105 research outputs found
RLZAP: Relative Lempel-Ziv with Adaptive Pointers
Relative Lempel-Ziv (RLZ) is a popular algorithm for compressing databases of
genomes from individuals of the same species when fast random access is
desired. With Kuruppu et al.'s (SPIRE 2010) original implementation, a
reference genome is selected and then the other genomes are greedily parsed
into phrases exactly matching substrings of the reference. Deorowicz and
Grabowski (Bioinformatics, 2011) pointed out that letting each phrase end with
a mismatch character usually gives better compression because many of the
differences between individuals' genomes are single-nucleotide substitutions.
Ferrada et al. (SPIRE 2014) then pointed out that also using relative pointers
and run-length compressing them usually gives even better compression. In this
paper we generalize Ferrada et al.'s idea to handle well also short insertions,
deletions and multi-character substitutions. We show experimentally that our
generalization achieves better compression than Ferrada et al.'s implementation
with comparable random-access times
Relative Lempel-Ziv Compression of Suffix Arrays
We show that a combination of differential encoding, random sampling, and relative Lempel-Ziv (RLZ) parsing is effective for compressing suffix arrays, while simultaneously allowing very fast decompression of arbitrary suffix array intervals, facilitating pattern matching. The resulting text index, while somewhat larger (5-10x) than the recent r-index of Gagie, Navarro, and Prezza (Proc. SODA ’18)—still provides significant compression, and allows pattern location queries to be answered more than two orders of magnitude faster in practice.Peer reviewe
Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract
: Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product
Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin
This work demonstrates for the first time that binding of various compounds within subdomain IB of human serum albumin (HSA) provokes characteristic changes in the near-UV circular dichroism (CD) spectrum of the protein. It can be inferred from the spectroscopic features of difference ellipticity signals and from CD displacement experiments that tyrosine residues located in subdomain IB are the source of the observed spectral alterations. It is proposed that inclusion of some ligand molecules (bile acids, dehydroepiandrosterone sulfate, steroidal terpenes, fatty acids, ibuprofen, and gemfibrozil) into the pocket of subdomain IB disrupts the Tyr138?Tyr161 interhelical π?π stacking interaction, which is reflected in the CD spectrum. This phenomenon can be utilized for the CD detection of subdomain IB specific binding of endo- as well as exogenous agents and to study the drug binding associated local conformational adaptation of the HSA molecule
Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology
Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes
Taking the steps toward sustainable livestock: our multidisciplinary global farm platform journey
Implications
• The Global Farm Platform was conceived and established to explore multidisciplinary strategies for
optimising the sustainability of ruminant livestock systems around the world.
• International sustainability issues are common, but
the solutions are often region-specific; therefore, our
farms, situated across all major agroclimatic zones, are
a unique resource worldwide.
• Each farm is following "steps to sustainable livestock" to improve their production system(s), thereby
developing robust metrics to progress economic, environmental and social viability.
• The consortium works collaboratively to improve the
sustainability of ruminants, which we argue are a vital
component of global food systems, delivering both
human and planetary health
The Cultural Project : Formal Chronological Modelling of the Early and Middle Neolithic Sequence in Lower Alsace
Starting from questions about the nature of cultural diversity, this paper examines the pace and tempo of change and the relative importance of continuity and discontinuity. To unravel the cultural project of the past, we apply chronological modelling of radiocarbon dates within a Bayesian statistical framework, to interrogate the Neolithic cultural sequence in Lower Alsace, in the upper Rhine valley, in broad terms from the later sixth to the end of the fifth millennium cal BC. Detailed formal estimates are provided for the long succession of cultural groups, from the early Neolithic Linear Pottery culture (LBK) to the Bischheim Occidental du Rhin Supérieur (BORS) groups at the end of the Middle Neolithic, using seriation and typology of pottery as the starting point in modelling. The rate of ceramic change, as well as frequent shifts in the nature, location and density of settlements, are documented in detail, down to lifetime and generational timescales. This reveals a Neolithic world in Lower Alsace busy with comings and goings, tinkerings and adjustments, and relocations and realignments. A significant hiatus is identified between the end of the LBK and the start of the Hinkelstein group, in the early part of the fifth millennium cal BC. On the basis of modelling of existing dates for other parts of the Rhineland, this appears to be a wider phenomenon, and possible explanations are discussed; full reoccupation of the landscape is only seen in the Grossgartach phase. Radical shifts are also proposed at the end of the Middle Neolithic
Subcellular Min Oscillations as a Single-Cell Reporter of the Action of Polycations, Protamine, and Gentamicin on Escherichia coli
BACKGROUND: In Escherichia coli, MinD-GFP fusion proteins show rapid pole to pole oscillations. The objective was to investigate the effects of extracellular cations on the subcellular oscillation of cytoplasmic MinD within Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS: We exposed bacteria to the extracellular cations Ca(++), Mg(++), the cationic antimicrobial peptide (CAP) protamine, and the cationic aminoglycoside gentamicin. We found rapid and substantial increases in the average MinD oscillation periods in the presence of any of these polyvalent cations. For Ca(++) and Mg(++) the increases in period were transient, even with a constant extracellular concentration, while increases in period for protamine or gentamicin were apparently irreversible. We also found striking interdependence in the action of the small cations with protamine or gentamicin, distorted oscillations under the action of intermediate levels of gentamicin and Ca(++), and reversible freezing of the Min oscillation at high cationic concentrations. CONCLUSIONS/SIGNIFICANCE: Intracellular Min oscillations provide a fast single-cell reporter of bacterial response to extracellular polycations, which can be explained by the penetration of polycations into cells
- …