
Domain switching energies: Mechanical versus electrical loading in La-doped bismuth
ferrite–lead titanate
T. Leist, K. G. Webber, W. Jo, T. Granzow, E. Aulbach, J. Suffner, and J. Rödel 
 
Citation: Journal of Applied Physics 109, 054109 (2011); doi: 10.1063/1.3555599 
View online: http://dx.doi.org/10.1063/1.3555599 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/109/5?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO 3 – PbTiO 3
ceramics 
J. Appl. Phys. 108, 014103 (2010); 10.1063/1.3445771 
 
Domain switching mechanisms in polycrystalline ferroelectrics with asymmetric hysteretic behavior 
J. Appl. Phys. 105, 024107 (2009); 10.1063/1.3068333 
 
Experimental investigation of domain switching criterion for soft lead zirconate titanate piezoceramics under
coaxial proportional electromechanical loading 
J. Appl. Phys. 97, 084105 (2005); 10.1063/1.1870117 
 
High-field dielectric and piezoelectric performance of soft lead zirconate titanate piezoceramics under combined
electromechanical loading 
J. Appl. Phys. 96, 6634 (2004); 10.1063/1.1812586 
 
Role of potassium comodification on domain evolution and electrically induced strains in La modified lead
zirconate titanate ferroelectric ceramics 
J. Appl. Phys. 88, 3433 (2000); 10.1063/1.1288223 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

114.70.7.203 On: Tue, 21 Oct 2014 02:29:50

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/879969015/x01/AIP-PT/JAP_ArticleDL_101514/aplmaterialsBIG_2.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=T.+Leist&option1=author
http://scitation.aip.org/search?value1=K.+G.+Webber&option1=author
http://scitation.aip.org/search?value1=W.+Jo&option1=author
http://scitation.aip.org/search?value1=T.+Granzow&option1=author
http://scitation.aip.org/search?value1=E.+Aulbach&option1=author
http://scitation.aip.org/search?value1=J.+Suffner&option1=author
http://scitation.aip.org/search?value1=J.+R�del&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.3555599
http://scitation.aip.org/content/aip/journal/jap/109/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/108/1/10.1063/1.3445771?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/108/1/10.1063/1.3445771?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/105/2/10.1063/1.3068333?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/97/8/10.1063/1.1870117?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/97/8/10.1063/1.1870117?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/96/11/10.1063/1.1812586?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/96/11/10.1063/1.1812586?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/88/6/10.1063/1.1288223?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/88/6/10.1063/1.1288223?ver=pdfcov


Domain switching energies: Mechanical versus electrical loading
in La-doped bismuth ferrite–lead titanate

T. Leist,1,a) K. G. Webber,1 W. Jo,1 T. Granzow,1 E. Aulbach,1 J. Suffner,1,2 and J. Rödel1
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The mechanical stress-induced domain switching and energy dissipation in morphotropic phase

boundary (1�x)(Bi1� yLay)FeO3–xPbTiO3 during uniaxial compressive loading have been

investigated at three different temperatures. The strain obtained was found to decrease with

increasing lanthanum content, although a sharp increase in strain was observed for compositions

doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with

decreased tetragonality. This is discussed in terms of the competing influences of the amount of

domain switching and the spontaneous strain on the macroscopic behavior under external fields.

Comparison of the mechanically and electrically dissipated energy showed significant differences,

discussed in terms of the different microscopic interactions of electric field and stress. VC 2011
American Institute of Physics. [doi:10.1063/1.3555599]

I. INTRODUCTION

Piezoelectric materials are used in many applications

such as ultrasonic transducers, actuators in fuel injection

nozzles, as well as acceleration and pressure sensors.1–3 A

significant amount of the materials used in these applications

are polycrystalline ferroelectrics with perovskite structure,

such as PZT. These materials exhibit significant nonlinearity

primarily caused by domain wall motion. For maximum

achievable displacement in actuator materials non-180� do-

main motion is especially important. Previous work has

shown a maximum in unipolar electric field-induced strain

with a preload of approximately �30 MPa, which was dis-

cussed as non-180� domain switching generated by preload-

induced ferroelastic back-switching.4,5 The achievable strain

is thus closely correlated to the spontaneous strain, e.g., the

tetragonal distortion, of the perovskite crystal structure. This

implies for certain applications such as high temperature

actuators,1,6,7 where PZT is not ideal due to its relatively low

Curie temperature, that a large tetragonality would be benefi-

cial. There are, however, certain limitations. In PbTiO3

ceramics the high tetragonal distortion—quantified by the c/a
ratio—induces high internal stresses within the ceramic when

cooling down from the paraelectric cubic phase to the ferro-

electric tetragonal phase.8 For a c/a ratio of 1.06 these internal

stresses are high enough to destroy the ceramic upon cooling

from sintering temperatures.8

External mechanical compressive stress has been found

to strongly influence switching,9,10 either suppressing or

assisting domain reorientation processes.4,11–22 If the external

applied stress is large enough domain switching may be sup-

pressed completely.12,14 However, small mechanical com-

pressive stresses can also prompt an increase in ferroelectric

properties.4,5,16,19,20 Depending on the orientation of the me-

chanical load it is possible to improve the domain switching

ability of polycrystalline21,22 and single crystal ferroelec-

trics.23 The influence of mechanical load is not limited to

external stress; intrinsic internal stress has also been found to

influence the switching behavior of ferroelectric materi-

als.24,25 If the distortion is too large, the internal stress can

suppress switching and prevent poling.

(1� x)(Bi1� yLay)FeO3�xPbTiO3 (BF-PT) is an ideal

model system to investigate the influence of crystallographic

distortion on the polarization reversal behavior; substituting

lanthanum for bismuth on the A site allows a variation of the

c/a ratio from 1.10 to 1.01.26,27 A case study on this material

showed a near-complete suppression of switching processes

due to electrical loading for low La content.28,29 This effect

was attributed to the high internal stresses that are directly

related to a large c/a ratio.30,31 However, experiments with

electric field loading are limited by the breakdown strength

and the relatively high conductivity of BF-PT. In order to

circumvent these limitations and investigate the potential of

non-180� domain switching Kounga Njiwa et al.32 measured

the ferroelastic behavior of undoped BF-PT. Their study,

however, did not investigate the influence of varying tetrago-

nal distortion on non-180� domain switching.

As a mechanical equivalent to the investigation of elec-

trically induced domain switching,29 the present paper

focuses on the influence of the c/a ratio on the non-180� do-

main switching in the model system BF-PT under uniaxial

compression at three different temperatures. To date there

have been no in situ investigations directly showing the

affect of external fields on domain wall motion in BF-PT.

This work presents indirect experimental evidence of the

effect of tetragonality on temperature-dependent ferroelastic

behavior. The BF/PT ratio was adjusted to obtain a structure

in the region of the morphotropic phase boundary (MPB) for

each given La content.27 From the stress–strain curves the

energy dissipated at different maximum loads was assessed20

and compared to the energy dissipation during electrical

a)Author to whom correspondence should be addressed. Electronic mail:
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poling at various electric field amplitudes.33 The results elu-

cidate the influence of the tetragonal distortion on non-180�

domain switching and energy dissipation of the tetragonal

phase in MPB compositions.

II. EXPERIMENTAL PROCEDURES

(1� x)(Bi1� yLay)FeO3�xPbTiO3 (BF-PT) solid solu-

tions with eight different lanthanum concentrations, all in the

range of the morphotropic phase boundary, were prepared by

using a solid oxide route. The material’s stoichiometry was

chosen so that the fraction of tetragonal and rhombohedral

phase in the bulk material is as close to equal as possible.

However, it has been shown that even significant deviations

from this ratio have little influence on material properties.27

Details of the powder preparation and sintering procedures

can be found in detail elsewhere.27,29,34 As an effect of the

lanthanum doping it was possible to tune the tetragonality

from 1.10 to 1.01,27 which was accompanied by a reduced

Curie temperature.26 The Curie temperature was found to

decrease from 632 �C in the undoped material to 189 �C in

the material doped with 30 mol. % La.26,30,35 The materials

were investigated in terms of tetragonal distortion because

the tetragonal distortion in BF-PT in the MPB region was

found to be much higher than the rhombohedral distortion.29

It is assumed that the tetragonal distortion dominates the level

of domain switching and piezoelectric properties of BF-PT.

Cylindrical samples with a diameter of �5.8 mm and a

height of �6 mm were prepared for uniaxial compression

experiments.34 For electrical and XRD measurements, disks

with a thickness of �0.7 mm were cut from sintered speci-

mens in order to remove the surface layer.29 To eliminate

possible grinding-induced stresses the samples were annealed

at 650 �C for 12 min followed by cooling with a rate of

50 �C/h. XRD measurements were carried out on polished

and annealed surfaces at various temperatures with a Bruker

Siemens D8 station equipped with a hot stage. The diffraction

patterns obtained from the XRD measurements were eval-

uated using the Rietveld refinement software GSAS.36,37

A differential dilatometer capable of measuring longitu-

dinal strain at elevated temperature was used to characterize

the ferroelastic behavior of BF-PT. This experimental

arrangement was previously described in detail.38,39 Because

the electrical boundary conditions were found to have signifi-

cant effect on the material response during mechanical load-

ing,40 unpoled samples were mechanically compressed with

short-circuit electric boundary conditions in a screw-type load

frame (Z010, Zwick, Ulm, Germany) equipped with a thermal

chamber. Each unpoled specimen was heated to the target

temperature with a rate less than 1.5 �C/min. During heating,

a preload of �3.7 MPa was applied to ensure constant contact

between the sample and the loading fixture. Each specimen

was mechanically loaded/unloaded from this preload at a rate

of �3.7 MPa/s to a maximum load of �380 MPa. In a second

set of experiments at room temperature, the samples were

loaded to progressively larger maximum stress levels with an

unloading step to the preload stress between each maximum

stress level. For each composition and temperature one cylin-

drical sample was measured. Due to misalignment and possi-

ble compositional differences the errors within these

measurements were estimated to be �5%. The results were

quantified in terms of maximum strain emax, remanent strain

er, back-switching strain (eel
r � er), and coercive stress rc,

which are labeled on a representative ferroelastic curve in Fig.

1. The coercive stress was determined by taking the inflection

point of the loading portion of the stress–strain curve, analo-

gous to the poling electric field.13,17,41,42 The mechanically

dissipated energy, GM, during a mechanical loading cycle can

be obtained by integrating the loading and unloading paths to

determine the area within the stress–strain curve (Fig. 1).

For electrical characterization the disk-shaped samples

were electroded with silver paste and measured at room tem-

perature in a Sawyer-Tower circuit. A bipolar triangular volt-

age signal with a frequency of 4 Hz was applied to the

sample. After measuring the poling curve at a certain field

the sample was depoled and retested. A Berlincourt meter

was used to ensure complete depoling. With this technique

poling curves from 1 to 8 kV/mm were measured. Analogous

to mechanical loading, the dissipated energy for the electri-

cal loading, GE, corresponds to the amount of hysteresis

under the polarization-electric field curve.

III. RESULTS

The results of the XRD measurements are depicted in

Fig. 2, where the c/a ratios obtained from Rietveld refine-

ment are plotted as a function of the lanthanum concentra-

tion for three different temperatures. An increase in the La

content leads to a reduction of the c/a ratio of the tetragonal

phase from 1.10 to 1.01, in agreement with previous

reports.26,27 As expected, an increase in temperature leads to

a decrease in the tetragonal distortion. Measurement fits are

provided to visualize the changes in the c/a ratios for each

temperature. An increase in temperature from room tempera-

ture to 100 �C, for example, causes the c/a ratio to decrease

by 10% from approximately 1.10 to approximately 1.09 for

the undoped material. Similar results have been reported by

Sunder et al.43 and Chen et al.44 It is apparent from Fig. 2

that increasing temperature decreases the tetragonality over

FIG. 1. (Color online) Description of the origin of the remanent strain er,

the maximum strain emax, the back-switching strain (eel
r � er), the dissipated

energy GM and the coercive stress rc.
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the whole compositional range investigated. However, in

comparison to the lanthanum-induced changes in c/a, the

reduction in c/a that is caused by increasing temperature is

comparably small.

Figures 3(a)–3(c) provide representative stress–strain

curves of La-doped BF-PT samples with four different lantha-

num concentrations (0, 7.5, 15, and 30 at. % La) for the three

different temperatures. The shape of the ferroelastic hysteresis

curve was found to depend on the lanthanum doping concen-

tration. Samples with low lanthanum content (large tetragonal

distortion) and high lanthanum content (small tetragonal dis-

tortion) showed limited ferroelastic switching at room temper-

ature. Intermediate compositions, however, those with more

moderate critical switching stresses and substantial switching

strains, displayed increased hysteresis, maximum and rema-

nent strains, as well as nonlinearity during initial loading.

The coercive stress was determined as the point of inflec-

tion in the stress–strain curve during initial loading13,17,41 and

plotted in Fig. 4 as a function of the c/a ratio. It was not possi-

ble to determine a coercive stress for the composition doped

with 2.5 at. % lanthanum at room temperature and for the

high temperature measurements of the 30 at. % lanthanum-

doped sample. For high c/a (low La doping levels) the coer-

cive stress is around �275 MPa. The coercive stress remained

approximately constant until the c/a ratio was reduced below

1.045 (more than 7.5 at. % lanthanum). Below this c/a ratio

the coercive stress drops sharply by approximately 100 MPa,

followed by a more gradual decrease, in analogy to previous

work on electric-field-induced switching.29 This was, how-

ever, not observed at 200 �C, where there was an approxi-

mately linear decrease in coercive stress with decreasing

tetragonality. With increasing temperature the coercive stress

was found to decrease further.

For each composition and temperature tested the rema-

nent strain er, maximum strain emax, and back-switching strain

(eel
r � er) were determined from the stress–strain curves. The

dissipated energy was also calculated by evaluating the area

enclosed by the stress–strain curve. These results are dis-

played as a function of La content in Figs. 5(a)–5(d). It can

be observed for all parameters at room temperature that there

is a general trend to decrease with increasing La content, with

a pronounced discontinuity in the vicinity of 7.5–10 at. % La

content. The remanent, maximum, and back-switching strain,

as well as mechanically dissipated energy, all showed similar

behavior at room temperature. With increasing concentrations

of lanthanum an increase in achievable strain was found, cor-

responding to the observed discontinuous jump in coercive

stress (Fig. 4). Remanent strain, back-switching strain, and

dissipated energy at doping concentrations below this thresh-

old showed approximately composition-independent behav-

ior, whereas maximum strain, slightly decreased with

increasing La content, followed by a broader discontinuity

that also included the 10 at. %-doped sample. For all strain

measurements, increasing the lanthanum content past 10

at. % resulted in a measured decrease.

FIG. 2. (Color online) Evolution of the c/a ratio over the lanthanum doping

concentration for different temperatures. The trend for each temperature is

visualized using a line with an exponential fit on the measured data. (add

another y axis showing the corresponding spontaneous strain) make lines a

little thicker.

FIG. 3. (Color online) Selected stress–strain curves of 0, 7.5, 15, and 30

at. % La-doped samples measured at (a) room temperature, (b) 100 �C, and

(c) 200 �C.

054109-3 Leist et al. J. Appl. Phys. 109, 054109 (2011)
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Interestingly, the maximum strain of these compositions

is found at 7.5 and 10 at. % La [Fig. 5(b)]. This is the case for

all investigated temperatures. At room temperature the maxi-

mum strain of these two compositions is around �1% for

�380 MPa and is increased significantly up to approximately

�1.2% for the 7.5 at. % sample with increasing temperature,

whereas the observed strain in the undoped sample remains

approximately constant. For the 15 and 30 at. % La-doped sys-

tems the measured strain is significantly lower than the other

compositions, displaying maximum strain values around �0.8

and �0.5%, respectively. Counterintuitively, the maximum

strain was found to decrease at 100 �C showing values of

approximately �0.7% (15 at. % La) and �0.45% (30 a % La).

At 200 �C the strain was again found to increase for the 15

at. % sample, but remained constant for the 30 at. % sample.

It is apparent from Figs. 5(a)–5(d) that an increase in

temperature resulted in an increase in er, emax, back-switch-

ing strain, and dissipated energy for compositions doped

below approximately 10 at. % La. For each characterizing

parameter, however, the opposite was found for composi-

tions above 10 at. % La, i.e., there was a general trend of

decreasing material properties with increasing temperature.

Notable exceptions to this are maximum and back-switching

strain, which are both subject to greater measurement error

due to possible misalignment. A transition range between the

high- and low-doped systems was found near the observed

discontinuity at 7.5–10 at. % La.

In order to assess the effect of the tetragonal distortion

on the domain switching behavior, the remanent and back-

switching strain were normalized by the spontaneous strain

of the unit cell, es, using the following equation38:

es ¼
2 c� að Þ
cþ 2a

: (1)

The lattice parameters, c and a, were taken from the Rietveld

refinement of XRD measurements. Interestingly, when the

spontaneous strain is considered, both the remanent and back-

switching strains show different behaviors than those shown

previously in Figs. 5(a) and 5(c). The normalized remanent

strain [Fig. 6(a)] shows an initial increase from compositions

with the lowest c/a ratios, followed by two discontinuous

“wells” found at approximately 1.02 and 1.04. With a further

increase of tetragonality there is a decrease in normalized re-

manent strain. The back-switching strain, however, still only

displays one discontinuity at approximately 1.04, but at high-

doping contents it shows a decrease. The exact position of the

observed discontinuity was found to depend on temperature,

where at 200 �C it was found at lower values of c/a and

100 �C and room temperature measurements were approxi-

mately equivalent. Interestingly, the sample doped with 30

at. % La, with a c/a ratio of �1.01, behaves abnormally, inso-

far as an increase in temperature leads to a decrease in

FIG. 4. (Color online) Coercive stress as a function of the c/a ratio for dif-

ferent temperatures. The numbers on the 25 �C data points represent the re-

spective lanthanum doping concentrations.

FIG. 5. (Color online) Evolution of (a)

the remanent strain er, (b) the maximum

strain emax, (c) the back-switching strain

(eel
r � er), and (d) the energy dissipated

during one load cycle at room tempera-

ture, 100 �C, and 200 �C. The small

numbers in each plot represent the La

doping concentration.
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normalized remanent strain. This same behavior was not

found in the normalized back-switching strain.

In order to compare the ferroelectric and ferroelastic

switching, cyclic loading and poling measurements have

been conducted to evaluate the energy dissipated. Figure 7

illustrates the stress–strain hysteretic behavior during cyclic

loading. With increasing maximum compressive stress the

overall area under the stress–strain curve (e.g., the dissipated

energy during mechanical loading), in addition to the rema-

nent maximum strain, is increased. The analogous electrical

case is shown in Fig. 8, where representative poling curves

of a low-doped [Fig. 8(a)] and a high-doped [Fig. 8(b)] BF-

PT composition are compared. It is apparent in Fig. 8(a) that

the polarization has not saturated, despite electrical loading

up to 8 kV/mm. The polarization and the area under the

curve are gradually increasing for increasing poling fields.

The maximum polarization found in this material is around

11 lC/cm2, which is relatively low when compared to

Fig. 8(b), where the poling curves show clear saturation for

poling fields above 6 kV/mm. The increase in polarization

and ferroelectric hysteresis (e.g., dissipated electrical energy)

were also found to increase with increasing poling fields.

Figure 9 provides the evolution of the dissipated energy

for mechanical and electrical loading. As reference, a com-

mercially available soft PZT (PIC 151, PI Ceramics) is also

shown for both cases.45 As expected, an increase in the max-

imum applied load corresponds to an increase in both

mechanically and electrically dissipated energy for all com-

positions. In agreement with observations made from Figs. 3

and 5(d), it can be observed that the 7.5 and 10 at. % La-

doped samples show the highest mechanical energy dissipa-

tion. A very pronounced drop in the dissipated energy is

observed when the doping content is increased from 15 to 30

at. % La. The energy dissipation behavior of BF-PT was

found to be different than that measured for PZT, which

exhibits an obvious saturation in dissipated energy. This phe-

nomenon is not visible in BF-PT. For a doping content

higher than 10 at. %, however, the possible onset of satura-

tion can be observed, indicating that saturation may occur at

increased loading. The electrically induced energy dissipa-

tion [Fig. 9(b)] also displays an increase with increasing

applied poling fields. It was found that the absolute values of

the dissipated energy are significantly higher for most

FIG. 6. (Color online) (a) Normalized remanent strain er/es and (b) normal-

ized back-switching strain (eel
r�er)/es at room temperature, 100 �C, and

200 �C. The numbers represent the corresponding lanthanum concentration.

FIG. 7. Representative stress–strain curve obtained during cyclic loading of

0.57(Bi0.85La0.15)FeO3–0.43PbTiO3.

FIG. 8. (Color online) Poling curves for

different maximum electric fields exem-

plarily shown for (a) 0.6(Bi0.95La0.05)

FeO3–0.4PbTiO3 and (b) 0.57(Bi0.85

La0.15)FeO3–0.43PbTiO3.
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compositions in the electrical case compared to the mechani-

cal case. Interestingly, however, for the systems doped with

5 and 7.5 at. % La, the energy dissipation was comparably

low; even up to 8 kV/mm. An increase in the lanthanum con-

tent to 10 at. % and more lead to a sharp increase in dissi-

pated energy, with a maximum found for the composition

doped with 20 at. % La. Increasing the doping concentration

to 30 at. % resulted in a decrease in energy dissipation, with

saturation approaching �8 kV/mm. The energy dissipation

of BF-PT is more than five times larger than PZT, although

PZT displays a clear saturation point at around 1.5 kV/mm,

whereas the possible onset of a saturation point in BF-PT is

only visible for 30 at. % La.

Figure 10 shows a direct comparison between the energy

dissipated during mechanical, as well as electric, loading and

the tetragonal distortion. As each c/a ratio corresponds to

one specific doping concentration, the plot can also be read

as dissipated energy as a function of La content. For the me-

chanical case [Fig. 10(a)] there is not a clear change in the

energy dissipation for uniaxial loads from �36 to �110

MPa. The first noticeable changes are found at �184 MPa,

where the highest values of the dissipated energy are found

to occur at a c/a ratio of approximately 1.05–1.025 (7.5–20

at. % La). By increasing the load, a peak in energy emerges

at a c/a ratio of �1.045 (7.5 at. % La) and reaches approxi-

mately 940 kJ/m3 at �380 MPa. Electrically [Fig. 10(b)],

almost no dissipated energy can be observed at poling fields

of 1 and 2 kV/mm. When the electric field is increased above

2 kV/mm energy dissipation is observed. Samples with c/a
ratios higher than 1.045 dissipate relatively little energy dur-

ing electrical loading. For compositions with lower c/a ratios

the energy dissipation increases rapidly with maximum elec-

tric field, reaching a maximum near 2700 kJ/m3 at 8 kV/mm

for 20 at. % La. For compositions on either side of 20 at. %

La there is a significant decrease in energy dissipation.

Interestingly, with smaller tetragonal distortions (c/a< 1045)

the ratio of electrical-to-mechanical dissipated energy

at maximum applied stress (�380 MPa) and electric field

(8 kV/mm) is found to be between 2 and 5, whereas with

larger tetragonal distortions (c/a> 1.045) this ratio decreases

to approximately 1/2.

IV. DISCUSSION

When applying a mechanical stress or an electric field on

a ferroelectric material, strain is generated by linear elastic

behavior, the intrinsic piezoelectric effect and non-180� do-

main switching. The amount of strain that is obtained during

loading is affected by the distortion of the corresponding

crystal structure and the total number of domain switching.

Both are competing factors in La-doped BF-PT: lanthanum

doping reduces the tetragonal distortion,26,27 as does heating

to higher temperatures, in agreement with the behavior shown

in Fig. 2 and also reported elsewhere.43,44 This would lead to

a decrease in achievable strain from domain switching, how-

ever, less tetragonal distortion also means lower internal

FIG. 9. (Color online) The mechanically dissipated energy as a function of

maximum applied load (a), shown for six compositions in comparison to

PZT, and the electrically dissipated energy as a function of the poling field

shown for six compositions in comparison to PZT (Ref. 45).

FIG. 10. (Color online) (a) Mechanically dissipated energy and (b) electri-

cally dissipated energy as a function of the c/a ratio. The numbers represent

the corresponding lanthanum doping concentration.
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stresses, which should, in principle, allow for more domain

switching and thus more strain. The results shown in Fig. 3

lead to the following conclusions: first, the changes in strain

from 0 to 7.5 at. % La would imply that the increase in the

amount of domain switching is more important for composi-

tions up to 7.5 at. % La than the reduction of the c/a ratio

from 1.10 to 1.045. The temperature-dependent changes for

these materials also point to this direction because they dis-

play increasing strain with increasing temperature, whereas

the temperature-induced reduction in c/a ratio is not that pro-

nounced (e.g., from �1.10 at room temperature to �1.08 at

200 �C for the undoped sample). Second, at higher La con-

centrations, the reduction in spontaneous strain becomes the

dominating effect. This is also true for the temperature-

dependent behavior, which shows a decrease in spontaneous

strain (e.g., tetragonal distortion) at increased temperature.

From the shape of the stress–strain curves and the absence of

a clearly visible coercive stress, it can be concluded that ei-

ther switching at room temperature takes place over the entire

loading range or the nonlinearity is not clearly observed

because the strain generated from switching is not significant.

As an effect of the increased temperature, the shape of the

stress–strain curves changes; a coercive stress becomes visible

and decreases with increasing temperature. Domains that were

clamped before are now able to switch, in agreement with Lan-

dau theory where an increase in temperature leads to a reduced

energy barrier for domain switching,46 confirmed in Fig. 4

where an increase in temperature decreases the coercive stress.

The decrease in the ferroelastic energy barrier is also assisted

by the reduction of the c/a ratio by �10% due to the tempera-

ture increase. For high c/a ratios the changes in rc with tem-

perature are more pronounced than the changes at low c/a
ratios, possibly explaining why for larger tetragonal distortions

there is a more drastic change in strain and energy dissipation

properties with temperature. It is assumed that the mechanical

switching energy barrier in these compositions decreases at a

faster rate than the tetragonality, allowing more domains to

switch. This was not the case for low c/a ratios, where the co-

ercive stress values were not as large. It was assumed that, due

to the maximum stress levels used, decreases in coercive stress

did not have as significant an impact because even at room

temperature most possible ferroelastic switching had already

taken place. In addition, the impact of additional ferroelastic

switching at elevated temperatures was diminished by smaller

spontaneous strains. The room temperature coercive stresses

lead to the conclusion that there is a threshold value for do-

main switching at a c/a of 1.045, similar to electrical switch-

ing.29 Coercive stress values for compositions around the

threshold c/a ratio were found to be in the range of hard-doped

PZT,39 whereas BF-PT materials with high c/a ratios are

almost twice as high as found for hard-doped PZT. The

observed coercive stress of the undoped sample matches the

value found by Kounga et al.32 It is, however, not fully under-

stood why this behavior is not apparent in the strain and energy

dissipation induced by the mechanical loading experiments.

This will be addressed again later in this section.

For lanthanum concentrations of 0–5 at. % the remanent

strain, back-switching strain, and dissipated energy remain

almost constant, although the tetragonality changes from

approximately 1.10 to 1.06. It is assumed, with respect to the

two competing aspects discussed in the beginning of this sec-

tion, that the change in domain switching counterbalances the

effect of a reduced spontaneous strain. However, the maxi-

mum strain emax for these compositions shows an increase

with increasing lanthanum content (also at elevated tempera-

ture). This is because the maximum strain is the product of

multiple competing factors, such as the change in Young’s

modulus as a function of stress,38,39,47 as well as both the

strain generated during domain switching and the amount of

domains that are able to switch. For compositions doped with

the highest concentrations of lanthanum it was found that the

strain response and the dissipated mechanical energy

decreased as a function of lanthanum concentration, despite

the assumed increase in domain switching. In this range the

limiting factor was the relatively small tetragonality. The

measured behavior was also found to be less temperature sen-

sitive than with larger c/a ratios, most likely due to the smaller

coercive stress (Fig. 4) leading to a saturation of domain

switching at lower temperatures. Between these two extremes

a compositional range was found at 7.5 at. % La, which gener-

ally showed maximum strain response and increased hyste-

retic behavior. This composition combines a high spontaneous

strain (tetragonal distortion) with a high amount of domain

switching, that in sum results in a maximum strain.

Normalizing the remanent and back-switching strain by

the spontaneous strain of the unit cell (Fig. 6) eliminates the

contribution of the changing c/a ratio, revealing the impact

of changes due to increased domain switching and, in the

case of back-switching strain, stiffness at maximum applied

stress. For the case of remanent strain there was an increase

in normalized remanent strain from 30 to 20 at. % La [Fig.

4(a)], which can be attributed to a less stable domain struc-

ture accompanied by a higher amount of back-switching at

high lanthanum concentrations, as shown in Fig. 6(b). This

change in domain stability29 is most likely connected to

changes in the domain structure itself,48 due to the proximity

of the Curie temperature that lies at approximately 189 �C.26

The proximity of the Curie temperature is most likely the

cause of the nonlinear increase in normalized back-switching

strain with tetragonality [Fig. 6(b)]. With a further increase

of tetragonality there is a general increase in normalized re-

manent strain, indicating that the amount of non-180� do-

main switching is decreasing. The discontinuity at 7.5 at. %

La, however, is still apparent for both normalized remanent

and normalized back-switching strains.

The number of domains that can ferroelastically and fer-

roelectrically switch increases with the maximum applied

mechanical or electrical load (Fig. 9). Saturation is obtained

when all available domains have switched, as seen for PZT.

It is remarkable that there is almost no sign of saturation to

be found for the La-doped BF-PT in either the mechanical or

electrical case. This indicates that even at high loads a large

amount of domains remain unswitched for both the mechani-

cal [Fig. 9(a)] and electrical loading [Fig. 9(b)], despite of

the apparent difference in the behavior of the mechanically

and the electrically induced energy dissipation. In Fig. 9(a)

the sample doped with 5 at. % La shows lower energy dissi-

pation than the materials doped with 7.5 and 10 at. % La.
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Again, there are competing mechanisms due to changing c/a
ratios: lowering the c/a ratio facilitates more domain switch-

ing, but results in less energy dissipation per switch. This

fact becomes apparent for compositions with more than 10

at. % La as the amount of dissipated energy is continuously

reduced. Apparently, the increased number of switching

processes does not offset the decrease in dissipated energy

for domain switching. Values for the energy dissipation of

PZT during electrical loading has been previously presented

for a bipolar electric field with a maximum field amplitude

of 2 kV/mm, which range between 810 (Ref. 18) and 1382

kJ/m3 (Ref. 16). However, as it is visible from Fig. 9(b) that

a further increase in the maximum field strength does not

lead to higher values of energy dissipation.45

It is evident from Figs. 9 and 10 that there are important

differences between mechanical and electrical loading in the

evolution of dissipated energy. Electrical loading, for exam-

ple, appears to dissipate more energy. Contributions from the

conductivity were reduced to negligible levels by using a high

measuring frequency (4 Hz). Therefore, a possible explanation

for the large difference is electrical depolarizing fields arising

during poling by both non-180� and 180� domain switching.

As the mechanically induced switching does not create a mac-

roscopic polarization in an unpoled sample and the ordered

domain structure associated with it, depolarizing fields are

negligible for purely mechanical loading. The overall behav-

ior of the energy dissipated under electrical load is in agree-

ment with the existence of a threshold value of the c/a ratio

for the electrically induced domain switching,29 which is not

seen in the mechanically induced domain switching. The sam-

ple doped with 20 at. % La (c/a�1.02) shows the largest

amount of dissipated energy regardless of the electric field

amplitude; it combines a stable domain structure with a large

amount of strain. For higher c/a ratios domain clamping

becomes more critical, while for lower c/a ratios (i.e., for the

30 at. % La-doped sample) the domain structure becomes

unstable, resulting in a lower total energy dissipation. The

behavior is more complex under mechanical load [Fig. 10(a)].

For mechanical loads from�36 to �184 MPa there is only lit-

tle domain switching in all BF-PT compositions. Increasing

the mechanical load induces additional domain switching up

to the maximum load. However, only for the composition

doped with 7.5 and 10 at. % there is a high c/a ratio (e.g.,

spontaneous strain) combined with the ability of high domain

switching. This results in a peak in dissipated energy that

becomes more significant when the amount of domain switch-

ing increases. Higher doped compositions dissipate less

energy due to the reduction in c/a ratio, while the 5 at. %-

doped sample shows less energy dissipation due to highly hin-

dered domain switching. The position of the peak is not due

to the maximum load that has been chosen. Earlier studies

contrasting small- and large-signal behaviors revealed that

the influence on the loading amplitude is not critical. This

is because the domain switching behavior is primarily

influenced by the internal stress level, which is correlated to

the c/a ratio.29 Therefore, the observed behavior at around 7.5

at. % lanthanum is due to the optimum composition combin-

ing high spontaneous strain with high amount of domain

switching.

V. CONCLUSIONS

By comparing the electrical and mechanical response of

BF-PT, it has been found that the response to mechanical

compressive stress was different than the response to electri-

cal field. Although there is a sharp discontinuity in strain

response and energy dissipation at a c/a of around 1.045 dur-

ing electrical loading, a peak in the properties was found dur-

ing mechanical loading. The ferroelastic measurements

demonstrated that changes in the strain and energy dissipa-

tion of BF-PT are the results of two competing factors. A

reduction in the tetragonal distortion leads to the possibility

of increased domain switching, increasing strain and energy

dissipation. However, a reduced c/a ratio can also reduce the

achievable strain and hysteresis for a domain switch due to a

reduced spontaneous strain, which also reduces the energy

barrier for switching. In BF-PT it has been shown that the

impact of these two competing factors changes when reduc-

ing the c/a ratio below 1.045; a threshold value found in a

previous study.29 For high c/a ratios the changes in the

amount of domain switching were found to have the highest

impact on the material response. Once the c/a ratio is

reduced below 1.045 the decreasing spontaneous strain

becomes critical and material properties are again reduced.

The best properties were found for compositions with 7.5

and 10 at. % La, corresponding to a c/a of approximately

1.045. Here a large spontaneous strain is combined with a

reasonable amount of domain switching. Differences in the

energy dissipation between the electrical and mechanical

loading were attributed to depolarizing fields due to the or-

dered domain structure generated during poling.
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Jones, J. Schmidlin, and C. R. Hubbard, Acta Mater. 58, 5962 (2010).
35J. R. Cheng and L. E. Cross, “Lanthanum and gallium co-modified

BiFeO3-PbTiO3 crystalline solutions: Lead reduced morphotropic phase

boundary (MPB) piezoelectric ceramics”, in IEEE Ultrasonics Symposium
(Honolulu, Hawaii, USA, 2003), p. 354.

36A. C. Larson and R. B. Von Dreele, “General Structure Analysis System

(GSAS),” Los Alamos National Laboratory Report No. LAUR 86, (2000).
37B. H. Toby, J. Appl. Crystallogr. 34 (2001).
38K. G. Webber, E. Aulbach, T. Key, M. Marsilius, T. Granzow, and J.
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