457 research outputs found

    Probing vibrational modes in silica glass using inelastic neutron scattering with mass contrast

    Get PDF
    The effective vibrational density of states (VDOS) has been derived from inelastic neutron-scattering data, for isotopically substituted Si O 18 2 and Si O 16 2 glasses, to gain information about the relative contribution to the Si and O partial VDOS. This is a necessary point of comparison for vibrational mode analyses of molecular-dynamics models. The mass contrast has led to a measurable shift between vibrational mode frequencies in the effective VDOS of Si O 18 2 and Si O 16 2, which is well reproduced in an ab initio simulation. The vibrational band centered at 100.2 meV is confirmed to have significantly lower contribution from the oxygen partial VDOS, than the higher (150.3 and 135.8 meV) and lower energy bands (53.3 meV)

    Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population

    Get PDF
    The assumption that reproductive effort decreases somatic state, accelerating ageing, is central to our understanding of life-history variation. Maximal reproductive effort early in life is predicted to be maladaptive by accelerating ageing disproportionally, decreasing fitness. Optimality theory predicts that reproductive effort is restrained early in life to balance the fitness contribution of reproduction against the survival cost induced by the reproductive effort. When adaptive, the level of reproductive restraint is predicted to be inversely linked to the remaining life expectancy, potentially resulting in a terminal effort in the last period of reproduction. Experimental tests of the reproductive restraint hypothesis require manipulation of somatic state and subsequent investigation of reproductive effort and residual life span. To our knowledge the available evidence remains inconclusive, and hence reproductive restraint remains to be demonstrated. We modulated somatic state through a lifelong brood size manipulation in wild jackdaws and measured its consequences for age-dependent mortality and reproductive success. The assumption that lifelong increased brood size reduced somatic state was supported: Birds rearing enlarged broods showed subsequent increased rate of actuarial senescence, resulting in reduced residual life span. The treatment induced a reproductive response in later seasons: Egg volume and nestling survival were higher in subsequent seasons in the increased versus reduced broods' treatment group. We detected these increases in egg volume and nestling survival despite the expectation that in the absence of a change in reproductive effort, the reduced somatic state indicated by the increased mortality rate would result in lower reproductive output. This leads us to conclude that the higher reproductive success we observed was the result of higher reproductive effort. Our findings show that reproductive effort negatively covaries with remaining life expectancy, supporting optimality theory and confirming reproductive restraint as a key factor underpinning life-history variation

    Robust design of all-optical PSK regenerator based on phase sensitive amplification

    No full text
    More compact, stable, and efficient configuration of a recently-developed regenerator is presented. The regenerator is assessed at data rates up to 56 Gbit/s using white phase noise for the first time

    Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD.

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I-II/A-B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography-high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10-7). Sex stratification indicated that the separation was driven by females (p=2.4×10-7) relative to males (p=4.0×10-4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10-3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin-lysoPA axis, are associated with disease mechanisms and/or prevalence

    Quantum Memories. A Review based on the European Integrated Project "Qubit Applications (QAP)"

    Full text link
    We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in "Qubit Applications" in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria.Comment: 22 pages, 12 figure

    QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier

    No full text
    We introduce a novel input-idler-free non-degenerate phase sensitive amplifier (PSA) configuration and use it for simultaneous phase and amplitude regeneration of quadrature phase shift keyed (QPSK) signals demonstrated at symbol rates up to 56 Gbaud

    Electric-field-induced coherent coupling of the exciton states in a single quantum dot

    Full text link
    The signature of coherent coupling between two quantum states is an anticrossing in their energies as one is swept through the other. In single semiconductor quantum dots containing an electron-hole pair the eigenstates form a two-level system that can be used to demonstrate quantum effects in the solid state, but in all previous work these states were independent. Here we describe a technique to control the energetic splitting of these states using a vertical electric field, facilitating the observation of coherent coupling between them. Near the minimum splitting the eigenstates rotate in the plane of the sample, being orientated at 45{\deg} when the splitting is smallest. Using this system we show direct control over the exciton states in one quantum dot, leading to the generation of entangled photon pairs

    Effect of the GaAsP shell on optical properties of self-catalyzed GaAs nanowires grown on silicon

    Get PDF
    We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench
    • 

    corecore