461 research outputs found

    Directional emission of stadium-shaped micro-lasers

    Get PDF
    The far-field emission of two dimensional (2D) stadium-shaped dielectric cavities is investigated. Micro-lasers with such shape present a highly directional emission. We provide experimental evidence of the dependance of the emission directionality on the shape of the stadium, in good agreement with ray numerical simulations. We develop a simple geometrical optics model which permits to explain analytically main observed features. Wave numerical calculations confirm the results.Comment: 4 pages, 8 figure

    Cascading nonlinearities in an organic single crystal core fiber: The Cerenkov regime

    Get PDF
    The large nonlinear phase shifts imparted to the fundamental beam during Cerenkov second harmonic generation (SHG) in a DAN, 4-(N,N-dimethylamino)-3-acetamidonitrobenzene, single crystal core fiber are explained and modelled numerically. Cascading upconversion and downconversion processes leads to nonlinear phase shifts produced by the second order nonlinear coupling of the guided fundamental mode and the component of the Cerenkov second harmonic field trapped in the fiber cladding

    Gain properties of dye-doped polymer thin films

    Full text link
    Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency KK, in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with various setups (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM doped PMMA layer, the different experimental approaches give a consistent value K≃K\simeq 80 cm.MW−1^{-1}. On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Besides, temporal measurements at the picosecond scale were carried out to support the analysis.Comment: 15 pages, 17 figure

    Inferring periodic orbits from spectra of simple shaped micro-lasers

    Get PDF
    Dielectric micro-cavities are widely used as laser resonators and characterizations of their spectra are of interest for various applications. We experimentally investigate micro-lasers of simple shapes (Fabry-Perot, square, pentagon, and disk). Their lasing spectra consist mainly of almost equidistant peaks and the distance between peaks reveals the length of a quantized periodic orbit. To measure this length with a good precision, it is necessary to take into account different sources of refractive index dispersion. Our experimental and numerical results agree with the superscar model describing the formation of long-lived states in polygonal cavities. The limitations of the two-dimensional approximation are briefly discussed in connection with micro-disks.Comment: 13 pages, 19 figures, accepted for publication in Physical Review

    An insight into polarization states of solid-state organic lasers

    Full text link
    The polarization states of lasers are crucial issues both for practical applications and fundamental research. In general, they depend in a combined manner on the properties of the gain material and on the structure of the electromagnetic modes. In this paper, we address this issue in the case of solid-state organic lasers, a technology which enables to vary independently gain and mode properties. Different kinds of resonators are investigated: in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk, and kite shapes, and external vertical resonators. The degree of polarization P is measured in each case. It is shown that although TE modes prevail generally (P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of the dominant polarization which becomes mostly TM polarized. We at last investigated two degrees of freedom that are available to tailor the polarization of organic lasers, in addition to the pump polarization and the resonator geometry: upon using resonant energy transfer (RET) or upon pumping the laser dye to an higher excited state. We then demonstrate that significantly lower P factors can be obtained.Comment: 12 pages, 12 figure

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity

    Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples

    Get PDF
    Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers.Comment: 18 pages, 32 figure

    Guanidinium 4-amino­benzoate

    Get PDF
    In the title compound, CH6N3 +·C7H6NO2 −, the cation and anion lie on crystallographic mirror planes. The 4-amino­benzoate anion is almost in a planar conformation with a maximum deviation of 0.024 (2) Å for the N atom. The bond length in the deprotonated carboxyl group is inter­mediate between those of normal single and double Csp2=O bonds, indicating delocalization of the charge over both O atoms of the COO− group. In the crystal, N—H⋯O hydrogen bonds assemble the ions in layers propagating in the bc plane. This structure is very similar to that of guanidinium benzoate

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities ÎČ have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant ÎČ_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the ÎČ tensor, ÎČ_(zzz) and ÎČ_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, ÎČ_(zzz) dominates in all cases, whereas the Stark analyses indicate that ÎČ_(zyy) is dominant in the shorter chromophores, but ÎČ_(zzz) and ÎČ_(zyy) are similar for the extended species. In contrast, finite field calculations predict that ÎČ_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)
    • 

    corecore