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Raman and loss induced quantum noise
in depleted fiber optical parametric
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Abstract: We present a semi-classical approach for predicting the
quantum noise properties of fiber optical parametric amplifiers. The
unavoidable contributors of noise, vacuum fluctuations, loss-induced noise,
and spontaneous Raman scattering, are included in the analysis of both
phase-insensitive and phase-sensitive amplifiers. We show that the model
agrees with earlier fully quantum approaches in the linear gain regime,
whereas in the saturated gain regime, in which the classical equations are
valid, we predict that the amplifier increases the signal-to-noise ratio by
generating an amplitude-squeezed state of light. Also, in the same process,
we analyze the quantum noise properties of the pump, which is difficult
using standard quantum approaches, and we discover that the pump displays
complicated dynamics in both the linear and the nonlinear gain regimes.

© 2013 Optical Society of America

OCIS codes: (060.2320) Fiber optics amplifiers and oscillators; (190.4380) Nonlinear optics,
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1. Introduction

Fiber optical parametric amplifiers (FOPAs) have many potential applications in future all-
optical communication systems. Compared to today’s commercialized EDFA and Raman am-
plifiers, the most distinct properties of FOPAs are: their ability to operate as phase-sensitive
amplifiers (PSA); their inherent generation of a frequency shifted copy of the signal called the
idler [1]; and low-noise amplification performance [2]. PSAs have been shown to break the
3-dB quantum-limited noise figure (NF) of traditional phase-insensitive amplifiers (PIA) by
amplifying only in-phase noise fluctuations while attenuating others, thus achieving a theoret-
ical minimum of 0-dB NF [3]. Today, the lowest NF measured is 1.1 dB [4], with a 26.5-dB
parametric gain. The idler generated at the opposite side-band of the signal relative to the pump
enables transparent wavelength conversion, phase conjugation and monitoring in all-fiber opti-
cal networks. Even though parametric amplification can be realized in both χ(2)- and χ(3)-based
materials, we only focus on silica fibers in this work, from which χ(2) effects are absent.

Parametric processes based on four-wave mixing (FWM) exist in a number of different fre-
quency configurations [5]. In Fig. 1, six different configurations are shown: (a), modulational
interaction, is the simplest approach used for parametric amplification or frequency conver-
sion, in which two pump (p) photons annihilate and create one photon at both signal (s) and
idler (i) frequencies. The amplifier operates phase-insensitively (PI) or phase-sensitively (PS)
depending on whether the idler is absent or present at the input. Next in (b), inverse modula-
tional interaction, one photon from each pump annihilates and creates two signal photons; the
signal then interacts with itself rather than with the idler, thus making the process always phase-
sensitive. The processes (c) and (d) are generalized configurations of (a) and (b), respectively
(Fig. 1 thus contains an actual number of four configurations), where no wave components
in the FWM process are degenerate. These two FWM processes are called phase-conjugation
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Fig. 1. Schematics of six different configurations of parametric processes based on four-
wave mixing, {p,s, i} denote pump, signal and idler, respectively.

processes, because the generated idler is proportional to the complex conjugate of the ampli-
fied signal [6]. In the processes (a)-(d), the amplified waves grow exponentially. The last two
processes, (e) and (f), are labeled distant and nearby Bragg scattering, from the possible ap-
plications of distant and nearby frequency conversion. They distinguish themselves from the
former configurations by transferring power between the signal and idler (and between the two
pumps) periodically through the fiber; the pumps do not amplify either of the signal or idler,
but FWM enables the conversion of power. The generated idler is directly proportional to the
signal, so no phase-conjugation takes place [7]. Also, the Bragg scattering processes do not
suffer from the 3-dB NF, which is unavoidable in PI amplification, because the total sideband
power is conserved and therefore no vacuum fluctuations are amplified. Depending on how
the configurations (a)–(f) are chosen relative to the zero-dispersion-frequency (ZDF), the three
processes of modulational interaction, phase conjugation and Bragg scattering may take place
separately or simultaneously.

The quantum noise properties of the mentioned parametric processes are analyzed in [5,8,9]
from a quantum mechanical point of view, in which the pumps are treated classically and as
constants. Raman scattering is included in [10, 11], while still assuming a classical, constant
pump. Consequently, the results of these works are only valid in the linear gain regime, in which
the pump remains essentially undepleted by the signal and idler. Until the quantum equations
of motion for the full system of four quantum waves are solved analytically, one must rely on
semi-classical approaches to analyze quantum noise in the nonlinear gain regime.

In this paper, we present a semi-classical method for describing quantum noise in parametric
processes, which is valid in the linear as well as in the nonlinear gain regimes. The method
includes the effects of FWM, loss and Raman scattering, and their respective implications on
the noise properties of parametric processes. We consider only case (a) of Fig. 1, but any of
the configurations (a)–(f) could be analyzed by the semi-classical approach presented here.
Furthermore, the quantum fluctuations of the pump are treated similarly to the fluctuations of
the signal and idler, which allows us to investigate the noise properties of the pump both in
the linear as well as in the nonlinear gain regimes. This is opposed to existing, approximate
quantum approaches that always treat the pump classically to ease analytical calculations.

The paper is structured as follows: In Sec. 2 the classical equations describing FWM, loss and
Raman scattering in a fiber are presented, and the classical approaches to simulate the coherent
state of light and spontaneous emission are defined. In Sec. 3, both PI and PS parametric ampli-
fiers are simulated in the linear gain regime and the impact of distributed loss and spontaneous
Raman scattering on the signal-to-noise ratio (SNR) of an amplified signal is investigated. Sec-
tion 4 presents the results of the classical model when an amplifier is configured to significantly
deplete the pump, and Sec. 5 summarizes the paper.

2. Theory and model presentation

2.1. Classical equations

A continuous-wave FOPA, as showed in Fig. 1(a), is described by Maxwell’s equations by
assuming only a single mode, a real valued χ(3)-nonlinear fiber and only a single state of po-
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larization [1]. In the following, we derive FOPA equations that include FWM, loss and Raman
scattering for three monochromatic wave components, ω1, ω2, and ω3. These waves always
fulfil ω1 < ω2 < ω3 and 2ω2 = ω1 +ω3, and they are all so close to the ZDF that FWM is
efficient. The total electric field is written as

E(r, t) =
1
2

x ∑
j=1,2,3

Fj(x,y)Aj(z)exp(iβ jz− iω jt)+ c.c., (1)

where Fj(x,y) is the transverse field distribution in the fiber, Aj(z) is the slowly-varying com-
plex field amplitude in units of

√
W, where W is Watts, and β j is the wave number of mode

j. By inserting Eq. (1) into the nonlinear wave equation [12], the following coupled amplitude
equations may be derived:

∂A1

∂ z
= iγ

([|A1|2 +2(|A2|2 + |A3|2)
]
A1 +A2

2A∗
3 exp(−iΔβ z)

)
, (2)

∂A2

∂ z
= iγ

([|A2|2 +2(|A1|2 + |A3|2)
]
A2 +2A1A3A∗

2 exp(iΔβ z)
)
, (3)

∂A3

∂ z
= iγ

([|A3|2 +2(|A1|2 + |A2|2)
]
A3 +A2

2A∗
1 exp(−iΔβ z)

)
, (4)

where γ is the nonlinear coefficient and Δβ = β1 + β3 − 2β2 is the wave number mismatch,
which is calculated according to [1], and where it was assumed that all wave components have
the same transverse field distribution. Due to energy conservation among the interacting waves,
ω2 −ω1 = ω3 −ω2 is always fulfilled. Fiber loss is included by subtracting the term α/2 Aj

from the right hand side of each equation, where α is the loss coefficient.
Stimulated Raman scattering is usually described in equations of power, but due to the model

of noise that we present here the equations must be in terms of the field amplitude. In Eq. (2)
for wave ω1, we add the effect of stimulated Raman scattering by the following consideration;
since ω1 is the smaller frequency, it receives Stokes scattering from both ω2 and ω3. These
contributions are accounted for by the terms [13]

g21
R

2
|A2|2

(
n21

T +1
)

A1 +
g31

R

2
|A3|2

(
n31

T +1
)

A1, (5)

where gi j
R = 2γ fRhR(Ωi j) is the Raman gain coefficient, fR = 0.18 is the Raman fraction, hR is

the Raman response function (see below), Ωi j = ωi−ω j, and ni j
T = (exp(h̄|Ωi j|/kBT )−1)−1 is

the phonon equilibrium number, where h̄ is Planck’s constant, kB is Boltzmann’s constant, and
T is the temperature. The term (ni j

T +1) implies that the Stokes process can take place even in
the absence of any phonons, i.e. when ni j

T = 0. Further, wave ω1 also contributes to the waves
ω2 and ω3 through the anti-Stokes process, which requires the presence of a phonon, and we
account for that process in Eq. (2) with the terms

−g21
R

2
|A2|2n21

T A1 − g31
R

2
|A3|2n31

T A1. (6)

In Eq. (3) for A2, wave ω2 relates to wave ω3 equally to how wave ω1 relates to wave ω2 in
Eq. (2). However, because wave ω2 gives energy to wave ω1 through the Stokes process, more
energy must be taken from wave ω2 than that which is given to wave ω1. This is because the
Stokes process implies the creation of a phonon that also contains energy. The resulting terms
for the Stokes process in Eq. (3) become

−g21
R

2
|A1|2

(
n21

T +1
) ω1

ω2
A2 +

g32
R

2
|A3|2

(
n32

T +1
)

A2, (7)
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where the factor ω1/ω2 accounts for the phonon energy. In the anti-Stokes process, in which
wave ω2 receives energy from wave ω1, more energy must be added than that taken from wave
ω1 because the process involves the destruction of a phonon. Hence, the anti-Stokes terms in
Eq. (3) become

g21
R

2
|A1|2n21

T
ω1

ω2
A2 − g32

R

2
|A3|2n32

T A2. (8)

In Eq. (4), wave ω3 relates to waves ω1 and ω2 equally to how wave ω2 relates to wave ω1 in
Eq. (3). In total, the FOPA equations including loss and stimulated Raman scattering become

∂A1

∂ z
= iγ

([|A1|2 +2(|A2|2 + |A3|2)
]
A1 +A2

2A∗
3 exp(−iΔβ z)

)

−α
2

A1 +
g21

R

2
|A2|2A1 +

g31
R

2
|A3|2A1, (9)

∂A2

∂ z
= iγ

([|A2|2 +2(|A1|2 + |A3|2)
]
A2 +2A1A3A∗

2 exp(iΔβ z)
)

−α
2

A2 − g21
R

2
ω2

ω1
|A1|2A2 +

g32
R

2
|A3|2A2, (10)

∂A3

∂ z
= iγ

([|A3|2 +2(|A1|2 + |A2|2)
]
A3 +A2

2A∗
1 exp(−iΔβ z)

)

−α
2

A3 − g31
R

2
ω3

ω1
|A1|2A3 − g32

R

2
ω3

ω2
|A2|2A3. (11)

Note that the terms with ni j
T , and hence the temperature dependence, have cancelled. We apply

these equations to simulate FOPAs by setting ω2 = ωp, and if ωs < ωp, then ω1 = ωs and
ω3 = ωi, but if ωs > ωp, then ω3 = ωs and ω1 = ωi.

The frequency-domain Raman response function is obtained by taking the imaginary part of
the Fourier transform of the standard single-damped-oscillator model [14, 15],

hR(t) = exp(−t/τ2)sin(t/τ1)Θ(t), (12)

where Θ(t) is a step function and τ1 = 12.2 fs and τ2 = 32 fs. It was shown in [16] that the real
part of the Raman susceptibility has a significant impact on the phase-matching condition of
FWM through induced refractive index changes; this was the case only for pump pulses with
peak powers of 80 W and detuning frequency shifts of > 10 THz. Since we deal with CW
sources of much lower power here, and detuning frequency shifts of < 6 THz, we assume that
the refractive index changes caused by the real part of the Raman response function are negli-
gible. We have included the nonlinear phase modulation and Raman interaction terms among
all wave components, because Eqs. (9)–(11) are required to be valid when the pump depletes.
We note that the model is valid in depletion in terms of interaction among the three wave com-
ponents, while the generation of higher order FWM products [17] has been disregarded. This
approximation becomes gradually less valid in the deep nonlinear gain regime.

Equations (9)–(11) describe the evolution of the complex field amplitude of each frequency
component at any point in the amplifier; we calculate the gain of the signal as

G(z) =
〈|As(z)|2〉
〈|As(0)|2〉 , (13)

where the mean value of the normalized field-amplitude squared is calculated based on field en-
sembles as outlined below; |As|2 is proportional to the photon number of the signal. We assume
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that an electric field of power P is related to its number of photons n by P = nh̄ωB0, where
B0 is the frequency domain bandwidth. In terms of gain and evaluation of noise fluctuations,
the constant factor h̄ωB0 plays no role. In the case of PI amplification, the SNR of the signal
for direct detection is defined as the square of the mean photon number divided by the photon
number variance [8, 10, 18]

SNRPI =
〈|As(z)|2〉2

Var(|As(z)|2) . (14)

In the PS case, however, many have discovered that the definition Eq. (14) leads to a 3-dB
improvement of the SNR of both signal and idler simultaneously [4, 8, 19] as opposed to the
0-dB change in SNR predicted originally [3]. Therefore, a definition based on all input and
output information is used in this work [11],

SNRPS =
〈|As(z)|2 + |Ai(z)|2〉2

Var(|As(z)|2 + |Ai(z)|2) . (15)

The NF of the amplifier is SNRi/SNRo for both the PI and PS cases, in which i and o denote
input and out put, respectively. It is noted that the 3-dB improvement of the SNR in a PSA is
a real effect that has been measured based on a copier-loss-amplifier scheme [4], in which the
copier is a PI parametric amplifier that generates an idler with a corresponding 3-dB penalty in
the signal SNR.

2.2. Simulation of the coherent state

For accurate simulations of quantum noise during parametric amplification, the classical input
fields should resemble the quantum coherent state and, thus, be defined in accordance with
quantum mechanics. One approach to achieve this is to add a small fluctuation term to the
mean amplitude of each input field, Aj = Ā j + δAj. The fluctuations must have the properties
〈δAj〉= 0, 〈δA2〉= 0 and 〈|δA|2〉= 1/2 to ensure that the total field, Aj, holds one half photon
on average in the absence of any mean field, Ā j.

Another approach is to add normally distributed fluctuations to the real and imaginary parts
of the input fields, thus simulating the fluctuations in the two quadratures of the quantum elec-
tric field. The variances of these fluctuations are obtained directly from the commutator relation
of the quadrature operators, x̂ and p̂, i.e. [x̂, p̂] = i/2, which dictates that Var(x̂)Var( p̂)≥ 1/16,
so in a non-squeezed state of light we have Var(x̂) = Var( p̂) = 1/4 in units of photons [20]. In
this work, we use the second approach and thus define the input fields as

Aj = x̄ j +δx j + i( p̄ j +δ p j), (16)

where x̄ j and p̄ j are related to the classical amplitude and phase by x̄ j = Aj cos(φ j) and
p̄ j = Aj sin(φ j), and the fluctuations have the properties 〈δx j〉 = 〈δ p j〉 = 0 and Var(δx j) =
Var(δ p j) = 1/4, where j ∈ {p,s, i} and δx j and δ p j are uncorrelated. The indeterministic na-
ture of the quantum electric field is captured classically by using Eq. (16) to create an ensemble
of classical fields from which we calculate the photon mean value and variance,

〈n j〉 = 〈|Aj|2〉= x̄2
j + p̄2

j +1/2, (17)

Var(n j) = 〈|Aj|4〉−〈|Aj|2〉2 = x̄2
j + p̄2

j +1/4. (18)

The electric field is here normalized to represent the photon number instead of power. Evidently,
Eq. (17) shows that by adding the fluctuations δx j and δ p j we explicitly include the energy
of the vacuum fluctuations in the model, identified by the term of 1/2 photon in average. By
comparing Eqs. (17) and (18), we also confirm that for large photon numbers SNRj = x̄2

j + p̄2
j ,

which is proportional to the photon number, as one would expect for a coherent state.
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2.3. Spontaneously emitted photons in the fiber

During propagation in the amplifier, spontaneously generated photons distort the signal quality.
Here, we focus on two unavoidable sources of noise in a fiber; loss induced noise (LIN) and
spontaneous Raman scattering (SRS). Both effects are included by adding fluctuation terms to
all propagating fields at a finite number of positions in the fiber amplifier, e.g. in every step
along the fiber of the numerical differential-equation solver.

LIN originates from the coupling of the electric field to a scattered (loss) mode, which con-
tains vacuum fluctuations, and the effect of which can be modelled as a two-port beam split-
ter [21]. For our purpose, however, it is simpler to consider the variance of each quadrature,
which cannot decrease below 1/4 due to loss alone. In the semi-classical model large loss im-
plies that all fields decay asymptotically to zero, hence also the quadrature variances, so to obey
the uncertainty principle we add a fluctuation term in each numerical step to both the real and
imaginary parts of all propagating fields. The statistical properties of the fluctuation term are

〈δaLIN〉 = 0, (19)

Var(δaLIN) = αΔz/4, (20)

where Δz is the step size and α is the loss coefficient of Eqs. (9)–(11). This value of the fluc-
tuation variance ensures that the quadrature variances decay to 1/4 in the limit of large losses.
We also note that a passive device (e.g. a fiber with attenuation) is well-known to influence
a transmitted signal with a signal-to-noise degradation equal to the loss. We verified that the
model of LIN presented here captures this result correctly.

SRS originates from the coupling of the electric field to thermal phonon states in the medium
of propagation and consists of two distinct contributions: 1) the spontaneous annihilation of a
high-frequency photon in the creation of an optical phonon and a lower-frequency photon, both
with random phases (Stokes process), and 2) the spontaneous annihilation of a low-frequency
photon and an optical phonon in the creation of a higher-frequency photon with random phase
(anti-Stokes process). The two processes happen with unequal probability, because the anti-
Stokes process requires the presence of a phonon, while the Stokes process does not. Referring
back to Eqs. (9)–(11), wave ω3 scatters spontaneously to waves ω1 and ω2 in the Stokes process,
and wave ω1 scatters spontaneously to waves ω2 and ω3 in the anti-Stokes process. Wave ω2

scatters spontaneously to wave ω1 in the Stokes process and to wave ω3 in the anti-Stokes
process. Spontaneous Stokes (S) scattering is accounted for by adding fluctuation terms to the
real and imaginary parts of each field with the properties

〈δaS〉 = 0, (21)

Var(δaS) = (1+nT (Ω jk))gR(Ω jk)|Aj|2Δz/2, (22)

where k denotes the field that receives scattering and j denote the field that gives scattering.
Spontaneous anti-Stokes (AS) scattering is accounted for in a similar way with a fluctuation
term with the properties

〈δaAS〉 = 0, (23)

Var(δaAS) = nT (Ω jk)gR(Ω jk)|Aj|2Δz/2. (24)

Note that SRS is temperature depended, and that spontaneous Stokes scattering can take place
in the absence of phonons, but spontaneous anti-Stokes scattering cannot. The variance of δaS

and δaAS was chosen so that the consequent change in signal power is in accordance with the
classical power equations of the Raman amplifier [22].
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3. Amplifier noise in the linear gain regime

In this section, we analyze the noise properties of a FOPA configured as shown in Fig. 1(a), in
the linear gain regime, to show that 1) the presented semi-classical model agrees with known
quantum-based results and 2) the effects of LIN and SRS. For a PIA the parametric gain and
NF can be calculated in the linear gain regime assuming that loss and Raman scattering may be
disregarded to be [1, 8, 10]

GPI(z) = 1+

[
γPp

g
sinh(gz)

]2

, (25)

NFPI(z) = 1+
GPI(z)−1

GPI(z)
, (26)

where g2 = −Δβ (Δβ/4+ γPp) is the parametric gain coefficient and Pp is the constant pump
power. Similar but more complicated expressions for the PS parametric gain and NF are derived
in [18] for the linear gain regime; in general the PS amplification process depend also on the
input idler phase and amplitude, whereas the PI process does not. However, if we assume ideal
phase matching, Δβ = −2γPp (which determines the signal wavelength relative to the pump
wavelength for a specific fiber), and choose the relative phase of the pump, signal and idler to
be θrel = 2φp −φs −φi =−π/2, the signal and idler grow according to

Ps(z) =

(√
GPI(z)Ps,0 +

√
(GPI(z)−1)Pi,0

)2

, (27)

Pi(z) =

(√
GPI(z)Pi,0 +

√
(GPI(z)−1)Ps,0

)2

, (28)

where Ps,0 and Pi,0 are the signal and idler input powers, respectively. The PS parametric gain
is then GPS(z) = Ps(z)/Ps,0. Under the same conditions, the PS NF reduces to

NFPS(z) = (Ps,0 +Pi,0) ·
(√

GPIPs +
√
(GPI −1)Pi

)2
+
(√

GPIPi +
√
(GPI −1)Ps

)2

(Ps +Pi)2 . (29)

Note that in the case of equal signal and idler input powers, the PS NF reduces to 1 (0 dB)
independent of the gain.

Figure 2(a) shows simulations of the parametric gain and NF for both a PIA (gray) and PSA
(black) versus fiber position z with and without loss and Raman contributions; the ensemble size
is 5× 104. In the PSA case, equal signal and idler input powers were chosen. The numerical
results without loss and Raman scattering compare excellently to the analytical expressions (the
gain curves with loss and Raman scattering are omitted for visual reasons), which means that the
field ensemble behaves as a classical parametric amplifier on average. The effect of including
loss and Raman scattering on the parametric gain is minor, but the NF increases significantly in
both the PI and PS cases, thus destroying the 3-dB and 0-dB NFs, respectively, as predicted by
quantum theory; this result is in agreement with other theoretical studies of Raman scattering
in parametric amplifiers [10, 11] and with experiments [18, 23]. It was verified in subsequent
simulations that the noise contribution from LIN is insignificant compared to that from SRS.

Figure 2(b) shows gain and NF spectra around the pump wavelength, λp, where the analytic
expressions are now omitted; from the gain curves in the top plot the high-gain regions stand
out clearly. The NF curves in the bottom plot show the 3-dB NF floor of the PIA (gray) without
loss and Raman scattering, and an asymmetric increase in the NF all over the spectrum where
loss and Raman scattering are included. The distortion of the signal in the latter case is due
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Fig. 2. (a) PIA (gray) and PSA (black) gains and NFs versus fiber length with and without
the Raman effect and loss (the gain with Raman and loss are not shown; line styles apply
to both PIA and PSA curves), (b) Gain and NF spetrca at the amplifier output (z = 300 m),
which show the effect of SRS and LIN on the NF. Parameters: Pp,0 = 1.4 W, Ps,0 = 10−7 W,
λp = 1560.7 nm, λ0 = 1559 nm, γ = 11 (Wkm)−1, ∂D/∂λ = 0.03 ps/(nm2 km), α = 0.4
dB/km, T = 300 K, and Δz = 1 m.

to the random phase of the spontaneously emitted photons of LIN and SRS, which increase
the variance in the number of photons without increasing the mean number. In the numerical
model, the signal is represented by an ensemble that forms a circular shape in phase space, and
the addition of δaLIN and δaSRS in each step increases the radius of the circle without moving
its center. The local increase of the NF around the pump wavelength is caused by the rapid
increase in the phonon equilibrium number for vanishing wavelength shifts.

In contrast to the PI NF, which is almost independent of the signal wavelength, the PSA NF
is seen to be 0 dB only at the ideal phase matching condition for maximum gain, which was
defined above. However, through the entire spectrum of high gain, the PSA NF curve without
loss and Raman scattering breaks the 3-dB quantum limit of the PI process, and we further
observe that this holds true in the high-gain regions even when loss and Raman scattering are
taken into account. We conclude that this result confirms the potential of the PSA as a low-noise
component in future all-optical networks.

4. Amplifier noise in the nonlinear gain regime

In the linear gain regime, we observe that our simulations agree with known quantum results;
therefore, we apply the model to the gain saturated regime, where it is difficult to describe the
quantum noise properties of parametric processes quantum mechanically. We focus separately
on the signal and the pump noise properties, respectively, and we limit our investigation to the
case of a PIA.

4.1. Quantum noise on gain-saturated signal

To simulate the complete depletion of the pump, we increase the input signal power to Ps,0 =
10−4 W and keep all other parameters unchanged. The phase-matching condition for maximum
gain, Δβ = −2γPp, has two solutions in terms of signal wavelength (as seen in the top plot
of Fig. 2(b)); in the linear gain regime the two solutions give identical gain in the absence
of Raman scattering and slightly different gains with Raman scattering included. In the gain-
saturated regime, however, where not only the pump scatters energy to higher wavelengths but
also the lower-wavelength sideband does, the gain spectrum becomes highly asymmetrical, and
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Fig. 3. (a) Signal gain (black) and NF (gray) of a depleted PIA without loss and Raman
scattering (solid lines), and with loss and Raman scattering (dashed lines). (b) The top
plots show constellation diagrams of the signal at the positions i)-iii) in (a), where loss and
Raman scattering are included in all of them; the scalings in the three diagrams are not
equal, so the sizes of the ensembles cannot be compared, only their shapes (the dotted lines
point towards the origins of the phase-space diagrams). The bottom plot shows the degree
of amplitude squeezing through the amplifiers with and without loss and Raman scattering.
All plots indicate that neglecting Raman scattering beyond full pump depletion leads to a
significant error. The parameters are the same as in Fig. 2, but with Ps,0 = 10−4 W.

we therefore include both solutions in our analysis.
Figure 3(a) shows the gain (black) and NF (gray) for a PIA with and without loss and Raman

scattering. We observe that as the gain starts to saturate the NF decreases, and at full pump
depletion the NF reaches -35 dB without loss and Raman scattering, and -32 dB with loss and
Raman scattering, respectively. The explanation for the drastic increase in the SNR is found
in the top plots of Fig. 3(b), where constellation diagrams of the signal are shown (the dotted
lines point toward the origins of the phase-space diagrams). In the linear gain regime, the signal
has a circular shape due to the uncorrelated noise in the two quadratures of the electric field.
At position i) the field ensemble (including loss and Raman scattering) has been squeezed
in amplitude thus reducing the photon number variance while maintaining the mean photon
number. Evidently, such behaviour increases the photon number-based SNR. Notice that as
the signal enters the depletion regime after being amplified, its fluctuations are much larger
than those of vacuum. Therefore, the squeezed states shown in diagrams i)-iii) do not show
quantum squeezing in which the fluctuations of one quadrature are smaller than the vacuum
fluctuations, at the cost of larger fluctuations in the other quadrature. The concept of amplitude
regeneration of optical signals in gain-saturated parametric amplifiers has been demonstrated
several times [24–27].

Beyond full pump depletion the signal power decreases and the NF increases again, but
as argued above the gain depends on which side band of the pump is considered. The NF is
affected similarly, but not only from the difference in gain; constellation diagrams ii) and iii)
show that the higher wavelength signal ensemble is squeezed in amplitude, whereas the lower
wavelength signal ensemble is broadened in amplitude. The latter leads to the increasing NF
shown in Fig. 3(a) as the dotted line.

The bottom plot of Fig. 3(b) gives a complete overview of the degree of amplitude squeezing
in the two cases with loss and Raman scattering, and the one without loss and Raman scatte-
ring. The degree of amplitude squeezing is defined as σq2/σq1 , where σq1,q2 are the standard
deviations on two axes defined in a local coordinate system with origins at the center of the
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Fig. 4. (a) Pump power and NF through a PIA with and without loss and Raman scattering.
The dots i)-vii) denote the positions to which the constellation diagrams in (b) belong,
where i) z = 0 m, ii) z = 67 m, iii) z = 133 m, iv) z = 200 m, v) z = 269 m, vi) z = 332
m and vii) z = 369 m; loss and Raman scattering are included in all of them. The scaling
on the axes of all the diagrams are equal except for the denoted zooms, so the sizes and
shapes of the ensembles can be compared; the diagrams show the case with loss and Raman
scattering. The parameters are the same as in Fig. 3.

ensemble. The axis q1 is parallel to the radial direction (amplitude) and q2 is parallel to the
tangential direction (phase) of the phase-spaces shown in the diagrams i)-iii). From the results
of Fig. 3 we further conclude that until full depletion of the pump is achieved, Raman scattering
plays only a minor role in the dynamics of the FOPA; after the point of full depletion, however,
a significant error occurs if Raman scattering is neglected.

4.2. Quantum noise on depleted pump

Because the pump is usually treated as a classical constant, its quantum noise dynamics have
never been given much attention. Figure 4 shows the quantum noise properties of the pump
from the same simulation that generated the results of the signal in Fig. 3. Plot (a) shows the
pump power (black) and, as expected, it is constant in the linear gain regime (z= 0 m to z≈ 180
m). Thereafter, it gives approximately half its power to the signal and idler (full depletion is not
achieved at the phase-mismatch of the chosen signal wavelength) and receives it back again.
Stimulated Raman scattering causes the backward transfer to be incomplete. The NF (gray) is
observed to be more complex than the NF of the signal: the curve increases to > 35 dB with
decreasing power until the largest possible depletion, where the NF drops to <−5 without loss
and Raman scattering dB and < 5 dB with loss and Raman scattering, respectively. In contrast
to the signal NF, Raman scattering has only a minor influence on the pump NF.

Figure 4(b) shows constellation diagrams of the pump ensemble at the selected points i)–vii)
in (a) including loss and Raman scattering, and they show a complex development with two
properties that are not detectable in the NF curve: 1) even though the amplitude variance of
the pump remains approximately constant in i)–iii) (constant NF curve) more phase noise is
introduced. This is clearly seen in diagrams ii) and iii), where the ensembles have ellipsoidal
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shapes compared to the circular shape in diagram i). As depletion is approached, the ensemble
grows in all directions (the scales on the axes of all diagrams are equal except for the denoted
zooms) as seen in iv)–vii), though the phase variance grows faster than the amplitude variance
making the ensemble more ellipsoidal. 2) the broadening of the ensemble in phase is not or-
thogonal to the radial direction in phase space. Furthermore, the angle of broadening changes
through ii)–vi) and the broadening is noticed to be orthogonal in iv) and vii). Comparing vi)
and vii), evidently the ensemble is squeezed in amplitude as full pump depletion is reached.
This squeezing is, as it was for the signal, the cause of the drop in the NF curve in plot (a); in
diagram vi) the degree of amplitude squeezing is 22.0 dB as defined by above.

From the results of Fig. 4 we conclude that the pump takes an active part in the process
of parametric amplification in a fiber, and the noise properties presented here are not special
features of Raman scattering, but inherent effects of FWM. Clearly, a parameter as simple as
the SNR Eq. (14) is not sufficient to describe the dynamics of the pump fluctuations. However,
a thorough investigation of the pump–signal quantum noise interactions is outwith the scope of
this paper.

5. Conclusion

In this paper, we have presented a semi-classical method for describing quantum noise in para-
metric processes. We have chosen to focus on the simplest scheme for parametric amplification
in a fiber, modulation interaction (see Fig. 1), and presented the governing equations including
loss, and stimulated and spontaneous Raman scattering.

In the linear gain regime of the amplification process, we found that the semi-classical
method had excellent agreement with fully-quantum approaches when loss and Raman scat-
tering were omitted. When both effects were included, we observed an increase in the NF of
both PIAs and PSAs, thus destroying the predicted quantum-limited 3-dB and 0-dB NFs, re-
spectively. Loss and Raman scattering are unavoidable in silica fibers, but contrary to vacuum
fluctuations they depend on experimental parameters, so the set-up can be tailored to minimize
their impacts.

The nonlinear gain regime, in which the noise properties of parametric processes are not
yet described by quantum mechanics, is also accessible in the semi-classical method. Here,
we show that as the signal depletes the pump, FWM causes the generation of an amplitude-
squeezed state of light. Because the SNR is based on only the photon-number mean and vari-
ance, the squeezing induces a NF of <−30 dB. Loss and Raman scattering only influence this
result to a minor degree; beyond the point of full depletion, however, we find that disregarding
loss and Raman scattering leads to a significant error.

One more distinct feature of the semi-classical approach is the possibility of investigating
the quantum noise on the pump of the amplifier. In such an investigation, we conclude that the
fluctuations of the pump are affected significantly by FWM with the signal and idler, and that
the SNR is too simple a concept to describe the quantum noise dynamics even in the linear
gain regime. Loss and Raman scattering do not affect significantly the conclusions drawn from
investigations of the pump.
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