744 research outputs found

    Current oscillations in Vanadium Dioxide: evidence for electrically triggered percolation avalanches

    Full text link
    In this work, we experimentally and theoretically explore voltage controlled oscillations occurring in micro-beams of vanadium dioxide. These oscillations are a result of the reversible insulator to metal phase transition in vanadium dioxide. Examining the structure of the observed oscillations in detail, we propose a modified percolative-avalanche model which allows for voltage-triggering. This model captures the periodicity and waveshape of the oscillations as well as several other key features. Importantly, our modeling shows that while temperature plays a critical role in the vanadium dioxide phase transition, electrically induced heating cannot act as the primary instigator of the oscillations in this configuration. This realization leads us to identify electric field as the most likely candidate for driving the phase transition

    Rhodium-oxide-coated indium tin oxide for enhancement of hole injection in organic light emitting diodes

    Get PDF
    The authors report the enhancement of hole injection using an RhOx layer between indium tin oxide anodes and 4, 4??? -bis[N-(1-naphtyl)- N -phenyl-amino]biphenyl in organic light-emitting diodes (OLEDs). The operation voltage of OLEDs at 700 cdm2 decreased from 13 to 10 V as the Rh layer changed to RhOx by surface treatment using O2 plasma. Synchrotron radiation photoelectron spectroscopy results showed that the work function increased by 0.2 eV as the Rh layer transformed into RhOx. Thus, the hole injection energy barrier was lowered, reducing the turn-on voltage and increasing the quantum efficiency of OLEDs.open281

    Nanoscale imaging of the electronic and structural transitions in vanadium dioxide

    Full text link
    We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addition, we observe a dichotomy between the local electronic and structural transitions. Nanoscale x-ray diffraction reveals local, non-monotonic switching of the lattice structure, a phenomenon that is not seen in the electronic insulator-to-metal transition mapped by near-field infrared microscopy.Comment: 23 pages including 7 figure

    Submillimeter Line Emission from LMC 30Dor: The Impact of a Starburst on a Low Metallicity Environment

    Full text link
    (Abridged) The 30 Dor region in the Large Magellanic Cloud (LMC) is the most vigorous star-forming region in the Local Group. Star formation in this region is taking place in low-metallicity molecular gas that is exposed to an extreme far--ultraviolet (FUV) radiation field powered by the massive compact star cluster R136. We used the NANTEN2 telescope to obtain high-angular resolution observations of the 12CO 4-3, 7-6, and 13CO 4-3 rotational lines and [CI] 3P1-3P0 and 3P2-3P1 fine-structure submillimeter transitions in 30Dor-10, the brightest CO and FIR-emitting cloud at the center of the 30Dor region. We derived the properties of the low-metallicity molecular gas using an excitation/radiative transfer code and found a self-consistent solution of the chemistry and thermal balance of the gas in the framework of a clumpy cloud PDR model. We compared the derived properties with those in the N159W region, which is exposed to a more moderate far-ultraviolet radiation field compared with 30Dor-10, but has similar metallicity. We also combined our CO detections with previously observed low-J CO transitions to derive the CO spectral-line energy distribution in 30Dor-10 and N159W. The separate excitation analysis of the submm CO lines and the neutral carbon fine structure lines shows that the mid-J CO and [CI]-emitting gas in the 30Dor-10 region has a temperature of about 160 K and a H2 density of about 10^4 cm^-3. We find that the molecular gas in 30Dor-10 is warmer and has a lower beam filling factor compared to that of N159W, which might be a result of the effect of a strong FUV radiation field heating and disrupting the low--metallicity molecular gas. We use a clumpy PDR model (including the [CII] line intensity reported in the literature) to constrain the FUV intensity to about chi_0 ~ 3100 and an average total H density of the clump ensemble of about 10^5 cm^-3 in 30Dor-10.Comment: 11 pages, 8 figures. Accepted for publication in A&

    The origin of mid-infrared emission in massive young stellar objects: multi-baseline VLTI observations of W33A

    Full text link
    The circumstellar structure on 100 AU scales of the massive young stellar object W33A is probed using the VLTI and the MIDI instrument. N-band visibilities on 4 baselines are presented which are inconsistent with a spherically symmetric geometry. The visibility spectra and SED are simultaneously compared to 2D axi-symmetric dust radiative transfer models with a geometry including a rotationally flattened envelope and outflow cavities. We assume an O7.5 ZAMS star as the central source, consistent with the observed bolometric luminosity. The observations are also compared to models with and without (dusty and gaseous) accretion disks. A satisfactory model is constructed which reproduces the visibility spectra for each (u,v) point. It fits the silicate absorption, the mid-IR slope, the far-infrared peak, and the (sub)mm of the SED. It produces a 350 micron morphology consistent with observations. The 10 micron emission on 100 AU scales is dominated by the irradiated walls of the cavity sculpted by the outflow. The visibilities rule out the presence of dust disks with total (gas and dust) masses more than 0.01 Msun. However, optically thick accretion disks, interior to the dust sublimation radius, are allowed to accrete at rates equalling the envelope's mass infall rate (up to 10^(-3) Msun/yr) without substantially affecting the visibilities due to the extinction by the extremely massive envelope of W33A.Comment: Accepted for publication in A&

    Galaxy Evolution and Star Formation Efficiency at 0.2 < z < 0.6

    Get PDF
    We present the results of a CO line survey of 30 galaxies at moderate redshift (z \sim 0.2-0.6), with the IRAM 30m telescope, with the goal to follow galaxy evolution and in particular the star formation efficiency (SFE) as defined by the ratio between far-infrared luminosity and molecular gas mass (LFIR/M(H2)). The sources are selected to be ultra-luminous infrared galaxies (ULIRGs), with LFIR larger than 2.8 10^{12} Lsol, experiencing starbursts; adopting a low ULIRG CO-to-H2 conversion factor, their gas consumption time-scale is lower than 10^8 yr. To date only very few CO observations exist in this redshift range that spans nearly 25% of the universe's age. Considerable evolution of the star formation rate is already observed during this period. 18 galaxies out of our sample of 30 are detected (of which 16 are new detections), corresponding to a detection rate of 60%. The average CO luminosity for the 18 galaxies detected is L'CO = 2 10^{10} K km/s pc^2, corresponding to an average H2 mass of 1.6 10^{10} Msol. The FIR luminosity correlates well with the CO luminosity, in agreement with the correlation found for low and high redshift ULIRGs. Although the conversion factor between CO luminosity and H2 mass is uncertain, we find that the maximum amount of gas available for a single galaxy is quickly increasing as a function of redshift. Using the same conversion factor, the SFEs for z\sim 0.2-0.6 ULIRGs are found to be significantly higher, by a factor 3, than for local ULIRGs, and are comparable to high redshift ones. We compare this evolution to the expected cosmic H2 abundance and the cosmic star formation history.Comment: 11 pages, 13 figures, accepted in A&

    Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress

    Get PDF
    Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress

    Spectral Energy Distributions of 6.7 GHz methanol masers

    Full text link
    The 6.7 GHz maser transition of methanol has been found exclusively towards massive star forming regions. A majority of the masers have been found to lack the presence of any associated radio continuum. This could be due to the maser emission originating prior to the formation of an HII region around the central star, or from the central object being too cool to produce a HII region. One way to distinguish between the two scenarios is to determine and model the spectral energy distributions (SEDs) of the masers. We observed a sample of 20 6.7 GHz methanol masers selected from the blind Arecibo survey, from centimeter to submillimeter wavelengths. We combined our observations with existing data from various Galactic plane surveys to determine SEDs from centimeter to near-infrared wavelengths. We find that 70% of the masers do not have any associated radio continuum, with the rest of the sources being associated with hypercompact and ultracompact HII regions. Modeling the SEDs shows them to be consistent with rapidly accreting massive stars, with accretion rates well above 10^{-3} M_sun/yr. The upper limits on the radio continuum are also consistent with any ionized region being confined close to the stellar surface. This confirms the paradigm of 6.7 GHz methanol masers being signposts of early phases of massive star formation, mostly prior to the formation of a hypercompact HII region.Comment: 15 pages, 4 figures; Accepted by A&

    Observation of Mott Transition in VO_2 Based Transistors

    Full text link
    An abrupt Mott metal-insulator transition (MIT) rather than the continuous Hubbard MIT near a critical on-site Coulomb energy U/U_c=1 is observed for the first time in VO_2, a strongly correlated material, by inducing holes of about 0.018% into the conduction band. As a result, a discontinuous jump of the density of states on the Fermi surface is observed and inhomogeneity inevitably occurs. The gate effect in fabricated transistors is clear evidence that the abrupt MIT is induced by the excitation of holes.Comment: 4 pages, 4 figure
    corecore