50 research outputs found

    Distribution and conservation status of the orang-utan (Pongo spp.) on Borneo and Sumatra: how many remain?

    Get PDF
    In recognition of the fact that orang-utans (Pongo spp.) are severely threatened, a meeting of orang-utan experts and conservationists, representatives of national and regional governmental and non-governmental organizations, and other stakeholders, was convened in Jakarta, Indonesia, in January 2004. Prior to this meeting we surveyed all large areas for which orang-utan population status was unknown. Compilation of all survey data produced a comprehensive picture of orang-utan distribution on both Borneo and Sumatra. These results indicate that in 2004 there were c. 6,500 P. abelii remaining on Sumatra and at least 54,000 P. pygmaeus on Borneo. Extrapolating to 2008 on the basis of forest loss on both islands suggests the estimate for Borneo could be 10% too high but that for Sumatra is probably still relatively accurate because forest loss in orang-utan habitat has been low during the conflict in Aceh, where most P. abelii occur. When those population sizes are compared to known historical sizes it is clear that the Sumatran orang-utan is in rapid decline, and unless extraordinary efforts are made soon, it could become the first great ape species to go extinct. In contrast, our results indicate there are more and larger populations of Bornean orang-utans than previously known. Although these revised estimates for Borneo are encouraging, forest loss and associated loss of orang-utans are occurring at an alarming rate, and suggest that recent reductions of Bornean orang-utan populations have been far more severe than previously supposed. Nevertheless, although orang-utans on both islands are under threat, we highlight some reasons for cautious optimism for their long-term conservatio

    Fostering appropriate behaviour in rehabilitant orangutans (Pongo pygmaeus)

    Get PDF
    Rehabilitation centres in Indonesia and Malaysia accommodate displaced orangutans (Pongo pygmaeus and P. abelii) and aim to facilitate their release into the wild by developing in them the skills that are necessary for survival. Regular forest excursions are provided but their efficacy in improving learning of appropriate behaviours is unknown. We observed forty rehabilitating orangutans from the Orangutan Care and Quarantine Centre during three forest excursions each to determine whether their behaviour fostered the development of survival skills. In total 38% of their time was spent in locomotion, particularly quadrupedal arboreal travel (13%), walking (8%), climbing (7%) and vine-swinging (4%). 26.5% of their time was spent 5 m or more from the ground, at heights up to 25 m. Arboreal activities were more 2 common early in the excursions and interaction with c are-givers more common later (hour 1: 0.3% of time; hour 5: 0.9% of time). Animals of lower body weight were significantly more likely to engage in arboreal movement, locomotion in general, eating of bark and leaves, and social play, and less likely to eat insects. Those that had been at the Centre the longest were less likely to perform arboreal activities and significantly more likely to be found standing and at ground level, than those that were there for a shorter time. During this study, many forest food items were consumed, particularly leaves and fruit, but also invertebrates and bark. Little time was spent in sexual behaviour, tool use, nest building or socially-mediated learning, but social play occupied almost 6% of their time. We conclude that regular excursions into the forest are likely to assist in the development of locomotion and feeding skills for survival in rehabilitating orangutans, but special attention is needed to encourage nest building, social activities and arboreal activity. Animals least likely to benefit are heavy animals and those that have been captive for a long time

    Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics.

    Get PDF
    The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future

    Building bridges between natural and social science disciplines: a standardized methodology to combine data on ecosystem quality trends

    Get PDF
    Despite a growing interest in interdisciplinary research, systematic ways of how to integrate data from different disciplines are still scarce. We argue that successful resource management relies on two key data sources: natural science data, which represents ecosystem structure and processes, and social science data, which describes people’s perceptions and understanding. Both are vital, mutually complementing information sources that can underpin the development of feasible and effective policies and management interventions. To harvest the added value of combined knowledge, a uniform scaling system is needed. In this paper, we propose a standardized methodology to connect and explore different types of quantitative data from the natural and social sciences reflecting temporal trends in ecosystem quality. We demonstrate this methodology with different types of data such as fisheries stocks and mangrove cover on the one hand and community’s perceptions on the other. The example data are collected from three United Nations Educational Scientific and Cultural Organization (UNESCO) Biosphere reserves and one marine park in Southeast Asia. To easily identify patterns of convergence or divergence among the datasets, we propose heat maps using colour codes and icons for language- and education-independent understandability. Finally, we discuss the limitations as well as potential implications for resource management and the accompanying communication strategies. This article is part of the theme issue ‘Nurturing resilient marine ecosystems’

    Polycentricity in practice: Marine governance transitions in Southeast Asia

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Environmental governance systems are expanding in size and complexity as they become more integrated and ecosystem-based. In doing so, governance transitions often involve more actors and knowingly or unknowingly alter the autonomy of actors to make decisions, and thereby the ability of the governance system to self-organise. In other words, these governance systems are becoming increasingly polycentric, moving towards an institutional structure that is reported to confer a number of benefits to social-ecological systems. This article adds to a growing body of evidence on polycentric environmental governance in practice. It adds nuance to the normative and apolitical portrayals of governance transitions in general, and transitions towards more polycentric forms of governance in particular. We analyse the relations amongst actors and historical development of four large-scale marine governance systems in Southeast Asia to understand how context, particularly power, shapes the emergence and evolution of polycentric marine governance in practice. Our data indicate that transitions towards increased polycentricity do increase diversity and autonomy of decision-making centres, which can enable more innovation or flexibility to respond to changing circumstances. However, these innovations do not always underpin sustainability and equity. Coordination mechanisms are critical for channelling the power dynamics that emerge among diverse actors towards sustainability. Yet, in these emergent, ad hoc polycentric governance arrangements such mechanisms remained nascent, ineffective, or inactive. The transaction costs involved in co-ordinating a semi-autonomous polycentric system are seemingly difficult to overcome in low- to middle-income contexts and need investment in resources and accountability mechanisms.United Kingdom Research and InnovationUniversiti Malay

    Metacarpal trabecular bone varies with distinct hand-positions used in hominid locomotion

    Get PDF
    Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes, expanding on previous volume of interest and whole-epiphysis analyses that have largely focussed on only the first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that while DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect different behavioural signals that could be useful for determining the behaviours of fossil hominins

    The value of figs to chimpanzees

    Full text link
    Nine Ugandan figs have consistent differences in nutrient concentration between the pulp and seed fractions. Pulp has more water-soluble carbohydrates, complex carbohydrates, calories, and ash, while the seed fraction has more condensed tannins, lipids, and fiber. Because species differ, nutrient concentration in pulp could not be predicted from analysis of whole figs. Chimpanzees in Kibale Forest relied heavily on figs throughout 29 months, feeding relatively intensely at large trees. Fig size varied between species, between individuals of the same species, and between fruiting cycles of the same tree. Larger figs had higher water concentrations but still led to higher rates of nutrient intake per minute for chimpanzees, monkeys, and hornbills. Chimpanzees ate more than 40 cal/min, excluding calories derived from insoluble fiber, when harvesting large figs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44560/1/10764_2005_Article_BF02192634.pd

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    Behavioral, Ecological, and Evolutionary Aspects of Meat-Eating by Sumatran Orangutans (Pongo abelii)

    Get PDF
    Meat-eating is an important aspect of human evolution, but how meat became a substantial component of the human diet is still poorly understood. Meat-eating in our closest relatives, the great apes, may provide insight into the emergence of this trait, but most existing data are for chimpanzees. We report 3 rare cases of meat-eating of slow lorises, Nycticebus coucang, by 1 Sumatran orangutan mother–infant dyad in Ketambe, Indonesia, to examine how orangutans find slow lorises and share meat. We combine these 3 cases with 2 previous ones to test the hypothesis that slow loris captures by orangutans are seasonal and dependent on fruit availability. We also provide the first (to our knowledge) quantitative data and high-definition video recordings of meat chewing rates by great apes, which we use to estimate the minimum time necessary for a female Australopithecus africanus to reach its daily energy requirements when feeding partially on raw meat. Captures seemed to be opportunistic but orangutans may have used olfactory cues to detect the prey. The mother often rejected meat sharing requests and only the infant initiated meat sharing. Slow loris captures occurred only during low ripe fruit availability, suggesting that meat may represent a filler fallback food for orangutans. Orangutans ate meat more than twice as slowly as chimpanzees (Pan troglodytes), suggesting that group living may function as a meat intake accelerator in hominoids. Using orangutan data as a model, time spent chewing per day would not require an excessive amount of time for our social ancestors (australopithecines and hominids), as long as meat represented no more than a quarter of their diet
    corecore