143 research outputs found

    Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Get PDF
    Determining the position and order of contigs and scaffolds from a genome assembly within an organism’s genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing. We developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method. The strategy was tested on a draft genome of the fungal pathogen Venturia inaequalis, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome Fragaria vesca. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for V. inaequalis and F. vesca, respectively, to genetic linkage maps. We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.Deciduous Fruit Producers Trust THRIP Program National Research Foundation Claude Harris Leon FoundationWeb of Scienc

    Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple

    Get PDF
    Background The transition from vegetative to floral state in shoot apical meristems (SAM) is a key event in plant development and is of crucial importance for reproductive success. In perennial plants, this event is recurrent during tree life and subject to both within-tree and between-years heterogeneity. In the present study, our goal was to identify candidate processes involved in the repression or induction of flowering in apical buds of adult apple trees. Results Genes differentially expressed (GDE) were examined between trees artificially set in either ‘ON’ or ‘OFF’ situation, and in which floral induction (FI) was shown to be inhibited or induced in most buds, respectively, using qRT-PCR and microarray analysis. From the period of FI through to flower differentiation, GDE belonged to four main biological processes (i) response to stimuli, including response to oxidative stress; (ii) cellular processes, (iii) cell wall biogenesis, and (iv) metabolic processes including carbohydrate biosynthesis and lipid metabolic process. Several key regulator genes, especially TEMPRANILLO (TEM), FLORAL TRANSITION AT MERISTEM (FTM1) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) were found differentially expressed. Moreover, homologs of SPL and Leucine-Rich Repeat proteins were present under QTL zones previously detected for biennial bearing. Conclusions This data set suggests that apical buds of ‘ON’ and ‘OFF’ trees were in different physiological states, resulting from different metabolic, hormonal and redox status which are likely to contribute to FI control in adult apple trees. Investigations on carbohydrate and hormonal fluxes from sources to SAM and on cell detoxification process are expected to further contribute to the identification of the underlying physiological mechanisms of FI in adult apple trees

    Quantification of Age-Dependent Somatic CAG Repeat Instability in Hdh CAG Knock-In Mice Reveals Different Expansion Dynamics in Striatum and Liver

    Get PDF
    Age at onset of Huntington's disease (HD) is largely determined by the CAG trinucleotide repeat length in the HTT gene. Importantly, the CAG repeat undergoes tissue-specific somatic instability, prevalent in brain regions that are disease targets, suggesting a potential role for somatic CAG repeat instability in modifying HD pathogenesis. Thus, understanding underlying mechanisms of somatic CAG repeat instability may lead to discoveries of novel therapeutics for HD. Investigation of the dynamics of the CAG repeat size changes over time may provide insights into the mechanisms underlying CAG repeat instability.To understand how the HTT CAG repeat length changes over time, we quantified somatic instability of the CAG repeat in Huntington's disease CAG knock-in mice from 2-16 months of age in liver, striatum, spleen and tail. The HTT CAG repeat in spleen and tail was very stable, but that in liver and striatum expanded over time at an average rate of one CAG per month. Interestingly, the patterns of repeat instability were different between liver and striatum. Unstable CAG repeats in liver repeatedly gained similar sizes of additional CAG repeats (approximately two CAGs per month), maintaining a distinct population of unstable repeats. In contrast, unstable CAG repeats in striatum gained additional repeats with different sizes resulting in broadly distributed unstable CAG repeats. Expanded CAG repeats in the liver were highly enriched in polyploid hepatocytes, suggesting that the pattern of liver instability may reflect the restriction of the unstable repeats to a unique cell type.Our results are consistent with repeat expansion occurring as a consequence of recurrent small repeat insertions that differ in different tissues. Investigation of the specific mechanisms that underlie liver and striatal instability will contribute to our understanding of the relationship between instability and disease and the means to intervene in this process

    High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development

    Get PDF
    Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development

    QTL mapping for phenolic compounds in apple fruit and apple juice from a cider apple progeny

    Get PDF
    Polyphenols have favorable antioxidant potential on human health suggesting that their high content in apple is responsible for the beneficial effects of apple consumption. tehy are also related to the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. Five groups of phenolic compounds are described in the apple fruit: flavanols, hydroxynnamic acids, dihydrochalcones, flavonols and anthocyanins. So far, only two studies have been published on the genetic basis of the phenolic content of dessert apples. As cider apples are commonly described to be much more concentrated in phenolic compounds than dessert varieties, the present study focuses on a cider apple progeny. 32 compounds belonging to the five groups were identified and quantified by HPLC-UV and UHPLC-UV-MS/MS in fruit extracts and juices. 53 QTL controlling phenolic compounds concentration were detected on nine linkage groups (LG) on the integrated linkage map, for all phenolic groups except anthocyanins. QTL clusters located on LG1, 12, 14, 15 and 17 were stable across the year or the studied material. QTL detected on LG1, 14 and 17 for quercitrin, p-coumaroylquinic acid, rutin and chlorogenic acid confirmed results of previous studies. However, no significant QTL was obtained on the LG16 where a major locus for flavanols was previously located. With the two previous studies, this study shows the diversity of genomic regions traits of interest in apple

    Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma

    Get PDF
    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events

    Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions

    Get PDF
    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified candidate gene markers for fire blight resistance by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from 62 international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand population, the proximal QTL co-located with SNP markers for a leucine-rich repeat, receptor-like protein (MxdRLP1) candidate resistance gene and a closely linked class 3 peroxidase gene. While the QTL detected in the German population was approximately 6 cM distal to this, directly below a SNP marker for a heat shock 90 family protein (HSP90). In the US population, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. Conclusions The results suggest that the upper region of ‘Robusta 5’ 76 linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Candidate gene mapping has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance

    A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'

    Get PDF
    Background: Russeting is a disorder developed by apple fruits that consists of cuticle cracking followed by the replacement of the epidermis by a corky layer that protects the fruit surface from water loss and pathogens. Although influenced by many environmental conditions and orchard management practices, russeting is under genetic control. The difficulty in classifying offspring and consequent variable segregation ratios have led several authors to conclude that more than one genetic determinant could be involved, although some evidence favours a major gene (Ru). Results: In this study we report the mapping of a major genetic russeting determinant on linkage group 12 of apple as inferred from the phenotypic observation in a segregating progeny derived from 'Renetta Grigia di Torriana', the construction of a 20 K Illumina SNP chip based genetic map, and QTL analysis. Recombination analysis in two mapping populations restricted the region of interest to approximately 400 Kb. Of the 58 genes predicted from the Golden Delicious sequence, a putative ABCG family transporter has been identified. Within a small set of russeted cultivars tested with markers of the region, only six showed the same haplotype of 'Renetta Grigia di Torriana'. Conclusions: A major determinant (Ru_RGT) for russeting development putatively involved in cuticle organization is proposed as a candidate for controlling the trait. SNP and SSR markers tightly co-segregating with the Ru_RGT locus may assist the breeder selection. The observed segregations and the analysis of the 'Renetta Grigia di Torriana' haplotypic region in a panel of russeted and non-russeted cultivars may suggest the presence of other determinants for russeting in apple

    Identification of an Amphipathic Helix Important for the Formation of Ectopic Septin Spirals and Axial Budding in Yeast Axial Landmark Protein Bud3p

    Get PDF
    Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is thought to act as a component of a spatial landmark. However, it is not clear how Bud3p interacts with other components of the landmark, such as the septins, to control axial budding. Here, we report that overexpression of Bud3p causes the formation of small septin rings (∼1 µm in diameter) and arcs aside from previously reported spiral-like septin structures. Bud3p closely associates with the septins in vivo as Bud3p colocalizes with these aberrant septin structures and forms a complex with two septins, Cdc10p and Cdc11p. The interaction of Bud3p with the septins may involve multiple regions of Bud3p including 1–858, 850–1220, and 1221–1636 a.a. since they all target to the bud neck but exhibit different effects on septin organization when overexpressed. In addition, our study reveals that the axial budding function of Bud3p is mediated by the N-terminal region 1–858. This region shares an amphipathic helix (850–858) crucial for bud neck targeting with the middle portion 850–1103 involved in the formation of ectopic septin spirals and rings. Interestingly, the Dbl-homology domain located in 1–858 is dispensable for axial bud-site selection. Our findings suggest that multiple regions of Bud3p ensure efficient targeting of Bud3p to the bud neck in the assembly of the axial landmark and distinct domains of Bud3p are involved in axial bud-site selection and other cellular processes

    Roles of the DYRK Kinase Pom2 in Cytokinesis, Mitochondrial Morphology, and Sporulation in Fission Yeast

    Get PDF
    Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity in the kinase domain and the Pom2 kinase domain functionally complements that of Pom1. Pom2 localizes to mitochondria throughout the cell cycle and to the contractile ring during late stages of cytokinesis. Overexpression but not deletion of pom2 results in severe defects in cytokinesis, indicating that Pom2 might share an overlapping function with other proteins in regulating cytokinesis. Gain and loss of function analyses reveal that Pom2 is required for maintaining mitochondrial morphology independently of microtubules. Intriguingly, most meiotic pom2Δ cells form aberrant asci with meiotic and/or forespore membrane formation defects. Taken together, Pom2 is a novel DYRK kinase involved in regulating cytokinesis, mitochondrial morphology, meiosis, and sporulation in fission yeast
    • …
    corecore