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Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples
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Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics
and photonics. In a recent paper [Phys. Rev. E 78, 056202 (2008)] the trace formula for both the smooth and
the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present
paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudointegrable
(pentagon), and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between
the theoretical predictions, the numerical simulations, and experiments based on organic microlasers.

DOI: 10.1103/PhysRevE.83.036208 PACS number(s): 42.55.Sa, 05.45.Mt, 03.65.Sq, 03.65.Yz

I. INTRODUCTION

Open quantum (or wave) systems are rarely integrable and
therefore difficult to deal with. Over recent years, this field of
research has raised many crucial questions and various systems
have been investigated. Here we consider open dielectric
resonators for their wide range of applications in optics and
photonics [1,2]. In our first paper [3], the trace formula for
these systems was derived in the semiclassical regime to infer
their spectral features. More specifically in that paper both the
expressions for the weighting coefficients of the periodic orbits
and the counting function N (k) (mean number of resonances
with a real part of the wave number less than k) were obtained
and demonstrated analytically for two integrable cases, the
two-dimensional (2D) circular cavity and the 1D Fabry-Perot
resonator. In the present paper, we consider in detail 2D
dielectric cavities with different shapes where no explicit exact
solution is known. We compare the predictions of formulas
obtained in [3] with numerical simulations and experiments
based on organic microlasers.

Resonance problems can be seen as counterparts of the
scattering of an electromagnetic wave on a finite obstacle.
This point of view turns out to be particularly interesting
since such scattering problems have been extensively studied
(see, e.g., [4]). Rigorous results for the scattering of a wave
on convex obstacles with Dirichlet boundary conditions were
proved in [5]. The physical approach to these problems has
been discussed in [6]. More recently some theorems were
demonstrated in [7,8]. The general structure of the resonance
spectrum on a transparent smooth obstacle was studied in [9].

This paper is focused on careful investigations of spectral
properties for 2D convex dielectric resonators, which are the
open counterparts of the so-called quantum billiards. The
outline of the paper is the following. The formulas obtained in
[3] are recalled and the numerical and experimental techniques
are described in Sec. II. Then different cavity shapes are
explored and their properties are compared with what is known
for billiards. The square, rectangle, and ellipse cases are
gathered in Sec. III. We call such shapes “regular shapes”
since the corresponding billiard problems are separable. In
Sec. IV, the pentagonal dielectric cavity is chosen to illustrate

a pseudointegrable system. Finally, in Sec. V the Bunimovich
stadium is investigated as an archetype of a chaotic system.
For completeness, in the Appendix the derivation of Weyl’s
law is briefly presented.

II. BACKGROUND: THEORY, NUMERICS, AND
EXPERIMENTS

Real dielectric resonators are three-dimensional (3D) cavi-
ties requiring that the 3D vectorial Maxwell equations are used.
When the cavity thickness is of the order of the wavelength,
this problem can be approximated to a 2D scalar equation
following the effective index model, which is widely used in
photonics (see, e.g., [1] and references therein). This approach
has been proved to be quite efficient for our organic microlasers
[10,11]. Briefly, it assumes that the electromagnetic field can
be separated into two independent polarizations, called TM
(resp. TE) if the magnetic (resp. electric) field lies in the plane
of the cavity (xy).1 In this 2D approximation the Maxwell
equations are reduced to the Helmholtz equation:

(�xy + n2k2) ψ = 0, (1)

where ψ stands for the z component of the electric (resp.
magnetic) field in TM (resp. TE) polarization. After resolution,
all the components of the electromagnetic fields can be inferred
from ψ . In Eq. (1) k is the wave number and n the effective
refractive index. It is worth highlighting that the error of this
approximation is not well controlled [12].

The boundary conditions in this 2D approximation are the
following:

ψ1 = ψ2 and
∂ψ1

∂ν
= ∂ψ2

∂ν
(TM),

ψ1 = ψ2 and
1

n2

∂ψ1

∂ν
= ∂ψ2

∂ν
(TE),

where ν is a direction normal to the boundary and ψ1 (resp.
ψ2) corresponds to the field inside (resp. outside) the cavity.

1This definition is consistent throughout this paper. In the literature,
these names are sometimes permuted.
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In the case of an open system such as a dielectric cavity, the
resonances are defined as the solutions of (1) with the outgoing
boundary condition at infinity:

ψ(�x) ∝ eik|�x|, |�x| → ∞. (2)

Then the resonance eigenvalues, k2
n, are complex with negative

imaginary part:

k2
n = E − i

2τ
. (3)

E is called the energy of the resonance whereas τ is its lifetime.
The wave numbers of the low-loss resonances (higher quality
factors) are thus located close to the real axis.

A. Semiclassical trace formula

Here for simplicity, we consider only TM polarization
where the functions and their normal derivative are continuous
on the cavity boundary. In this case, it appears that the
resonance spectrum splits into two subsets, depending on the
imaginary part of the wave numbers. For one of the subsets,
the wave numbers lie above a boundary

γmax < Im kn < 0, (4)

where γmax is a certain constant which depends on the cavity,
and the corresponding wave functions are mainly concentrated
inside the cavity. These resonances are similar to the so-called
Feschbach resonances. For the second class of resonances
(called shape resonances) the wave functions are mainly
supported outside the cavity and the corresponding eigenvalues
have large imaginary parts. For smooth convex obstacles, it was
shown (see, e.g., [13] and references therein) that they obey
the inequality

Im kn < − Const |Re kn|1/3.

Hereafter we will focus only on Feschbach (inner) resonances,
since they are the most relevant for lasers and photonics
applications. They will simply be referred to as “resonances”
from now on.

The spectral density can formally be separated into two
contributions:

d(k) = d(k) + d (osc)(k). (5)

d(k) stands for the smooth part and is usually written through
the counting function d(k) = dN̄ (k)/dk which counts how
many resonances in average have a real part less than k.2

The oscillating part, d (osc), can be related in the semiclassical
regime kl � 1 (l is any characteristic length of the cavity) to
a sum over the classical periodic orbits [14].

In [3], the semiclassical trace formula for open dielectric
cavities was derived. It states that the counting function of
dielectric resonators can be written as follows:

N̄ (k) = n2 Ak2

4π
+ r̃(n)

Lk

4π
+ O(1), (6)

2When computing N (k) numerically we did not use any averaging,
so we just wrote N (k).

where A is the area of the cavity, L its perimeter, and r̃(n) a
function of the refractive index involving elliptic integrals:

r̃(n) = 1 + n2

π

∫ ∞

−∞

dt

t2 + n2
R(t) − 1

π

∫ ∞

−∞

dt

t2 + 1
R(t),

with

R(t) =
√

t2 + n2 − √
t2 + 1√

t2 + n2 + √
t2 + 1

.

The derivation of (6) and details on r̃(n) and R(t) are given in
the Appendix. In the following, we will compare for various
shapes the prediction of (6) to the function N (k) inferred
from numerical simulations, and show a good agreement in
all considered cases. In particular, we will stress the nontrivial
linear coefficient

αth = r̃(n)L/4π. (7)

In this paper, in general n = 1.5, and so r̃(1.5) = 1.025.
The oscillating part of the trace formula is written as a sum

over classical periodic orbits (p.o.):

d (osc)(k) =
∑
p.o.

(
cp einklp + c.c.

)
, (8)

where lp is the length of the orbit and cp its amplitude which
depends only on classical quantities. We count a periodic orbit
and the corresponding time-reversed orbit as a single orbit.
The expressions for the cp can be derived in a standard way
(see, e.g., [14,15]), using the formula of the reflected Green’s
function given in the Appendix. As for billiard, it depends
whether the orbit is isolated (i.e., unstable) or not. For an
isolated periodic orbit

cp = 2nlp

π

1

|det(Mp − 1)|1/2
Rp e−iμpπ/2, (9)

where Mp, μp, and Rp are respectively the monodromy matrix,
the Maslov index of the orbit, and the product of the Fresnel
reflection coefficients at all reflection points. For a ray with an
angle of incidence χ , the TM Fresnel reflection coefficient at a
planar dielectric interface between a medium with a refractive
index n and air is

RTM(χ ) = n cos χ −
√

1 − n2 sin2 χ

n cos χ +
√

1 − n2 sin2 χ
. (10)

For a periodic orbit family

cp =
√

2k

π

n2Ap√
πnlp

〈Rp〉e−iμpπ/2+π/4 , (11)

where Ap is the area covered by the orbit family and 〈Rp〉
stands for the average of the Fresnel reflection coefficient over
the family.

Hereafter, to compare these theoretical predictions to
numerical simulations, we will rather consider the Fourier
transform of the spectral density d(l) in order to reveal the
oscillating part:

d(l) =
∑

n

e−iknl , (12)
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where the kn are the complex eigenvalues calculated from
numerical simulations. This function can be obtained from
experiments as well.

B. Numerical simulations

The numerical simulations are based on the boundary
element methods, which consist of writing the solution of
(1) as integral equations on the inner and outer sides of the
boundary and of matching them using the boundary conditions.
The complex spectrum and the resonance wave functions
(sometimes called quasistationary states or quasibound states)
are inferred from the obtained boundary integral equation.
In accordance with the experiments presented here based on
polymer cavities, we use n = 1.50 inside the cavity and n = 1
outside (air).

C. Experiments

Dielectric resonators are widely used in photonics for
fundamental research [16] and practical applications [2].
Furthermore their wavelength range is not limited to optics
and cover other electromagnetic domains like microwaves [17]
or terahertz waves [18]. Here we consider quasi-2D organic
microlasers since they proved to be quite efficient to test trace
formulas [10,11].

The cavities were etched by electron-beam lithography into
a polymethylmethacrylate (PMMA) layer doped with a laser
dye3 spincasted on a silica-on-silicon wafer. This technology
offers appreciable versatility in terms of shapes, while ensuring
a small roughness and a good quality for the corners with a res-
olution better than a tenth of wavelength (see Fig. 6.5 in [11]).
Some photographs of the cavities studied in this paper are
shown in Fig. 1. The fabrication process is relatively fast and
reproducible. At the end, the cavity thickness is about 600 nm,
while the in-plane scale is of the order of a few dozens microns,
which allows us to apply the effective index approximation and
therefore to consider these cavities as 2D resonators.

The chosen cavity was uniformly pumped from above at
room temperature and atmosphere with a frequency-double
pulsed Nd:YAG laser (30 or 700 ps) and its emission, integrated
over 30 pump pulses, was collected sideways in its plane with
a spectrometer (Acton SpectraPro 2500i) coupled to a cooled
CCD camera (Pixis100 Princeton Instruments). The spectral
range of the emitted light depends on the dye laser. Here, for
DCM, it is centered around 600 nm and so the kl parameter
varies from 500 to 1000. Consequently this experimental
system is working far away within the semiclassical regime
while its coherence properties are ensured by lasing.

The laser emission is mostly TE polarized [19], but for the
features which are compared here with theory and numerics,
there is not any predicted difference between the TE and TM
cases. Among the resonator shapes studied in this paper, the
pump polarization plays a prominent role only for the square
where it will be further developed. For the other shapes, it will
not be mentioned.

34-dicyanomethylene-2-methyl-6-(4-dimethylaminostyryl)-4H-
pyran (DCM), 5% in weight.

FIG. 1. (Color online) Photographs through an optical micro-
scope of some microlasers used in this paper. The in-plane scale
is about 100 μm.

As this paper is focusing on spectral features, we will
consider only the emission spectra which, by default, were
registered in the direction of maximal emission (i.e., parallel
to the sides for the square and pentagon [20], parallel to the
shortest axis for the rectangle [20], and at an angle depending
on the shape parameter for stadiums [21]). Moreover in order
to be close enough to the theoretical case of a passive resonator,
the cavities were pumped just above the laser threshold. Mode
(and orbit) competition is then reduced.

The typical laser spectrum is made of one or several combs
of peaks connected (in a crude approximation) with certain
periodic orbits. As shown in [10] the geometrical lengths
of the underlying periodic orbits can be inferred from the
Fourier transform of the experimental spectrum, which is
an equivalent of the length density d(l). For instance, for a
Fabry-Perot resonator of width a, the geometrical length of the
single periodic orbit is L = 2a and the dephasing after a loop
should be a multiple of 2π : knL = 2πm with m ∈ N�. Then
the spacing between the comb peaks verifies �k = 2π/nL,
leading to a periodic comb pattern and a Fourier transform of
the spectrum peaking at nL. With our experimental setup, the
precision on the geometrical length L reaches 3% after duly
taking account of the dispersion due to the effective index and
the absorption of the laser dye. So the refractive index which
should be used to interpret the Fourier transform is 1.64 for
these actual experiments (it is different from the bulk refractive
index 1.54 and the effective refractive index 1.50) [10].

III. REGULAR SHAPES

This section deals with square, rectangle, and elliptic
dielectric cavities, which can be called “regular” cases since
their closed counterparts (billiard problems) are integrable. To
our knowledge no analytical solution has been proposed so
far for these cavity shapes in the open case. Nevertheless, their
dielectric spectrum shows some characteristic features specific
to integrable systems.

036208-3



E. BOGOMOLNY et al. PHYSICAL REVIEW E 83, 036208 (2011)

The only example of 2D integrable dielectric cavity is
the circular one (see, e.g., [22]). Therefore its resonances
are organized in regular branches labeled by well defined
quantum numbers. For the above mentioned regular cav-
ities with relatively small refractive index it appears that
the resonances still follow a similar branch structure (see
Figs. 3, 6, 9, 14). This is surprising as these dielectric
problems are not integrable and strictly speaking there is no
conserved quantum number. This unusual regularity can be
described by the superscar approximation proposed in [10].
The detailed discussion of the modified superscar model and
its application to these problems will be given elsewhere [23].

A. The square cavity

The simplest example of regular cavities is the dielectric
square where the inside billiard problem is straightforward. For
instance, for Dirichlet boundary conditions, the eigenenergies
and eigenfunctions are the following:

k2
p,m = π2

a2
(p2 + m2),

ψp,m(x,y) = 2

a
sin

(pπx

a

)
sin

(mπy

a

)
,

where a is the side length and p and m are two positive
integers. The outer scattering problem even with the Dirichlet
boundary conditions is more difficult as it corresponds to
a pseudointegrable problem (see, e.g., [24]) and no explicit
analytical solution exists [25].

1. Numerics

The solutions of the square dielectric problem can be
divided into four symmetry classes corresponding to wave
functions odd (−) or even (+) with respect to the diagonals
y = x and y = −x. For instance, the notation (−+) means
that the wave function is odd with respect to the diagonal
y = x and even with respect to the other. Each symmetry class
reduces to a quarter of a square [dashed part in Fig. 2(b)]
with Dirichlet, (−), or Neumann, (+), boundary conditions
along the diagonals. The (−+) and (+−) symmetry classes
are equivalent. Figure 3 shows the resonance spectrum for
all symmetry classes and n = 1.5. Figure 4 displays some
typical quasistationary states for the (−−) symmetry class

χ

(a) (b)

FIG. 2. (Color online) (a) Two representations of the same
diamond periodic orbit. Definition of the incident angle χ . (b)
The dashed part corresponds to the fundamental domain used for
numerical simulations. The Fabry-Perot and diamond periodic orbits
are drawn, as well as their restriction to the fundamental domain
(dotted lines).

001050

Re(ka)

-1

-0.8

-0.6

-0.4

-0.2

0

Im
(k

a)

FIG. 3. (Color online) Resonance spectrum for the dielectric
square with n = 1.5. The crosses, squares, and circles correspond
respectively to (−+), (++), and (−−) symmetry classes. The
position of the horizontal dashed line is given by (13).

from different parts of the spectrum. Notice highly unusual
regularity of the spectrum and wave functions for this shape.

As for the case of the circular cavity (see, e.g., [22]), the
imaginary part of the dielectric square resonances is bounded
by the losses γmax of the periodic orbit with the highest losses,
which is here the Fabry-Perot indicated in Fig. 2(b) with

γmax = 1

n
ln

(
n − 1

n + 1

) ∣∣∣∣
n=1.5

� −1.073. (13)

The counting function N (k) gives the mean number of
resonances with a real part less than k in the strip defined
by (4). The Weyl-type formula (6) estimates its growth when
k → ∞. We checked this prediction for different values of
the refractive index and each symmetry class. For n = 1.5
the results of the numerical fit to the data computed from the
spectrum in Fig. 3 are the following:

(−−) Nfit(k) = n2

16π
(ka)2 − 0.0866 ka − 0.0456,

(++) Nfit(k) = n2

16π
(ka)2 + 0.2489 ka − 1.737,

(−+) Nfit(k) = n2

16π
(ka)2 + 0.0806 ka − 2.012.

Here we fixed the coefficient of the quadratic term and fitted
the linear and constant terms from the numerical data.

The predictions of (7) which take into account the Dirichlet
or Neumann boundary conditions4 on two of the sides of the
fundamental domain are given by the following expressions
calculated for n = 1.5:

(−−) αth = r̃(n) − n
√

2

4π

∣∣∣∣
n=1.5

� −0.0872,

4N̄ (k) = Ak2

4π
+ r

Lk

4π
+ O(1) with r = ±1 for billiards with,

respectively, Neumann and Dirichlet boundary conditions.
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(a)

(b)

(c)

FIG. 4. Wave functions for the dielectric square with n = 1.5
and (−−) symmetry class. (a), (b), and (c) correspond to ka =
98.36 − 0.0071 i, ka = 98.78 − 1.061 i, and ka = 98.96 − 0.998 i.
Gray scale: black represents maximal values of |ψ |2.

(++) αth = r̃(n) + n
√

2

4π

∣∣∣∣
n=1.5

� 0.2504,

(−+) αth = r̃(n)

4π

∣∣∣∣
n=1.5

� 0.0816.

The predicted values are in good agreement with our numerical
calculations. More precisely, each residue [the difference
between N (k) and Nfit(k)] oscillates around zero as evidenced
in Fig. 5. To ensure the efficiency of formula (6) we calculated
the spectrum also for n = 1.35 with the (−−) symmetry class;
see Fig. 6. The quadratic fit for the counting function now
gives

Nfit(k) = n2

16π
(ka)2−0.0709 ka−2.052

to be compared with

αth = r̃(n) − n
√

2

4π

∣∣∣∣
n=1.35

� −0.0713.

The residue also stays close to zero (see inset in Fig. 6).
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-1

0

1

2

3

N
(k

)-
N

fit
(k

)

100806040203

2

1

0

-1

-2

N
(k
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N

fit
(k

)

10080604020
k

-2

-1

0

1

2

N
(k

)-
N

fit
(k

)

10080604020

(a)

(b)

(c)

FIG. 5. Residue N (k) − Nfit(k) for the dielectric square (a = 1)
with n = 1.5 and different symmetry classes: (a) (−−), (b) (++),
and (c) (−+).

In all investigated examples, the agreement between pre-
diction and numerics is better than 2% for the linear term.

The oscillatory part of the trace formula is checked as
well. In the square, periodic orbits form families. Thus their
weighting is predicted by (11), which implies that the spectrum
is dominated by the diamond periodic orbit [see Fig. 2(a)].
Actually the weighting coefficient of this orbit is calculated
as follows: It covers the whole cavity (Adiamond = a2), its
length is short (Ldiamond = 2a

√
2), and for n >

√
2 there is

no refractive loss (|Rdiamond| = 1) in the deep semiclassical
limit k → ∞. For illustration, it is worth comparing with the
cp coefficient of the Fabry-Perot periodic orbit:5 AFP = a2,
LFP = 2a, and RFP = [(n − 1)/(n + 1)]2. Then for n = 1.5,
|cFP/cdiamond| � 0.05 mainly due to the prominent influence of
refractive losses.

The agreement with numerical simulations is checked via
the length density of the dielectric square which is computed
from the numerical spectrum using (12). The results are plotted
in Fig. 7. The length density is highly peaked at l = a

√
2 and

at its harmonics (lm = ma
√

2, with m ∈ N�). Only half of

5In the square there exist two identical Fabry-Perot orbits, horizontal
and vertical; each is self-retracing and so each is weighted by the
additional factor 1/2.
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-1.5

-1.0

-0.5

0.0

Im
(k

R
)

12010080604020

Re(kR)

-2

0

2

N
(k

)-
N

fit
(k

)

12010080604020

k

FIG. 6. Resonance spectrum for the dielectric square with n =
1.35 and (−−) symmetry class. The positions of the horizontal dashed
lines are given by (13). Inset: N (k) − Nfit(k) with a = 1.

the diamond orbit length appears, since the length density is
calculated for a single symmetry class and Fig. 2(b) shows
that the diamond periodic orbit is twice shorter if restricted to
the dashed area. If the length density had been performed with
the four symmetry classes, it would have been peaked at the
full diamond length (2a

√
2) and at its harmonics. The same

appears with experiments as shown below.
The agreement between numerics and predictions from

trace formula (11) is quite good as well when comparing
the ratios of the harmonics. Actually these harmonics can
be identified as repetitions of the diamond periodic orbit
(L = mLdiamond) and thus formula (11) predicts that the |cp|2
should decrease like 1/m. This prediction is shown by crosses
in Fig. 7. From numerics, we receive harmonics a little bit

1.0

0.5

0.0

no
rm

al
iz

ed
 |d

(l)
|2

1086420
l = geometrical length

 Predictions

 Numerics

FIG. 7. (Color online) Comparison of |d(l)|2 calculated from the
numerical data of the dielectric square for (−−) symmetry class
and n = 1.5 (continuous line), and predictions from trace formula
(crosses) considering the mth repetitions of half the diamond periodic
orbit (l = ma

√
2) with a coefficient |d(l)|2 ∝ 1/m.

smaller than predicted which is natural as the Fresnel reflection
coefficient (10) does not take into account correctly a leakage
through a dielectric interface of finite length.

2. Experiments

The prevalence of the diamond periodic orbit was already
experimentally demonstrated with organic microlasers [10]
and microwave cavities [26]. Here we would like to stress that
sometimes the experimental spectrum reveals half the diamond
periodic orbit instead of the full one due to a selection of
symmetry classes. This phenomenon is illustrated in Fig. 8(a)
using the pump polarization as a control parameter. Actually
the DCM molecule (the laser dye) is more or less rodlike
and thus conserves (in a way) the memory of the pump
polarization which can be monitored at will without modifying
other parameters. A study of the pump polarization influence
will be published elsewhere [19].

The Fourier transforms of the spectra in Fig. 8(a) are
plotted in Fig. 8(b). Let us call α the angle between the pump
polarization (which lies in the plane of the layer) and the
direction of observation. For α = 0◦, the first harmonic of the
Fourier transform is peaked at the diamond optical length. But
for α = 45◦, only one peak out of two appears in the spectrum;

2.0
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1.0

0.5

0.0

N
or

m
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iz
ed

 in
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620618616614612610608606

Wavelength (nm)
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Observation

Polarization

(a)
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 F
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m

3000200010000
Optical length (µm)
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(b)

FIG. 8. (Color online) (a) Experimental spectra from a square
microlaser with a = 120 μm. Top: α = 45◦, bottom: α = 0◦.
(b) Fourier transform of the spectra in (a). The arrow indicates the
predicted optical length of the diamond periodic orbit: 2

√
2a n.
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Re(kl)
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-0.8
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-0.2
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FIG. 9. Resonance spectrum of the dielectric rectangle with
ρ = 2, (++) symmetry class, and n = 1.5. The positions of the
horizontal lines are given by (14) and (15).

therefore the Fourier transform peaks at half the diamond
optical length. It can be noted that the second harmonic (at
the actual diamond length) is slightly higher than the first one.
This is due to the presence of a residual comb visible in the
spectrum [Fig. 8(a), top].

In this section, we have shown that the spectral properties of
the dielectric square (density of states, resonance losses, laser
spectra) are controlled in a first approximation by classical
features and symmetry classes. For low refractive indices (what
we studied), the diamond periodic orbit plays a prominent role.

B. The dielectric rectangle

We repeat the same steps as in the previous section but for
a rectangular cavity so as to monitor eventual changes when
breaking the square symmetry. Let us call ρ = L/l the ratio
between the larger and smaller sides. We will focus on the case
ρ = 2.

1. Numerics

We restrict ourselves to the (++) symmetry class with
respect to the perpendicular bisectors of the sides (see dashed
area in Fig. 11). Figure 9 shows the resonance spectrum for
this case. The lower bound γmax of the imaginary parts of
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FIG. 10. Residue N (k) − Nfit(k) for the dielectric rectangle with
ρ = 2, l = 1, (++) symmetry class, and n = 1.5.
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FIG. 11. (Color online) (a) Length density for a dielectric rect-
angle calculated from the spectrum in Fig. 9. The expected position
of the double diamond (resp. the stretched diamond) is indicated by
a cross (resp. a triangle). (b) Main periodic orbits contributing to
the resonance spectrum: double diamond (dashed line) and stretched
diamond (continuous line). The dashed area corresponds to the
fundamental domain.

the resonances is related to the lifetime of the classical orbit
bouncing perpendicularly off the longest side of the rectangle:

γmax = 1

n
ln

(
n − 1

n + 1

)
. (14)

Another horizontal line is plotted in Fig. 9, which corresponds
to the lifetime of the orbit bouncing perpendicularly off the
smallest side of the rectangle:

γ2 = 1

ρn
ln

(
n − 1

n + 1

)
. (15)

As for the square cavity, prediction (6) is checked. The
best quadratic fit of the counting function N (k) computed
numerically from the data of Fig. 9 is (with n = 1.5)

Nfit(k) = n2 ρ

16π
(kl)2 + 0.2894 kl − 3.7346. (16)

The prediction for the linear term is

αth = r̃(n) + n

8π
(1 + ρ)

∣∣∣∣
n=1.5,ρ=2

� 0.3014, (17)

which shows a good agreement. The difference between the
numerically computed N (k) and its best quadratic fit (16) is
shown in Fig. 10.

The length density d(l) defined by (12) is shown in
Fig. 11(a), and is peaked at the lengths of the double diamond
orbit and the stretched diamond orbit [both displayed in
Fig. 11(b)].

Finally, some wave functions associated with resonances
from different parts of the spectrum are shown in Fig. 12.

2. Experiments

Figure 13(a) presents a typical experimental spectrum from
a rectangular microlaser with ρ = 2. Its Fourier transform
plotted in Fig. 13(b) is peaked at the length of the double
diamond periodic orbit (see inset), in agreement with numerics
and predictions. This experimental observation is very robust
whatever the parameter being used: direction of emission,
pump intensity, and pump polarization. For illustration, a
comparison between the measured and expected optical
lengths is presented in the insert of Fig. 13(b) for various
cavity sizes. For completeness, it should be noted that the

036208-7



E. BOGOMOLNY et al. PHYSICAL REVIEW E 83, 036208 (2011)

(a)

(b)

(c)

FIG. 12. Quasistationary states for the dielectric rectangle, n =
1.5, (++) symmetry class. (a) kl = 70.04 − 0.038 i, (b) kl =
70.26 − 0.33 i, and (c) kl = 70.45 − 0.92 i. Gray scale: black repre-
sents maximal values of |ψ |2.

Fabry-Perot along the longest axis appears if observed in its
specific direction and pumped with a favorable polarization.

C. The dielectric ellipse

The ellipse can also be considered a regular shape, since
the interior billiard problem is separable [27]. Let us call
b (resp. a) half the length of the minor (resp. major) axis.
Here we consider only the ratio ρ ≡ a/b = 2; however, the
computations for other ρ values give similar results. Here we
will restrict ourselves to the (−−) symmetry class; i.e., the
function vanishes along both symmetry axes of the ellipse.

1. Numerics

Figure 14 shows the resonance spectrum for ρ = 2. As for
the square cavity, it looks quite regular while the problem is
not separable. Similarly, the imaginary parts of the resonances
are bounded by the losses of the Fabry-Perot periodic orbit
(along the minor axis):

γmax = 1

2n
ln

(
n − 1

n + 1

)
. (18)
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FIG. 13. (Color online) (a) Experimental spectrum of a rectangle
microlaser with ρ = 2 and l = 70 μm. (b) Fourier transform of
the spectrum in (a). Inset: Comparison between the optical lengths
inferred from experiments and those expected for the double-diamond
for different cavity sizes.

Formula (6) for the counting function is checked with the
same protocol as before. The residue between numerics and fit
is plotted in Fig. 15 and oscillates around zero. Moreover the
linear term of the regression

αfit = −0.0866

agrees well with the prediction:

αth = r̃(n)ρE(e) − n(1 + ρ)

4π

∣∣∣∣
n=1.5,ρ=2

� −0.0872,

where E(z) is the complete elliptic integral:

E(z) =
∫ π/2

0

√
1 − z2 sin(t)2 dt, (19)

and e =
√

1 − (b/a)2 is the eccentricity of the ellipse.
The oscillatory part will be postponed to a future publica-

tion. We already note that the wave functions display in general
two kinds of behavior for the wave inside the cavity: either
“whispering gallery modes” or “bouncing ball modes”—as
is (rigorously) the case for the elliptic billiard. Figure 16
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FIG. 14. Resonance spectrum for the dielectric ellipse with ρ =
2, (−−) symmetry class, and n = 1.5. The position of the horizontal
dashed line is given by (18).

presents examples of such wave functions, which correspond
to resonances from different parts of the spectrum.

2. Experiments

Experiments provide similar insights into the dominant res-
onance features. The inset in Fig. 17 shows a typical spectrum
from an elliptical microlaser with ρ = 2, while its Fourier
transform is plotted in the main window. Its first harmonics
presents two main peaks with positions corresponding quite
well to the optical lengths of two periodic orbits: the rectangle
and the Fabry-Perot along the major axis. The deviation is
less than 3%, which is the experimental inaccuracy. It should
be noted that for ρ = 2 the length of the Fabry-Perot along
the major axis is equivalent to the second repetition of the
Fabry-Perot along the minor axis, also called bouncing ball.

IV. PSEUDOINTEGRABLE SYSTEM: THE DIELECTRIC
PENTAGON

Similar studies were performed for the dielectric pentagon
and hexagon, which are particularly interesting systems since
they contain diffracting angles: mπ/n with m,n co-prime and
m > 1. Following Richens and Berry [24] these systems are
called pseudointegrable, since their classical flow is confined
to a surface as for integrable systems but because its genus is
bigger than 1 they cannot be classically integrable.
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252015105
k

FIG. 15. N (k) − Nfit(k) for the dielectric ellipse (b = 1) with ρ =
2 and (−−) symmetry class.

(a) (b)

FIG. 16. Wave functions for the ellipse with ρ = 2, n = 1.5, and
(−−) symmetry. (a) Whispering gallery mode, kb = 22.00 − 0.02 i.
(b) Bouncing ball mode, kb = 22.30 − 0.36 i. Gray scale: black
represents maximal values of |ψ |2.

Here we only consider the dielectric pentagon, although
every conclusion also applies to the hexagon mutatis mutandis.
Below we present the results for the (−−) symmetry class,
which means that the associated wave functions vanish along
each symmetry axis of the polygon. R stands for the radius of
the outer circle of the pentagon and a = 2R sin(π/5) for its
side length.

A. Numerics

Figure 18(a) shows the resonance spectrum of a dielectric
pentagon for (−−) symmetry and n = 1.5. Again the imagi-
nary part of the resonances is bounded and this lower bound
γmax can be estimated from the refractive losses of the periodic
orbit drawn in Figs. 18(c) and 18(d) which presents the highest
losses (shortest lifetime):

γmax = 2

nl
ln RTM

( π

10

) ∣∣∣
n=1.5

� −0.630, (20)

where l = 2R [sin(2π/5) + sin(π/5)].
Several wave functions are displayed in Fig. 19. It is im-

portant to stress the existence of different types of resonances.
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FIG. 17. (Color online) Fourier transform of the spectrum in inset.
The arrows indicate the predicted optical length of periodic orbits:
single arrow for the Fabry-Perot along the major axis 4a n and double
arrow for the rectangle 4b n

√
1 + ρ2. Inset: Experimental spectrum

from an elliptical microlaser with ρ = a/b = 2 and b = 50 μm
registered in the direction parallel to the major axis.
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FIG. 18. (a) Resonance spectrum for the dielectric pentagon with
(−−) symmetry and n = 1.5. The position of the horizontal dashed
line is given by (20). (b) N (k) − Nfit(k) calculated from the numerical
spectrum in (a) with R = 1. (c) A part of the periodic orbit with the
shortest lifetime. (d) A representation of the periodic orbit in (c).

The ones with low losses are related to whispering-gallery-like
modes; see Fig. 19(a). In [10], this observation was used to
build a superscar approximation of these resonances. Note the
more complex pattern in Fig. 19(b) for this wave function
corresponding to kR with a rather large imaginary part, and
the scarring by the orbit in Fig. 18(d) for the wave function in
Fig. 19(c).

Weyl’s law (6) is checked as above by fitting the counting
function N (k) which gives

Nfit(k) = n2 sin(2π/5)

16π
(kR)2 − 0.1681 kR + 0.1077,

in good agreement with the prediction for the linear term:

αth = r̃(n) sin(π/5) − n [1 + cos(π/5)]

4π

∣∣∣
n=1.5

� −0.1680.

Moreover the residue N (k) − Nfit(k) oscillates around zero as
expected (see Fig. 18(b)).

(a)

(b)

(c)

FIG. 19. Wave functions of the dielectric pentagon with (−−)
symmetry and n = 1.5. (a) kR = 91.35 − 0.038 i, (b) kR = 89.06 −
0.453 i, and (c) kR = 92.56 − 0.628 i. Gray scale: black represents
maximal values of |ψ |2.

The length density plotted in Fig. 20(c) evidences that a
few periodic orbits mostly contribute to the oscillatory part of
the trace formula. First the density of orbit length is peaked
at a length corresponding to the “double pentagon” periodic
orbit, which is depicted in Figs. 20(a) and 20(b). This orbit
is confined by total internal reflection for our value of the
refractive index and lives in family contrary to the isolated
“single pentagon” orbit. The length of the single pentagon
periodic orbit, once folded in the fundamental domain shown
in Fig. 20(a), is l = R sin(2π/5). The length of the double
pentagon periodic orbit is twice longer. The vertical lines in
Fig. 20(b) indicate the theoretical lengths of the mth repetition
of the single pentagon periodic orbit: lm = m l. As expected,
the length density is mostly peaked at the lm positions with
even m.

Second, it is worth noting that the amplitude of the peaks
does not clearly decay as for the square in Fig. 7. For m = 7
for instance, the peak amplitude is unexpectedly high for a
repetition of a given orbit. This happens when the length lm is
close to the length of a diffracting orbit. Here, the repetitions
m = 7 and m = 9 are in fact of similar lengths than the
orbits illustrated in Fig. 21. The treatment of such diffracting
correction (see a similar discussion in [28] for billiards) is
beyond the scope of this paper as it requires the local exact
solution of the diffracted field by a dielectric wedge.
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FIG. 20. (Color online) (a) “Single pentagon” periodic orbit in
solid line and “double pentagon” periodic orbit in dotted line. The
dashed area indicates the fundamental domain used for simulations.
(b) A representation of the double pentagon periodic orbit. (c) Length
density for the dielectric pentagon calculated from the numerical data
plotted in Fig. 18(a). The vertical lines in the bottom part of the graph
indicate the repetitions of the single pentagon orbit.

B. Experiments

A typical experimental spectrum from a pentagonal micro-
laser is plotted in Fig. 22(a). Its Fourier transform presented in
Fig. 22(b) is mostly peaked at the length of the double pentagon
periodic orbit. The single pentagon is visible as well, which
can be directly noticed on the spectrum made of two combs
of different amplitudes. In [10], we reported an experimental
spectrum from a pentagonal microlaser where both combs had
similar amplitudes and therefore its Fourier transform did not
present any peak at the length of the single pentagon. The
parameters which control the relative amplitudes of the combs

(a) (b)

FIG. 21. Diffracting orbits in the pentagonal cavity. (a) la =
R

√
130 + 22

√
5/2, 7l/ la ≈ 0.995. (b) lb = R

√
210 + 38

√
5/2,

9l/ lb ≈ 0.997.

600

400

200

0

In
te

ns
ity

 (
co

un
ts

)

620615610605

Wavelength (nm)

(a)

1.0

0.5

0.0

N
or

m
al

iz
ed

 F
ou

rie
r 

tr
an

sf
or

m

40003000200010000

Optical length (µm)

(b)

FIG. 22. (Color online) (a) Experimental spectrum from a pen-
tagonal microlaser with a = 90 μm. (b) Fourier transform of the
spectrum in (a). The single (resp. double) arrow indicates the expected
position of the single (resp. double) pentagon periodic orbit.

have not been identified yet, but it is clear that the etching
quality is a key point.

V. CHAOTIC DIELECTRIC CAVITIES

Finally we applied the same ideas to an archetypal chaotic
cavity, the Bunimovich stadium, which is made of a rectangle
between two half circles [see Fig. 23(b) for notations], and
investigated various deformations defined by the parameter
ρ = L/R.

A. Numerics

For simplicity we only consider the (−−) symmetry class,
which means that the associated wave functions vanish along
both symmetry axes of the stadium. The resonance spectrum
for ρ = 1 is shown in Fig. 23(a). As for the other cavities,
the imaginary part of the resonances is bounded and its lower
bound γmax can be estimated from the refractive losses of
the periodic orbit which presents the highest losses, i.e., the
Fabry-Perot along the small axis (also called bouncing ball
orbit):

γmax = 1

2n
ln

(
n − 1

n + 1

)
. (21)

Again, some wave functions are presented in Fig. 24, repre-
sentative of different parts of the spectrum.
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FIG. 23. (a) Resonance spectrum for the dielectric stadium with
ρ = 1, (−−) symmetry class, and n = 1.5. The position of the hori-
zontal dashed line is given by (21). (b) Notations for the Bunimovich
stadium. (c) N (k) − Nfit(k) calculated from the numerical simulations
in (a) with R = 1.

The counting function N (k) was computed from the
numerical data shown in Fig. 23(a) and the best fit gives

Nfit(k) = n2

4π

(
ρ + π

4

)
(kR)2 − 0.145 kR − 4.042, (22)

to be compared with prediction (7) for the linear term:

αth = 1

4π

[
r̃(n)

(
ρ + π

2

)
− n (2 + ρ)

] ∣∣∣
n=1.5,ρ=1

� −0.148. (23)

The oscillatory part of the trace formula is also checked,
plotting the length densities calculated from numerical spectra
for several shape ratios ρ. The curves presented in Fig. 25
are peaked at different positions which could be assigned to
periodic orbits. To predict which periodic orbits should mainly
contribute to the length density, we calculated their weighting
coefficient from formula (9). The considered orbits are drawn
in Fig. 26, their geometrical length is plotted in Fig. 27, and
their coefficient (amplitude) versus ρ in Fig. 28(a). Note that
orbits 5 and 6 obey geometrical constraints such as that they
do not exist for ρ < 1.

The length densities are calculated from the numerical
spectra on a finite number of resonances [finite range of

(a)

(b)

(c)

FIG. 24. Wave functions of the dielectric stadium with ρ =
1, (−−) symmetry class, and n = 1.5. (a) kR = 34.48 − 0.11 i,
(b) kR = 34.55 − 0.31 i, and (c) kR = 34.48 − 0.45 i. Gray scale:
black represents maximal values of |ψ |2.

Re(kR)]; thus some finite size effects do play a role and
must be taken into account evaluating the amplitudes of
the periodic orbits. One of the main effects here comes
from the curvature correction in the reflection coefficient.
If the dielectric boundary is curved enough compared to
the wavelength then there is a quite important correction to
the standard Fresnel coefficients [29]. We use the following
formula to take into account the curvature correction:

R
(c)
TM =

√
n2 − m2

x2
+ i

H (1)′
m

H
(1)
m

(x)

√
n2 − m2

x2
− i

H (1)′
m

H
(1)
m

(x)

, (24)

where x = kR and m = nx cos χ . The Fresnel coefficient
for a straight interface (10) is recovered for large kR; see
Fig. 29. In Fig. 28(b), the amplitudes of the periodic orbits are
plotted taking into account this curvature correction. Note the
important differences with Fig. 28(a).

Using Fig. 28(b) we can give a quantitative estimate of the
periodic orbits which mostly contribute to the length density.
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FIG. 25. (Color online) Length densities calculated from nu-
merical spectra for dielectric stadiums with (−−) symmetry class
and n = 1.5. (a) ρ = 0.3, (b) ρ = 0.75, and (c) ρ = 1.25. The
vertical dotted lines indicate the expected positions of periodic orbits
(numbering according to Fig. 26).

For ρ = 0.3 [Fig. 25(a)], the length density is peaked around
orbits 3 (l � 3.28) and 1 (l � 3.43), and orbits 2 and 4 with
respective lengths l � 3.6 and l � 3.54 cannot be separated.
For ρ = 0.75 [Fig. 25(b)], orbits 1 and 4 with respective
lengths l � 4.33 and l � 4.40 interfere. The line at l � 4.5
stands for orbit 2. Eventually for ρ = 1.25 [Fig. 25(c)], the
two orbits 1 and 4 (l � 5.33 and l � 5.38) interfere. Again
we drew a line for orbit 2 at l � 5.5. A peak can also be seen
for orbit 6 (l � 6.04). From these examples it appears that the
agreement between theory and numerics is qualitatively good.

B. Experiments

Spectra were recorded for the shape ratios used in numerical
simulations and for various R (see [30] for ρ = 0.5). A
typical experimental spectrum from an organic microstadium
is plotted in Fig. 30 and typical Fourier transforms in Fig. 31.
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FIG. 26. Some periodic orbits of the stadium.
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FIG. 27. Geometrical length of the periodic orbits plotted in
Fig. 26. Numbering according to Fig. 26.

They look similar to those of the shapes studied in the previous
sections. However the main difficulty to face when studying
stadiums is the large number of orbits with close lengths.
Whether numerically or experimentally, it is thus difficult to
assign peaks in the length density. Thus, to check formula (9)
against experiments, it was decided to compare the positions of
the peaks to the length of the perimeter. Actually some crossing
orbits like orbits 5 and 6 are longer than the perimeter and, due
to geometrical constraints, do not exist for ρ < 1. Moreover
according to Fig. 28(a), which corresponds to the semiclassical
limit and so to experimental conditions, their amplitudes (9) are
the highest when they appear. So we expect Fourier transforms
peaked at positions shorter than the perimeter for ρ < 1 and
longer for ρ � 1, and this is evidenced in Fig. 31.

VI. CONCLUSION

In this paper we have shown numerical and experimental
results concerning the trace formula for dielectric cavities. For
convex cavities and TM polarization the resonance spectrum
can be divided into two subsets. One of them, the Feschbach
(inner) resonances which are relevant for experiments, is
statistically well described by classical features: the periodic
orbit with the shortest lifetime for the lower bound of the
wave number imaginary parts, Weyl’s law for the counting
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FIG. 28. Amplitude of the orbits listed in Fig. 26 for the (−−)
symmetry class following formula (9). (a) Semiclassical regime (i.e.,
no size effect taken into account). (b) Same, with curvature correction
calculated for kR = 25.
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FIG. 29. Modulus of the TM reflection coefficient as a function
of the incidence angle (in degrees). Full line: Fresnel coefficient (10)
for a straight boundary. Dotted lines: (24) for kR = 100,50,25.

function, and the weighting coefficients of periodic orbits
for the length density. The formulas we derived, based on
standard expressions used in quantum chaos and adapted to
dielectric resonators, give an accurate description of these
spectral properties.

These formulas have been checked for various resonator
shapes. For “regular shape” (i.e., the analogous billiard
problem is separable) and for small index of refraction, the
resonance spectrum presents a branch structure as if the
dielectric problem were separable. When the corresponding
billiard problem is not integrable, the usual Weyl’s law
still occurs. The oscillating part can be also explained by
taking into account the shortest periodic orbits. In the chaotic
case the correspondence is however more difficult to claim
quantitatively as finite size effects play a quite important role
because of periodic orbits with close lengths.

The main result of the paper is the demonstration that
dielectric cavities widely used in optics and photonics can
be well described using generalizations of techniques from
quantum chaos.

This study raises many open problems and we would like
to mention some of them. The formulas checked here gave
accurate predictions for TM polarization. For TE polarization,
due to the existence of the Brewster angle where the reflection
coefficient vanishes [31], the situation is less clear and requires
further investigations. The next step should be to treat carefully
the diffraction on dielectric wedges, which is still an open
problem [32]. A related question is to improve the accuracy
of the standard effective index theory, since the separation
into TE and TM polarizations is precisely based on this
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FIG. 30. (Color online) Experimental spectrum of a stadium
microlaser with ρ = 0.75 and R = 50 μm. Its Fourier transform is
plotted in Fig. 31(b).
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FIG. 31. (Color online) Normalized Fourier transform of ex-
perimental spectra from stadium microlasers with (a) R = 80 μm,
(b) R = 50 μm, and (c) R = 45 μm. The vertical line corresponds
to the position of the perimeter. The arrows indicate the expected
positions of some orbits, for comparison: (a) orbits 1 and 2,
(b) orbit 1, and (c) orbits 1 and 5 (numbering according to Fig. 26).

2D approximation. Experimental data (i.e., real 3D systems)
indeed reveal departures from this model [19,26]. These
questions are related to the wave functions (see, e.g., [10]) and
far field patterns, which are also of great interest, especially
for applications.
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APPENDIX: WEYL’S LAW

This Appendix deals with the derivation of formula (6)
using an alternative method than in [3]. Start from the definition
of the Green’s function G:

[��x + n(�x )2k2] G(�x,�y ) = δ(�x − �y ), (A1)

where n(�x ) is equal to n (resp. 1) when �x is inside (resp.
outside) the dielectric cavity. Moreover, for TM modes,
G(�x,�y ) and its normal derivative are continuous along the

036208-14



TRACE FORMULA FOR . . . . II. REGULAR, . . . PHYSICAL REVIEW E 83, 036208 (2011)

boundary of the domain. Taking the trace of it gives the density
of states through the Krein formula (see [3] and references
therein):

dall(E) − d0(E)

= − 1

π

∫
Im

[
n(�x )2G(�x,�x ) − G0(�x,�x )

]
d �x, (A2)

where the integral runs over the whole 2D plane. d0(E) is the
density of states of the free space and G0(�x,�y ) stands for the
Green’s function of a free particle in the plane:

G0(�x,�y ) = 1

4i
H

(1)
0 (k |�x − �y |) (A3)

= 1

4πi

∫ +∞

−∞

eip(x1−y1)√
k2 − p2

ei
√

k2−p2 |x2−y2| dp, (A4)

with �x = (x1,x2) and �y = (y1,y2). H
(1)
0 (z) is the Hankel

function of the first kind and Eq. (A4) implicitly assumes that
k has a small positive imaginary part. It is worth noting that
dall(E) is the Krein spectral shift function which is different
from the spectral density d(E) discussed in Eq. (5). It will be
explained how to get it at the end of the Appendix.

1. Derivation of the first two terms

The leading term of Weyl’s law is obtained when substitut-
ing G0 to G in Eq. (A2) and using (A3):

dall(E) − d0(E) � (n2 − 1)
A
4π

, (A5)

where A is the area of the domain filled with the dielectric
material.

The first remaining term in (6) comes from the presence of
the boundary. Thus it is first necessary to solve the elementary
problem of a plane wave reflecting on an infinite straight
dielectric boundary, which can be derived through standard
methods. Then, using expression (A4), the Green’s function
for both �x and �y inside the dielectric can be written:

G(�x,�y ) = 1

4πi

∫ +∞

−∞

eip(x1−y1)√
n2k2 − p2

[
ei

√
n2k2−p2 |x2−y2|

+R(p) ei
√

n2k2−p2 |x2+y2|
]
dp, (A6)

where p is the tangential component of the momentum and

R(p) =
√

n2k2 − p2 −
√

k2 − p2√
n2k2 − p2 +

√
k2 − p2

. (A7)

Similarly one gets the Green’s function when the arguments
are outside the dielectric:

G(�x,�y ) = 1

4πi

∫ +∞

−∞

eip(x1−y1)√
k2 − p2

[
ei

√
k2−p2 |x2−y2|

−R(p) ei
√

k2−p2 |x2+y2|
]
dp. (A8)

As usual the trace of G is computed using local coordinates.
The surface term (A5) is recovered from the first terms of
(A6) and (A8), so we focus now on their second terms only.
The integration along the boundary gives the length factor L.
For the transverse coordinate, the boundary is approximated
locally by its tangent plane, and then (A6) and (A8) are used.

1.5

1.0

r(
n)

54321
n

FIG. 32. Plot of r̃(n).

After the convenient Wick rotation p → −itk, the boundary
contribution from inside is

α(in) = n2

8π2k

∫ +∞

−∞

R(−itk)

n2 + t2
dt. (A9)

Similarly from (A8) the boundary contribution is

α(out) = − 1

8π2k

∫ +∞

−∞

R(−itk)

1 + t2
dt. (A10)

Putting together (A9) and (A10) back to (A2), one gets the
first two terms of the Weyl expansion:

dall(E) − d0(E) � (n2 − 1)
A
4π

+ [r̃(n) − 1]L
8πk

, (A11)

where, noting R(t) instead of R(−itk),

r̃(n) = 1 + n2

π

∫ +∞

−∞

dt

t2 + n2
R(t)

− 1

π

∫ +∞

−∞

dt

t2 + 1
R(t). (A12)

r̃(n) is plotted in Fig. 32.

2. From the density of states to the count of Feschbach
resonances

As mentioned above, the quantity entering the Krein
formula is not exactly the spectral density (5), but it can
be related heuristically. The spectral shift function, dall(E)
in (A2), is related with the determinant of the full S-matrix
for the scattering on a cavity, while d(E) in (5) is the spectral
density of Feschbach (inner) resonances which are poles of
this S-matrix. In addition to these poles, the determinant of
the S-matrix may have poles associated with shape resonances
(which we do not take into account) and then an additional
phase factor ds(E):

dall(E) = d(E) + ds(E). (A13)

It is natural to assume (and can be checked for a dielectric disk)
that for all outside structures the corresponding wave functions
are almost zero inside the cavity and on its boundary. Therefore
the S-matrix phase ds(E) associated with such functions
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in the leading order is the same as for the outside scattering
on the same cavity but with the Dirichlet boundary conditions.
The Weyl expansion for such scattering is known (see [5,8]
and references therein):

ds(E) − d0(E) � − A
4π

− L
8πk

. (A14)

Subtracting (A14) from (A11) gives the desired result for
the spectral density, taking into account only Feschbach
resonances:

d(k) = 2kd(E) � n2 Ak

2π
+ r̃(n)

4π
L. (A15)

Then Eq. (6) is recovered by integration.
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F. Schäfer, Phys. Rev. A 80, 023825 (2009).
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