231 research outputs found

    The Achilles heel of decision making system in termites

    Get PDF
    Mitochondrial beta-oxidation of long-chain fatty acids requires the concerted action of three tightly integrated membrane-bound enzymes (carnitine palmitoyltransferase I and II and carnitine/acylcarnitine translocase) that transport them into mitochondria. Neonatal onset of carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive, often lethal disorder of this transport. We describe a novel splice-site mutation in the CPT II gene, found in a Moroccan family, of which four out of five children have died from the neonatal form of CPT II deficiency. Mutation detection studies at the mRNA level in the CPT II gene implied that the affected children were homozygous for the previously reported 534T insertion followed by a 25-bp deletion (encompassing bases 534-558). Studies of genomic DNA, however, revealed all patients to be compound heterozygous for this 534T ins/del 25 mutation, and for a new g-->a splice-site mutation in the splice-acceptor site of intron 2. Because of these findings, prenatal diagnosis was performed in chorionic villi of three new pregnancies. This did not reveal new compound heterozygous genotypes, and, after uneventful pregnancies, all children appeared to be healthy. The new mutation is the first splice-site mutation ever identified in CPT II deficiency. The fact that it was not discovered in the patient's cDNA makes this study another example of the incompleteness of mutation detection at the mRNA level in cases where a mutation leads to aberrant splicing or nonsense-mediated messenger deca

    The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency

    Get PDF
    Malfunction of mitochondrial complex I caused by nuclear gene mutations causes early-onset neurodegenerative diseases. Previous work using cultured fibroblasts of complex-I-deficient patients revealed elevated levels of reactive oxygen species (ROS) and reductions in both total Ca2+ content of the endoplasmic reticulum (ERCa) and bradykinin(Bk)-induced increases in cytosolic and mitochondrial free Ca2+ ([Ca2+]C; [Ca2+]M) and ATP ([ATP]C; [ATP]M) concentration. Here, we determined the mitochondrial membrane potential (Δψ) in patient skin fibroblasts and show significant correlations with cellular ROS levels and ERCa, i.e., the less negative Δψ, the higher these levels and the lower ERCa. Treatment with 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) normalized Δψ and Bk-induced increases in [Ca2+]M and [ATP]M. These effects were accompanied by an increase in ERCa and Bk-induced increase in [Ca2+]C. Together, these results provide evidence for an integral role of increased ROS levels in complex I deficiency and point to the potential therapeutic value of antioxidant treatment

    A Drosophila Mitochondrial Complex I Deficiency Phenotype Array

    Get PDF
    Mitochondrial diseases are a group of rare life-threatening diseases often caused by defects in the oxidative phosphorylation system. No effective treatment is available for these disorders. Therapeutic development is hampered by the high heterogeneity in genetic, biochemical, and clinical spectra of mitochondrial diseases and by limited preclinical resources to screen and identify effective treatment candidates. Alternative models of the pathology are essential to better understand mitochondrial diseases and to accelerate the development of new therapeutics. The fruit fly Drosophila melanogaster is a cost- and time-efficient model that can recapitulate a wide range of phenotypes observed in patients suffering from mitochondrial disorders. We targeted three important subunits of complex I of the mitochondrial oxidative phosphorylation system with the flexible UAS-Gal4 system and RNA interference (RNAi): NDUFS4 (ND-18), NDUFS7 (ND-20), and NDUFV1 (ND-51). Using two ubiquitous driver lines at two temperatures, we established a collection of phenotypes relevant to complex I deficiencies. Our data offer models and phenotypes with different levels of severity that can be used for future therapeutic screenings. These include qualitative phenotypes that are amenable to high-throughput drug screening and quantitative phenotypes that require more resources but are likely to have increased potential and sensitivity to show modulation by drug treatment

    A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS)

    Get PDF
    We used a comprehensive metabolomics approach to study the altered urinary metabolome of two mitochondrial myopathy, encephalopathy lactic acidosis and stroke like episodes (MELAS) cohorts carrying the m.3243A > G mutation. The first cohort were used in an exploratory phase, identifying 36 metabolites that were significantly perturbed by the disease. During the second phase, the 36 selected metabolites were able to separate a validation cohort of MELAS patients completely from their respective control group, suggesting usefulness of these 36 markers as a diagnostic set. Many of the 36 perturbed metabolites could be linked to an altered redox state, fatty acid catabolism and one-carbon metabolism. However, our evidence indicates that, of all the metabolic perturbations caused by MELAS, stalled fatty acid oxidation prevailed as being particularly disturbed. The strength of our study was the utilization of five different analytical platforms to generate the robust metabolomics data reported here. We show that urine may be a useful source for disease-specific metabolomics data, linking, amongst others, altered one-carbon metabolism to MELAS. The results reported here are important in our understanding of MELAS and might lead to better treatment options for the disease.Peer reviewe

    A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome

    Get PDF
    Bioinformatic analysis classifies the human protein encoded by immature colon carcinoma transcript-1 (ICT1) as one of a family of four putative mitochondrial translation release factors. However, this has not been supported by any experimental evidence. As only a single member of this family, mtRF1a, is required to terminate the synthesis of all 13 mitochondrially encoded polypeptides, the true physiological function of ICT1 was unclear. Here, we report that ICT1 is an essential mitochondrial protein, but unlike the other family members that are matrix-soluble, ICT1 has become an integral component of the human mitoribosome. Release-factor assays show that although ICT1 has retained its ribosome-dependent PTH activity, this is codon-independent; consistent with its loss of both domains that promote codon recognition in class-I release factors. Mutation of the GGQ domain common to ribosome-dependent PTHs causes a loss of activity in vitro and, crucially, a loss of cell viability, in vivo. We suggest that ICT1 may be essential for hydrolysis of prematurely terminated peptidyl-tRNA moieties in stalled mitoribosomes

    Reconstructing the evolution of the mitochondrial ribosomal proteome

    Get PDF
    For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile–profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders

    Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis

    Get PDF
    Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G>A and c.707T>C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dop

    Modeling mitochondrial dysfunctions in the brain: from mice to men

    Get PDF
    The biologist Lewis Thomas once wrote: “my mitochondria comprise a very large proportion of me. I cannot do the calculation, but I suppose there is almost as much of them in sheer dry bulk as there is the rest of me”. As humans, or indeed as any mammal, bird, or insect, we contain a specific molecular makeup that is driven by vast numbers of these miniscule powerhouses residing in most of our cells (mature red blood cells notwithstanding), quietly replicating, living independent lives and containing their own DNA. Everything we do, from running a marathon to breathing, is driven by these small batteries, and yet there is evidence that these molecular energy sources were originally bacteria, possibly parasitic, incorporated into our cells through symbiosis. Dysfunctions in these organelles can lead to debilitating, and sometimes fatal, diseases of almost all the bodies’ major organs. Mitochondrial dysfunction has been implicated in a wide variety of human disorders either as a primary cause or as a secondary consequence. To better understand the role of mitochondrial dysfunction in human disease, a multitude of pharmacologically induced and genetically manipulated animal models have been developed showing to a greater or lesser extent the clinical symptoms observed in patients with known and unknown causes of the disease. This review will focus on diseases of the brain and spinal cord in which mitochondrial dysfunction has been proven or is suspected and on animal models that are currently used to study the etiology, pathogenesis and treatment of these diseases
    corecore