241 research outputs found

    Titration procedures for nasal CPAP: Automatic CPAP or prediction formula?

    Get PDF
    Background: The best method for titration Of continuous positive airway pressure (CPAP) therapy in obstructive sleep apnea (OSA) syndrome has not yet been established. The 90th or 95th percentiles of the pressure titrated over time by automatic CPAP (A-CPAP) have been recommended as reference for prescribing therapeutic fixed CPAP (F-CPAP). We compared A-CPAP to F-CPAP. which was determined by a common prediction formula. Methods: Forty-five patients who were habituated to F-CPAP underwent titration polysomnography. In a double-blind randomized order, each patient used an A-CPAP device in the autotitration and in the fixed pressure mode during one half of the night. Apnea-hypopnea index (AHI) and pressure profiles were primary outcomes. Bias and precision were additionally assessed for both CPAP modes. Results: No significant differences in various sleep parameters or in subjective sleep quality evaluation were found. The AHI was effectively lowered in both CPAP modes (A-CPAP 7.7 [10.8] events/h versus F-CPAP 5.4 (9.0] events/h, p = 0.061). Comparison of group means showed that F-CPAP closely paralleled mean (Pmean) and median (P50). but not the 95th percentile (P95) pressure. of A-CPAP. While bias was lowest for Pmean and P50. there was a lack of precision in all A-CPAP pressure categories. Conclusions: We confirm that F-CPAP set by prediction formula is not worse in terms of AHI control than A-CPAP. On average. F-CPAP parallels Pmean and P50 but not P95. However. due to imprecise matching. individual F-CPAP values cannot be derived front Pmean or P50

    Transgenic mouse model harboring the transcriptional fusion Ccl20-luciferase as a novel reporter of pro-inflammatory response

    Get PDF
    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.Laboratorio de Investigaciones del Sistema InmuneFacultad de Ciencias Exacta

    Predicting urinary creatinine excretion and its usefulness to identify incomplete 24h urine collections

    Get PDF
    Studies using 24 h urine collections need to incorporate ways to validate the completeness of the urine samples. Models to predict urinary creatinine excretion (UCE) have been developed for this purpose; however, information on their usefulness to identify incomplete urine collections is limited. We aimed to develop a model for predicting UCE and to assess the performance of a creatinine index using para-aminobenzoic acid (PABA) as a reference. Data were taken from the European Food Consumption Validation study comprising two non-consecutive 24 h urine collections from 600 subjects in five European countries. Data from one collection were used to build a multiple linear regression model to predict UCE, and data from the other collection were used for performance testing of a creatinine index-based strategy to identify incomplete collections. Multiple linear regression (n 458) of UCE showed a significant positive association for body weight (ß = 0·07), the interaction term sex × weight (ß = 0·09, reference women) and protein intake (ß = 0·02). A significant negative association was found for age (ß = - 0·09) and sex (ß = - 3·14, reference women). An index of observed-to-predicted creatinine resulted in a sensitivity to identify incomplete collections of 0·06 (95 % CI 0·01, 0·20) and 0·11 (95 % CI 0·03, 0·22) in men and women, respectively. Specificity was 0·97 (95 % CI 0·97, 0·98) in men and 0·98 (95 % CI 0·98, 0·99) in women. The present study shows that UCE can be predicted from weight, age and sex. However, the results revealed that a creatinine index based on these predictions is not sufficiently sensitive to exclude incomplete 24 h urine collections

    Transgenic mouse model harboring the transcriptional fusion Ccl20-luciferase as a novel reporter of pro-inflammatory response

    Get PDF
    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.Laboratorio de Investigaciones del Sistema InmuneFacultad de Ciencias Exacta

    Airway structural cells regulate TLR5-mediated mucosal adjuvant activity

    Get PDF
    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin’s mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.Fil: Van Maele, Laurye. Institut Pasteur de Lille. Lille; Francia. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Fougeron, Delphine. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Janot, Laurent. University of OrlĂ©ans. OrlĂ©ans; Francia. Institut de Transgenose. Orleans; FranciaFil: Didierlaurent, A.. Imperial College of London. Londres; Reino UnidoFil: Cayet, D.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Tabareau, J.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Rumbo, MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos; ArgentinaFil: Corvo Chamaillard, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Boulenoir, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Jeffs, S. Imperial College of London. Londres; Reino UnidoFil: Vande Walle, L. Department of Medical Protein Research. Ghent; BĂ©lgica. University of Ghent; BĂ©lgicaFil: Lamkanfi, M.. Department of Medical Protein Research. Ghent; BĂ©lgica. University of Ghent; BĂ©lgicaFil: Lemoine, Y.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Erard, F.. Institut de Transgenose. Orleans; Francia. University of OrlĂ©ans. OrlĂ©ans; FranciaFil: Hot, D.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Hussell, Tracy. Imperial College of London. Londres; Reino Unido. University of Manchester; Reino UnidoFil: Ryffel, B.. Institut de Transgenose. Orleans; Francia. University of OrlĂ©ans. OrlĂ©ans; FranciaFil: Benecke, Arndt G.. Institut des Hautes Études Scientifiques and Centre National de la Recherche Scientifique; FranciaFil: Sirard, J.C.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; Franci

    Pesticide exposure and lymphohaematopoietic cancers: a case-control study in an agricultural region (Larissa, Thessaly, Greece)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The causality of lymphohaematopoietic cancers (LHC) is multifactorial and studies investigating the association between chemical exposure and LHC have produced variable results. The aim of this study was to investigate the relationships between exposure to pesticides and LHC in an agricultural region of Greece.</p> <p>Methods</p> <p>A structured questionnaire was employed in a hospital-based case control study to gather information on demographics, occupation, exposure to pesticides, agricultural practices, family and medical history and smoking. To control for confounders, backward conditional and multinomial logistic regression analyses were used. To assess the dose-response relationship between exposure and disease, the chi-square test for trend was used.</p> <p>Results</p> <p>Three hundred and fifty-four (354) histologically confirmed LHC cases diagnosed from 2004 to 2006 and 455 sex- and age-matched controls were included in the study. Pesticide exposure was associated with total LHC cases (OR 1.46, 95% CI 1.05-2.04), myelodysplastic syndrome (MDS) (OR 1.87, 95% CI 1.00-3.51) and leukaemia (OR 2.14, 95% CI 1.09-4.20). A dose-response pattern was observed for total LHC cases (P = 0.004), MDS (P = 0.024) and leukaemia (P = 0.002). Pesticide exposure was independently associated with total LHC cases (OR 1.41, 95% CI 1.00 - 2.00) and leukaemia (OR 2.05, 95% CI 1.02-4.12) after controlling for age, smoking and family history (cancers, LHC and immunological disorders). Smoking during application of pesticides was strongly associated with total LHC cases (OR 3.29, 95% CI 1.81-5.98), MDS (OR 3.67, 95% CI 1.18-12.11), leukaemia (OR 10.15, 95% CI 2.15-65.69) and lymphoma (OR 2.72, 95% CI 1.02-8.00). This association was even stronger for total LHC cases (OR 18.18, 95% CI 2.38-381.17) when eating simultaneously with pesticide application.</p> <p>Conclusions</p> <p>Lymphohaematopoietic cancers were associated with pesticide exposure after controlling for confounders. Smoking and eating during pesticide application were identified as modifying factors increasing the risk for LHC. The poor pesticide work practices identified during this study underline the need for educational campaigns for farmers.</p

    Crystal structures of oligonucleotides including the integrase processing site of the Moloney murine leukemia virus

    Get PDF
    In the first step of retroviral integration, integrase cleaves the linear viral DNA within its long terminal repeat (LTR) immediately 3â€Č to the CA dinucleotide step, resulting in a reactive 3â€Č OH on one strand and a 5â€Č two base overhang on the complementary strand. In order to investigate the structural properties of the 3â€Č end processing site within the Moloney murine leukemia virus (MMLV) LTR d(TCTTTCATT), a host-guest crystallographic method was employed to determine the structures of four self-complementary 16 bp oligonucleotides including LTR sequences (underlined), d(TTTCATTGCAATGAAA), d(CTTTCATTAATGAAAG), d(TCTTTCATATGAAAGA) and d(CACAATGATCATTGTG), the guests, complexed with the N-terminal fragment of MMLV reverse transcriptase, the host. The structures of the LTR-containing oligonucleotides were compared to those of non-LTR oligonucleotides crystallized in the same lattice. Properties unique to the CA dinucleotide step within the LTR sequence, independent of its position from the end of the duplex, include a positive roll angle and negative slide value. This propensity for the CA dinucleotide step within the MMLV LTR sequence to adopt only positive roll angles is likely influenced by the more rigid, invariable 3â€Č and 5â€Č flanking TT dinucleotide steps and may be important for specific recognition and/or cleavage by the MMLV integrase

    Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections

    Get PDF
    Abstract Studies using 24 h urine collections need to incorporate ways to validate the completeness of the urine samples. Models to predict urinary creatinine excretion (UCE) have been developed for this purpose; however, information on their usefulness to identify incomplete urine collections is limited. We aimed to develop a model for predicting UCE and to assess the performance of a creatinine index using paraaminobenzoic acid (PABA) as a reference. Data were taken from the European Food Consumption Validation study comprising two nonconsecutive 24 h urine collections from 600 subjects in five European countries. Data from one collection were used to build a multiple linear regression model to predict UCE, and data from the other collection were used for performance testing of a creatinine indexbased strategy to identify incomplete collections. Multiple linear regression (n 458) of UCE showed a significant positive association for body weight (b ÂŒ 0·07), the interaction term sex ÂŁ weight (b ÂŒ 0·09, reference women) and protein intake (b ÂŒ 0·02). A significant negative association was found for age (b ÂŒ 20·09) and sex (b ÂŒ 23·14, reference women). An index of observed-to-predicted creatinine resulted in a sensitivity to identify incomplete collections of 0·06 (95 % CI 0·01, 0·20) and 0·11 (95 % CI 0·03, 0·22) in men and women, respectively. Specificity was 0·97 (95 % CI 0·97, 0·98) in men and 0·98 (95 % CI 0·98, 0·99) in women. The present study shows that UCE can be predicted from weight, age and sex. However, the results revealed that a creatinine index based on these predictions is not sufficiently sensitive to exclude incomplete 24 h urine collections

    How does exposure to pesticides vary in space and time for residents living near to treated orchards?

    Get PDF
    This study investigated changes over 25 years (1987-2012) in pesticide usage in orchards in England and Wales and associated changes to exposure and risk for resident pregnant women living 100 and 1000 m downwind of treated areas. A model was developed to estimate aggregated daily exposure to pesticides via inhaled vapour and indirect dermal contact with contaminated ground, whilst risk was expressed as a hazard quotient (HQ) for reproductive and/or developmental endpoints. Results show the largest changes occurred between 1987 and 1996 with total pesticide usage reduced by ca. 25%, exposure per unit of pesticide applied slightly increased, and a reduction in risk per unit exposure by factors of 1.4 to 5. Thereafter, there were no consistent changes in use between 1996 and 2012, with an increase in number of applications to each crop balanced by a decrease in average application rate. Exposure per unit of pesticide applied decreased consistently over this period such that values in 2012 for this metric were 48-65% of those in 1987, and there were further smaller decreases in risk per unit exposure. All aggregated hazard quotients were two to three orders of magnitude smaller than one, despite the inherent simplifications of assuming co-occurrence of exposure to all pesticides and additivity of effects. Hazard quotients at 1000 m were 5 to 30 times smaller than those at 100 m. There were clear signals of the impact of regulatory intervention in improving the fate and hazard profiles of pesticides over the period investigated
    • 

    corecore