1,181 research outputs found

    Nucleon-Nucleon Interactions on the Lattice

    Get PDF
    We consider the nucleon-nucleon potential in quenched and partially-quenched QCD. The leading one-meson exchange contribution to the potential is found to fall off exponentially at long-distances, in contrast with the Yukawa-type behaviour found in QCD. This unphysical component of the two-nucleon potential has important implications for the extraction of nuclear properties from lattice simulations.Comment: 6 pages LaTeX, 2 eps fig

    The Lambda_Q-Lambda_Q Potential

    Full text link
    Lattice QCD simulations of the potential between two baryons, each containing a heavy quark and two light quarks, such as the Lambda_Q-Lambda_Q potential, will provide insight into the nucleon-nucleon interaction. As one-pion exchange does not contribute to the Lambda_Q-Lambda_Q potential, the long-distance behavior is dominated by physics that contributes to the intermediate-range attraction between two nucleons. We compute the leading long-distance contributions to the Lambda_Q-Lambda_Q potential in QCD and in partially-quenched QCD in the low-energy effective field theory.Comment: 10 pages LaTeX, 3 eps figs, 3 ps fig

    QSO Absorption Systems Detected in Ne VIII: High-Metallicity Clouds with a Large Effective Cross Section

    Full text link
    Using high resolution, high signal-to-noise ultraviolet spectra of the z = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of NeVIII+OVI absorption line systems at z(abs) =0.68381, 0.70152, 0.72478. In addition to NeVIII and OVI, absorption lines from multiple ionization stages of oxygen (OII, OIII, OIV) are detected and are well-aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T ~ 10^{5.7} K) that produces NeVIII and OVI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z_{solar} to supersolar. The cool (~10^{4} K) phases have densities n_{H} ~ 10^{-4} cm^{-3} and small sizes (< 4kpc); these cool clouds are likely to expand and dissipate, and the NeVIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The NeVIII redshift density, dN/dz = 7^{+7}_{-3}, requires a large number of these clouds for every L > 0.1L* galaxy and a large effective absorption cross section (>~ 100 kpc), and indeed, we find a star forming ~L* galaxy at the redshift of the z(abs)=0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these NeVIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.Comment: Final published version (Astrophysical Journal

    Renormalization schemes and the range of two-nucleon effective field theory

    Get PDF
    The OS and PDS renormalization schemes for the effective field theory with nucleons and pions are investigated. We explain in detail how the renormalization is implemented using local counterterms. Fits to the NN scattering data are performed in the 1S0 and 3S1 channels for different values of mu_R. An error analysis indicates that the range of the theory with perturbative pions is consistent with 500 MeV.Comment: 40 pages, typos corrected, journal version. Discussion of the range in section VII clarified, conclusions unchange

    The NN scattering 3S1-3D1 mixing angle at NNLO

    Full text link
    The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is calculated to next-to-next-to-leading order in an effective field theory with perturbative pions. Without pions, the low energy theory fits the observed epsilon_1 well for momenta less than 50\sim 50 MeV. Including pions perturbatively significantly improves the agreement with data for momenta up to 150\sim 150 MeV with one less parameter. Furthermore, for these momenta the accuracy of our calculation is similar to an effective field theory calculation in which the pion is treated non-perturbatively. This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon processes. We explain why it is necessary to perform spin and isospin traces in d dimensions when regulating divergences with dimensional regularization in higher partial wave amplitudes.Comment: 17 pages, journal versio

    Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory

    Get PDF
    I present one-loop level calculations of the Isgur-Wise functions for B -> D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma in partially quenched heavy quark chiral perturbation theory. Such expressions are required in order to extrapolate from the light quark masses used in lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig

    A Conjecture about Hadrons

    Get PDF
    We conjecture that in the chiral limit of QCD the spectrum of hadrons is comprised of decoupled, reducible chiral multiplets. A simple rule is developed which identifies the chiral representations filled out by the ground-state hadrons. Our arguments are based on the algebraic structure of superconvergence relations derived by Weinberg from the high-energy behavior of pion-hadron scattering amplitudes.Comment: 15 pages LaTe

    Amides do not always work: observation of guest binding in an amide-functionalised porous host

    Get PDF
    An amide-functionalised metal organic frame-work (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g-1 at 20 bar and 298 K. MFM-136 is the first example of acylamide pyrimidyl isophthalate MOF without open metal sites, and thus provides a unique platform to study guest bind-ing, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed un-ambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not neces-sarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties
    corecore