photon numberschr cle_, d1d+ ,
To propose an experiment achievable with current detecénddT_d_ , wherec,, c_, d., d_ are given by Eq(1). The
tor efficiencies, we consider an appropriate weak Bell in'mean photon number incident on each polarizerxis
equality. We define the joint probabilitf’2 (6, ) of ob- —(chc )+ (cte y=(d"d,)+(d" d ) where  xm
t_anmgtm; stgdg;irl](; ';‘hgt Aéir?{]domn;:sli\éieijnd nr](;;algilit =2 sint?(r). We denote the result far’ c, andc’c_ atA
P28 (g —).of obtainingm=N aJndm+k=N and gtotal ofy by m andk, respectively, and the results ¢f d, andd’d_
e . ’ . AR atB by m’ andk’, respectively(Fig. 1). We defineXM to be
m’+k .:N photons. a_tB. The one—s@ed probab|l|ty>++ the integer nearest in value to the mean We designate the
(=.9) is deflned_ S|m|IarIy_. The auxmary assumptions are rag it of the measurement Atto be +1 if our measured
mAade that for a hl(}!den v_anable descrlgtbonthe probability resultsm andk satisfym=XM and alsoXM=m-+k=<XM
p+.(.0,)\)Aof obtainingm=N and m+k=N, and the prob- . " Otherwise our result is-1. Similarly, we define the
ability p% (—,\) of obtainingm+k=N alone, satisfy result atB to be +1 if m'=XM and XM<m’ +k’'<XM
A A +A.
Py (6N <P%(=.N). (26) By performing many such measurements over an en-
semble, one can experimentally determine the following:

A _ . . . . _
Also we assume: (-, is independent of. Similar as P”B (6, ¢) the probability of obtaining- 1 atAand+ 1 atB

sumptions are made f@% (¢,\) andp® (—,\). With these . .
assumptions the weaker inequality6) is derivable. The upon simultaneous measurement wighat A and ¢ at

. A ; . Lo
one-sided probability used in the test of the weak inequalit '1 P~ (6) the marginal p:hf)baAb!hty:;chobtmnr:ng the Teslu't
(16) is given byP_A}Ei(ﬁ,—)= PAB(N,0:—) where +1 upon measurement withat A; andPZ (¢) the marginal

probability of obtaining the result-1 upon measurement

N with ¢ at B.
PAB(N,0;—)= > P(N,om’,N—m’). (27) Local hidden variables will predict, as discussed in Sec.
m'=0 I, the strong Bell inequality5). We defineP(m,k,m’ k") as

the probability of detectingn, k, m’, andk’ photons for

measurements af'c, , c'c_, d'.d., andd"d_, respec-

tively. The probability of resultsn andk upon measurement
of clc, andc’c_ is defined aP”(m,k). We have in the

absence of loss, whera+k=m’+k’=N is ensured,

With a total ofN photons detected at both locatiohsindB,
we ensure all probabilities scale a8V,

The existence of the higher spin states,), whereM
>N, in the parametric output means that detector inefficien
cies alter the violation of even the weak Bell inequality. Fig-
ure 6 illustrates the effect of detection inefficiencies on the

_ 2 —m’) = 21~(N) |2
violation of the weak inequalitie€l6), the effect being more P(m,N=m,m’,N=m")=[ey|*|Cr, |

m,m’

significant for higher values where the statégy,), where N
M >N, contribute more significantly. Smallervalues suffer PA(M,N—m)= 2 I |2|C(N) |2 (29)
the disadvantage however that the probability of an actual ’ e, N e

event+1 becomes small due to the small probabilityMof

—2 photons actually being incident on the polarizer. Thewhere all other probabilities are zero. Hejey|* is defined
sensitivity of the violations to loss is not so great that thein Eq.(19), and|C{. |2 is the probability that measurement
experiment would be impossible for-0.5. of c'c, andd’d, for the state] ¢n) givesmandm’, re-
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120

1.05

1.00 T T T T

FIG. 7. Plot of violation of the strong Bell inequality where we
designate the result of the measuremen & be + 1 if our mea-
sured resultam and k satisfy m=XM and alsoXM—-A<m+k
<XM+A. Otherwise our result is-1. Similarly we define the
result atB to be +1 if m'=XM andXM=m'+k'<XM+A. For
r=1.65 we haveXM =13 and forr =1.95, XM= 24.

spectively, with no loss. The probabili(m,m’) of getting
mandm’ for ¢! c, andd’d, , respectively, while the total
m+Kk is restricted toXM<=m+ks<XM+A, andm+k=m’
+k’ is restricted toXM<=m’'+k'<XM+A, is given gener-
ally as

XM+A—-m XM+A-m’

Pemm)= S S P(mkm k).

k=XM-m /' =xM-m’

(29)
The corresponding marginal probability is
XM+A—-—m
PAM)= > PAMK). (30)
k=XM-m

Our required probabilities are then given as follows:

XM+A
P%(0.¢)= X P*B(mm’) (31)
m,m’=XM
and for the marginal
XM+A
PA(6)= > PA(m). (32)
m=XM

For the purpose of a weaker Bell inequality we also define a

one-sided probability

XM+A XM+A
Pﬁ(a,—)=m2XM > PAB(m,m’). (33
= mI:0

The probabilitied(m,k,m’ ,k’) depend only on the angle
difference ¢ — 0. We select the angle choicg— 6=0'— ¢
=¢'—0'=¢ and ¢' — 6=3¢ in line with previous work
[3,19] with the stategoy).

Results forS, optimizing ¢ to give maximums, are pre-
sented in the Fig. 7. With the choide=0, we will get only
one of the|¢y) contributing. The results fos will be iden-
tical [19] to that obtained for th¢py,,) state, where a clear

PHYSICAL REVIEW A 66, 033801 (2002

1.20

S s
*.
1104 )

1.05

100

0.95

0.90 T T T T

FIG. 8. Plot of the effect of detection losses on the violation of
the no-loophole Bell inequality tegb) as explained in Fig. 7 above.
Here,r =1.65 we haveXM=13.

violation of the Bell inequality(5) is obtained even for very
large N=XM. The difficulty with such a situation however
is that in the regime of highar (where greater signal inten-
sities are generatgdthe probability that the total number
m-+k of photonszt:ﬂc+ +clc_ is precisely this fixed number

is very small, making the probability of out 1 outcome
tiny. We are more interested in situations where the intensity
on the detectors is large but also where the probability that
XM=m+k=XM+ A is significant. This is achieved by in-
creasing the rangd. Violations of the Bell inequality are
still possible §=1) but the degree of violation is reduced,
the limiting value for largeA approaching 1 aXM in-
creases.

The sensitivity to loss can be evaluated by calculating in
Eqg. (29) [and in the equations for the marginal probabilities
such asPA(m)] the measured probabilitieB(m,k,m’ k")
and PA(m,k) as given by Eqs(11) and(12). The effect on
the violation of the no-loophole Bell inequalit) is given
in Figs. 8 and 9. Sensitivity is strong for lofw but decreases
as the rangeé\ increases. This provides a potential opportu-
nity to test a strong no-auxiliary multiparticle Bell inequality
for lower detector inefficiencies than indicated by the- 0
regime discussed in the previous section.

VII. CONCLUSIONS

We have presented a proposal to test the predictions of
quantum mechanics against those of local hidden variable

1.2

S 1.1

1.0

09 .
<
0384 7/

Fa
£/
0.7y /

0.64 T T T T

FIG. 9. Plot of the effect of detection losses on the violation of
the no-loophole Bell inequality te§b) as explained in Fig. 7 above.
Here,r=0.9 we haveXM=2.
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theories for multiparticle entangled states generated usindend previous such derivations to the multiparticle situation
parametric down conversion, where measurement is made ame consider here.

systems of more than one particle. A calculation is given of ACKNOWLEDGMENTS
the detector efficiencies required to test directly the “no-
loophole”multiparticle Bell inequality. In view of the limita- F.D.M. acknowledges the Italian Ministero

tion of current detector efficiencies, it is necessary to condell'Universita e della Ricerca Scientifica e Tecnologica
sider initially tests of a “weaker” Bell inequality derived (MURST) and the FET European Network IST-2000-
with additional auxiliary assumptions, and to therefore ex-2968XATESIT) on “Quantum Information,” for funding.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. R&X;,. 777 [13] M. D. Reid, Europhys. Lett36, 1 (1996; Quantum Semiclas-

(1935. sic. Opt.9, 489(1997; M. D. Reid and P. Deuar, Ann. Phys.
[2] D. Bohm, Quantum TheoryPrentice-Hall, Englewood Cliffs, (Leipzig) 265, 52(1998; M. D. Reid, Phys. Rev. A2, 022110
NJ, 195). (2000; e-print quant-ph/0101050.
[3]J. S. Bell, PhysicgLong Island City, N.Y) 1, 195 (1965; [14] V. Giovannetti, S. Mancini, and P. Tombesi, e-print
Speakable and Unspeakable in Quantum Mechaf@am- guant-ph/0005066.
bridge University Press, Cambridge, 198Bhysics(Long Is-  [15] H. Weinfurter and M. Zukowski, Phys. Rev. 84, 010102
land City, N.Y) 1, 195 (1964. (2001.

[4] J. F. Clauser and A. Shimony, Rep. Prog. Ph4%, 1881 [16] A. Lamas-Linares, JC. Howell, and D. Bouwmeester, Nature
(1978, and references therein; J. F. Clauser, M. A. Horne, A. (London 412 6850(20001.
Shimony, and R. A. Holt, Phys. Rev. Le#3, 880(1969; J. F. [17] N. D. Mermin, Phys. Rev. 22, 356(1980; A. Garg and N.

Clauser and M. A. Horne, Phys. Rev.1ID, 526 (1974). D. Mermin, Phys. Rev. Let#49, 901 (1982.
[5] D. M. Greenberger, M. A. Horne, A. Shimony, and A. [18] N. D. Mermin and G. M. Schwarz, Found. Phyk2, 101
Zeilinger, Am. J. Phys58, 1131(1990. (1982.

[6] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. 1494.91 [19] P. D. Drummond, Phys. Rev. Let0, 1407(1983.
(1982; A. Aspect, J. Dalibard, and G. Rogeébjd. 49, 1804  [20] A. Peres, Found. Phy22, 1819(1992; A. Peres,Quantum

(1982; Y. H. Shih and C. O. Alleyibid. 61, 2921(1988; Z. Y. Theory: Concepts and Methodsluwer Academic, Dordrecht,
Ou and L. Mandeljbid. 61, 50 (1988; J. G. Rarity and P. R. 1993.

Tapster,ibid. 64, 2495(1990; J. Brendel, E. Mohler, and W. [21] S. L. Braunstein and C. M. Caves, Phys. Rev. Léft. 662
Martienssen, Europhys. Le0, 575 (1992; P. G. Kwiat, A. (1988.

M. Steinberg, and R. Y. Chiao, Phys. Rev4& 2472(1993; [22] A. Garg and N. D. Mermin, Phys. Rev. Le#t9, 901 (1982);
T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley, Phys. Phys. Rev. D27, 339 (1983; N. D. Mermin, ibid. 65, 1838

Rev. Lett.71, 3893(1993; P. G. Kwiat, K. Mattle, H. Wein- (1990; S. M. Roy and V. Singhjbid. 67, 2761 (1991); A.
furter, A. Zeilinger, A. V. Sergienko, and Y. Shilibid. 75, Peres, Phys. Rev. A6, 4413(1992; Found. Phys22, 1819
4337(1995; D. V. Strekalov, T. B. Pittman, A. V. Sergienko, (1992; M. D. Reid and W. J. Munro, Phys. Rev. Le®9, 997
Y. H. Shih, and P. G. Kwiat, Phys. Rev. 34, 1 (1996; G. (1992; B. C. Sanders, Phys. Rev. 45, 6811(1992; G. S.
Weihs, T. Jennewein, C. Simon, H. Weinfurther, and A. Agarwal,ibid. 47, 4608(1993; D. Home and A. S. Majumdar,
Zeilinger, Phys. Rev. Let81, 5039(1998; A. Zeilinger, Rev. ibid. 52, 4959 (1995; C. Gerry, ibid. 54, 2529 (1996; A.
Mod. Phys.71, 5288(1998; M. A. Rowe, D. Kielpinski, V. Beige, W. J. Munro, and P. L. Knighibid. 62, 052102(2000.
Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wine- [23] K. Banaszek and K. Wodkiewicz, Phys. Rev. 38, 4345
land, Nature(London 409, 791 (2001). (1998; Phys. Rev. Lett82, 2009(1999.

[7] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, [24] W. J. Munro and M. D. Reid, Phys. Rev.4V, 4412(1993.
C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. [25] J. G. Rarity and P. R. Tapster, Phys. Rev. L@&4.2495(1990);

Wineland, and C. Monroe, Natufeondon 404, 256 (2000. M. A. Horne, A. Shimony, and A. Zeilingeiipid. 62, 2209

[8] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M.  (1989; M. D. Reid and D. F. Walls, Phys. Rev. 24, 1260
Brune, J. Raimond, and S. Haroche, Scie?88 2024(2000. (1985; P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.

[9] J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. V. Sergienko, and Y. Shih, Phys. Rev. Let6, 4337(1995;
Zeilinger, Nature(London 403 515 (2000. M. Marte, ibid. 74, 4815(1995.

[10] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.[26] F. De Martini, Phys. Rev. LetB1, 2842(1998; F. De Martini,
Rev. Lett.68, 3663(1992. V. Mussi, and F. Bovino, Opt. Commui79, 581 (2000; F.

[11] Yun Zhang, Hai Wang, Xiaoying Li, Jietai Jing, Changde Xie, De Martini and G. Di Giuseppe, Phys. Rev. Ldto be pub-
and Kunchi Peng, Phys. Rev.@2, 023813(2000. lished.

[12] Ch. Silberhorn, P. K. Lam, O. Weiss, F. Koenig, N. Korolkova, [27] D. T. Smithey, M. Beck, M. Belsley, and M. G. Raymer, Phys.
and G. Leuchs, Phys. Rev. Le#6, 4267 (2002). Rev. Lett.69, 2650(1992.

033801-10



