231 research outputs found

    Treatment effect of idebenone on inspiratory function in patients with Duchenne muscular dystrophy

    Get PDF
    Assessment of dynamic inspiratory function may provide valuable information about the degree and progression of pulmonary involvement in patients with Duchenne muscular dystrophy (DMD). The aims of this study were to characterize inspiratory function and to assess the efficacy of idebenone on this pulmonary function outcome in a large and well‐characterized cohort of 10–18 year‐old DMD patients not taking glucocorticoid steroids (GCs) enrolled in the phase 3 randomized controlled DELOS trial. We evaluated the effect of idebenone on the highest flow generated during an inspiratory FVC maneuver (maximum inspiratory flow; V'I,max(FVC)) and the ratio between the largest inspiratory flow during tidal breathing (tidal inspiratory flow; V'I,max(t)) and the V'I,max(FVC). The fraction of the maximum flow that is not used during tidal breathing has been termed inspiratory flow reserve (IFR). DMD patients in both treatment groups of DELOS (idebenone, n = 31; placebo: n = 33) had comparable and abnormally low V'I,max(FVC) at baseline. During the study period, V'I,max(FVC) further declined by −0.29 L/sec in patients on placebo (95%CI: −0.51, −0.08; P = 0.008 at week 52), whereas it remained stable in patients on idebenone (change from baseline to week 52: 0.01 L/sec; 95%CI: −0.22, 0.24; P = 0.950). The between‐group difference favoring idebenone was 0.27 L/sec (P = 0.043) at week 26 and 0.30 L/sec (P = 0.061) at week 52. In addition, during the study period, IFR improved by 2.8% in patients receiving idebenone and worsened by −3.0% among patients on placebo (between‐group difference 5.8% at week 52; P = 0.040). Although the clinical interpretation of these data is currently limited due to the scarcity of routine clinical practice experience with dynamic inspiratory function outcomes in DMD, these findings from a randomized controlled study nevertheless suggest that idebenone preserved inspiratory muscle function as assessed by V'I,max(FVC) and IFR in patients with DMD

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies

    Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy

    Get PDF
    In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10–18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated “by patient” (HR 0.33, p = 0.0187) and for “all BAEs” (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics

    Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency

    Get PDF
    Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease

    Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients

    Get PDF
    Aim: We investigated the effect of ataluren plus standard of care (SoC) on age at loss of ambulation (LoA) and respiratory decline in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD) versus patients with DMD on SoC alone. / Patients & methods: Study 019 was a long-term Phase III study of ataluren safety in nmDMD patients with a history of ataluren exposure. Propensity score matching identified Study 019 and CINRG DNHS patients similar in disease progression predictors. / Results & conclusion: Ataluren plus SoC was associated with a 2.2-year delay in age at LoA (p = 0.0006), and a 3.0-year delay in decline of predicted forced vital capacity to <60% in nonambulatory patients (p = 0.0004), versus SoC. Ataluren plus SoC delays disease progression and benefits ambulatory and nonambulatory patients with nmDMD. / ClinicalTrials.gov: NCT01557400

    Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy.

    Get PDF
    Aim: Assess the totality of efficacy evidence for ataluren in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). Materials & methods: Data from the two completed randomized controlled trials (ClinicalTrials.gov: NCT00592553; NCT01826487) of ataluren in nmDMD were combined to examine the intent-to-treat (ITT) populations and two patient subgroups (baseline 6-min walk distance [6MWD] \u3e= 300-\u3c400 or \u3c400 m). Meta-analyses examined 6MWD change from baseline to week 48.Results:Statistically significant differences in 6MWD change with ataluren versus placebo were observed across all three meta-analyses. Least-squares mean difference (95% CI): ITT (n = 342), +17.2 (0.2-34.1) m, p = 0.0473; \u3e= 300-\u3c400 m (n = 143), +43.9 (18.2-69.6) m, p = 0.0008; \u3c400 m (n = 216), +27.7 (6.4-49.0) m, p = 0.0109. Conclusion: These meta-analyses support previous evidence for ataluren in slowing disease progression versus placebo in patients with nmDMD over 48 weeks. Treatment benefit was most evident in patients with a baseline 6MWD \u3e= 300-\u3c400 m (the ambulatory transition phase), thereby informing future trial design

    Characterization of pulmonary function in 10Ăą18 year old patients with Duchenne muscular dystrophy

    Get PDF
    Pulmonary function loss in patients with Duchenne muscular dystrophy (DMD) is progressive and leads to pulmonary insufficiency. The purpose of this study in 10Ăą18 year old patients with DMD is the assessment of the inter-correlation between pulmonary function tests (PFTs), their reliability and the association with the general disease stage measured by the Brooke score. Dynamic PFTs (peak expiratory flow [PEF], forced vital capacity [FVC], forced expiratory volume in one second [FEV1]) and maximum static airway pressures (MIP, MEP) were prospectively collected from 64 DMD patients enrolled in the DELOS trial (ClinicalTrials.gov, number NCT01027884). Baseline PEF percent predicted (PEF%p) was <80% and patients had stopped taking glucocorticoids at least 12 months prior to study start. At baseline PEF%p, FVC%p and FEV1%p correlated well with each other (Spearman's rho: PEF%pĂąFVC%p: 0.54; PEF%pĂąFEV1%p: 0.72; FVC%pĂąFEV1%p: 0.91). MIP%p and MEP%p correlated well with one another (MIP%pĂąMEP%p: 0.71) but less well with PEF%p (MIP%pĂąPEF%p: 0.40; MEP%pĂąPEF%p: 0.41) and slightly better with FVC%p (MIP%pĂąFVC%p: 0.59; MEP%pĂąFVC%p: 0.74). The within-subject coefficients of variation (CV) for successive measures were 6.97% for PEF%p, 6.69% for FVC%p and 11.11% for FEV1%p, indicating that these parameters could be more reliably assessed compared to maximum static airway pressures (CV for MIP%p: 18.00%; MEP%p: 15.73%). Yearly rates of PFT decline (placebo group) were larger in dynamic parameters (PEF%p: Ăą8.9% [SD 2.0]; FVC%p: Ăą8.7% [SD 1.1]; FEV1%p: Ăą10.2% [SD 2.0]) than static airway pressures (MIP%p: Ăą4.5 [SD 1.3]; MEP%p: Ăą2.8 [SD 1.1]). A considerable drop in dynamic pulmonary function parameters was associated with loss of upper limb function (transition from Brooke score category 4 to category 5). In conclusion, these findings expand the understanding of the reliability, correlation and evolution of different pulmonary function measures in DMD patients who are in the pulmonary function decline phase

    Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency.

    Get PDF
    Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease

    Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement.

    Get PDF
    Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland
    • 

    corecore