56 research outputs found

    Characterization of smart MARFOS NiTi shape memory alloys

    Get PDF
    In the present study, structural characterization of NiTi smart shape memory al-loys (SMAs), produced by an alternative powder metallurgy approach named mechanically ac-tivated reactive forging (MARFOS), was carried out by means of transmission electron micros-copy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was observed that MARFOS materials had a multiphase nanocrystalline structure. In addition, the transformation behaviour associated with the shape memory effect of the MARFOS aged mate-rials was studied with differential scanning calorimetry (DSC). Multiple-step martensitic trans-formations could be observed in aged materials

    Nonconventional production technologies for NiTi shape memory alloys

    Get PDF
    The development of new production technologies for NiTi Shape Memory Alloys (SMAs) is always challenging. Recently, we introduced two powder metallurgical (PM) processing routes involving mechanical activation of elemental powder mixtures and densification through extrusion or forging. Those processes were named Mechanically Activated Reactive Extrusion Synthesis (MARES) and Mechanically Activated Reactive FOrging Synthesis (MARFOS). Heat treatments were performed in order to adjust the B2-NiTi matrix composition, yielding a microstructure consisting of a homogeneous dispersion of Ni4Ti3 precipitates embedded in nanocrystalline B2-NiTi matrix. In the present study, we demonstrate the viability of those PM processes for producing NiTi SMAs. With insitu X-ray diffraction and differential scanning calorimetry it is shown that B2-NiTi matrix undergo a B2« R«B19 two-step phase transformatio

    Domain switching energies: Mechanical versus electrical loading in La-doped bismuth ferrite-lead titanate

    Get PDF
    The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1 - x)(Bi(1-y)La(y))FeO(3)-xPbTiO(3) during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.open10

    Suspension High Velocity Oxy-Fuel (SHVOF)-sprayed alumina coatings: microstructure, nanoindentation and wear

    Get PDF
    Suspension High Velocity Oxy Fuel Spraying (SHVOF) can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from sub-micron sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt% amorphous phase and 26 wt% crystalline phase (95 wt% gamma and 3 wt% alpha alumina) while the 72 kW coating contained lower 58 wt% amorphous phase and 42 wt% crystalline phases (73 wt% was alpha and 26 wt % gamma). The 101 kW coating had a dry sliding specific wear rate between 4-4.5 x 10-5 mm3/Nm, 2 orders of magnitude higher than the 72 kW coating wear rate of 2-4.2 x 10-7 mm3/Nm. A severe wear regime dominated by brittle fracture and grain pull out of the coating was responsible for the wear of the 101 kW coating, explained by mean fracture toughness three times lower than the 72 kW coating, owing to the almost complete absence of alpha alumina

    Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice

    Get PDF
    BACKGROUND & AIMS: Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich Syndrome protein (WASP), a hematopoietic-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T-cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS: Naïve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2 deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS: Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. Naïve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared to RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients, and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin (IL)-10. Administration of IL-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS: Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of IL-10, and homeostasis of regulatory T cells

    Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths

    Get PDF
    Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency
    corecore