430 research outputs found

    Direct Observation of Node-to-Node Communication in Zeolitic Imidazolate Frameworks

    Get PDF
    Zeolitic imidazolate frameworks (ZIFs) with open-shell transition metal nodes represent a promising class of highly ordered light harvesting antennas for photoenergy applications. However, their charge transport properties within the framework, the key criterion to achieve efficient photoenergy conversion, are not yet explored. Herein, we report the first direct evidence of a charge transport pathway through node-to-node communication in both ground state and excited state ZIFs using the combination of paramagnetic susceptibility measurements and time-resolved optical and X-ray absorption spectroscopy. These findings provide unprecedented new insights into the photoactivity and charge transport nature of ZIF frameworks, paving the way for their novel application as light harvesting arrays in diverse photoenergy conversion devices

    The Stokes-Einstein Relation at Moderate Schmidt Number

    Full text link
    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently-developed minimally-resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The numerical data is in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.Comment: Submitte

    Cryogenic Hydrogen Radiation Shield for Human Spaceflight

    Get PDF
    The disclosed subject matter relates to a radiation shielding apparatus including a cryogenic vessel and a cryogenic hydrogen radiation shielding material capable of providing a radiation shield, the cryogenic hydrogen radiation shielding material including cryogenic hydrogen

    Public Libraries’ Perceptions of Future Collaborations for the Development of Smart Cities and Communities: Understanding Influential Factors

    Get PDF
    Recently, the concept of smart city has been adopted by many communities as a strategy to find alternative solutions to increasingly complex social, economic, and environmental issues. Different local actors, including public libraries, are already playing an important role in developing smart cities and communities either by themselves or in collaboration with other organizations. However, most public libraries are not currently collaborating for smart community development. Therefore, this paper analyzes the factors that influence public libraries’ perceptions about future collaborations in developing smart cities and communities as well as their potential benefits. The results show that consequential incentives, the nature of the task, preexisting relationships, an agreement on initial aims, and a collaborative and supportive leader all have a significant positive impact on the extent, effectiveness, and benefits of public libraries’ future collaborations to develop smart cities and communities

    10 Years of GWAS in intraocular pressure

    Get PDF
    Intraocular pressure (IOP) is the only modifiable risk factor for glaucoma, the leading cause of irreversible blindness worldwide. In this review, we summarize the findings of genome-wide association studies (GWASs) of IOP published in the past 10 years and prior to December 2022. Over 190 genetic loci and candidate genes associated with IOP have been uncovered through GWASs, although most of these studies were conducted in subjects of European and Asian ancestries. We also discuss how these common variants have been used to derive polygenic risk scores for predicting IOP and glaucoma, and to infer causal relationship with other traits and conditions through Mendelian randomization. Additionally, we summarize the findings from a recent large-scale exome-wide association study (ExWAS) that identified rare variants associated with IOP in 40 novel genes, six of which are drug targets for clinical treatment or are being evaluated in clinical trials. Finally, we discuss the need for future genetic studies of IOP to include individuals from understudied populations, including Latinos and Africans, in order to fully characterize the genetic architecture of IOP

    Design of the PIXIE Adiabatic Demagnetization Refrigerators

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope

    Energy-Aware, Collision-Free Information Gathering for Heterogeneous Robot Teams

    Full text link
    This paper considers the problem of safely coordinating a team of sensor-equipped robots to reduce uncertainty about a dynamical process, where the objective trades off information gain and energy cost. Optimizing this trade-off is desirable, but leads to a non-monotone objective function in the set of robot trajectories. Therefore, common multi-robot planners based on coordinate descent lose their performance guarantees. Furthermore, methods that handle non-monotonicity lose their performance guarantees when subject to inter-robot collision avoidance constraints. As it is desirable to retain both the performance guarantee and safety guarantee, this work proposes a hierarchical approach with a distributed planner that uses local search with a worst-case performance guarantees and a decentralized controller based on control barrier functions that ensures safety and encourages timely arrival at sensing locations. Via extensive simulations, hardware-in-the-loop tests and hardware experiments, we demonstrate that the proposed approach achieves a better trade-off between sensing and energy cost than coordinate-descent-based algorithms.Comment: To appear in Transactions on Robotics; 18 pages and 16 figures. arXiv admin note: text overlap with arXiv:2101.1109

    Comparison of two 3D tracking paradigms for freely flying insects

    Full text link
    In this paper, we discuss and compare state-of-the-art 3D tracking paradigms for flying insects such as Drosophila melanogaster. If two cameras are employed to estimate the trajectories of these identical appearing objects, calculating stereo and temporal correspondences leads to an NP-hard assignment problem. Currently, there are two different types of approaches discussed in the literature: probabilistic approaches and global correspondence selection approaches. Both have advantages and limitations in terms of accuracy and complexity. Here, we present algorithms for both paradigms. The probabilistic approach utilizes the Kalman filter for temporal tracking. The correspondence selection approach calculates the trajectories based on an overall cost function. Limitations of both approaches are addressed by integrating a third camera to verify consistency of the stereo pairings and to reduce the complexity of the global selection. Furthermore, a novel greedy optimization scheme is introduced for the correspondence selection approach. We compare both paradigms based on synthetic data with ground truth availability. Results show that the global selection is more accurate, while the previously proposed tracking-by-matching (probabilistic) approach is causal and feasible for longer tracking periods and very high target densities. We further demonstrate that our extended global selection scheme outperforms current correspondence selection approaches in tracking accuracy and tracking time

    A global view of the oncogenic landscape in nasopharyngeal carcinoma : an integrated analysis at the genetic and expression levels

    Get PDF
    Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC

    Using a Knowledge Graph to Discover Earth Science Information

    Get PDF
    Knowledge graphs link key entities within a specific domain to other entities via relationships. Researchers are able to mine these relationships from numerous sources to infer new knowledge. Text extraction from peer-reviewed papers and scientific reports are untapped resources that can be leveraged by knowledge graphs to accelerate scientific discovery
    corecore