119 research outputs found

    Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.

    Get PDF
    Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.All authors were supported by EU FP7 grant DDPDGENES. S.L. was supported by European Research Council grant 261063 (BRAINCELL), Knut and Alice Wallenberg Foundation grant 2015.0041, Swedish Research Council (STARGET), and the Swedish Foundation for Strategic Research (RIF14-0057). A.Z. was supported by the Human Frontier Science Program. E.A. was supported by Swedish Research Council (VR projects: 2011-3116 and 2011-3318), Swedish Foundation for Strategic Research (SRL program), and Karolinska Institutet (SFO Thematic Center in Stem cells and Regenerative Medicine). E.A. and R.A.B. were supported by the EU FP7 grant NeuroStemcellRepair. R.A.B. was also supported by an NIHR Biomedical Research Centre award to the University of Cambridge/Addenbrookes Hospital. iCell dopaminergic neurons were a generous gift from Cellular Dynamics International. Single-cell RNA-seq servic0es were provided by the Eukaryotic Single-cell Genomics facility and the National Genomics Infrastructure at Science for Life Laboratory.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cell.2016.09.02

    Survival of ART restorations assessed using selected FDI and modified ART restoration criteria

    Get PDF
    A new set of criteria for assessing the quality of restorations using modern restorative materials, named FDI criteria, was recently introduced. This study tested the null hypothesis that there is no significant difference in survival estimate percentages of ART restorations assessed using selected FDI and modified ART criteria after 1 and 5 years. One operator placed a total of 60 class I and 30 Class II high-viscosity glass-ionomer ART restorations in ninety 14- to15-year-olds. Two calibrated and independent evaluators using both criteria evaluated restorations on diestone replicas at baseline and after 1 and 5 years. Statistical analyses were done using the Kaplan–Meier method and log-rank test. The survival results of ART restorations assessed using both sets of criteria after 1 and 5 years (p = 0.27) did not differ significantly. Three ART restorations were assessed as failures according to the ART criteria, while they were assessed as survived using the FDI criteria. We conclude that the modified ART criteria enable reliable assessment of ART restorations in permanent teeth from diestone replicas and that there was no significant difference in survival estimates of ART restorations assessed using both sets of criteria. The null hypothesis was accepted

    The evolution of tooth wear indices

    Get PDF
    Tooth wear—attrition, erosion and abrasion—is perceived internationally as an ever-increasing problem. Clinical and epidemiological studies, however, are difficult to interpret and compare due to differences in terminology and the large number of indices that have been developed for diagnosing, grading and monitoring dental hard tissue loss. These indices have been designed to identify increasing severity and are usually numerical. Some record lesions on an aetiological basis (e.g. erosion indices), others record lesions irrespective of aetiology (tooth wear indices); none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. It reviews the literature to consider how current indices have evolved and discusses if these indices meet the clinical and research needs of the dental profession

    Two years survival rate of class II composite resin restorations prepared by ART with and without a chemomechanical caries removal gel in primary molars

    Get PDF
    The aim was to test the null hypotheses that there is no difference: (1) in carious lesion development at the restoration margin between class II composite resin restorations in primary molars produced through the atraumatic restorative treatment (ART) with and without a chemomechanical caries removal gel and (2) in the survival rate of class II composite resin restorations between two treatment groups after 2 years. Three hundred twenty-seven children with 568 class II cavitated lesions were included in a parallel mouth study design. Four operators placed resin composite (Filtek Z 250) restorations bonded with a self-etch adhesive (Adper prompt L pop). Two independent examiners evaluated the restorations after 0.5, 1, and 2 years using the modified Ryge criteria. The Kaplan–Meier survival method was applied to estimate survival percentages. A high proportion of restorations were lost during the study period. Therefore, the first hypothesis could not be tested. No statistically significant difference was observed between the cumulative survival percentages of restorations produced by the two treatment approaches over the 2-year period (ART, 54.1 ± 3.4%; ART with Carisolv™, 46.0 ± 3.4%). This hypothesis was accepted. ART with chemomechanical gel might not provide an added benefit increasing the survival percentages of ART class II composite resin restorations in primary teeth

    The Microfloral Analysis of Secondary Caries Biofilm around Class I and Class II Composite and Amalgam Fillings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. The diversity of the bacterial sources and the different types of filling materials could play a role in secondary caries. The aim of this study was to determine and compare the microbial spectrum of secondary caries biofilms around amalgam and composite resin restorations.</p> <p>Methods</p> <p>Clinical samples were collected from freshly extracted teeth diagnosed with clinical secondary caries. Samples were categorized into four groups according to the types of restoration materials and the classification of the cavity. Biofilms were harvested from the tooth-restoration interface using a dental explorer and after dilution were incubated on special agars. The bacteria were identified using the biochemical appraisal system. Statistical calculations were carried out using SPSS11.5 software to analyze the prevalence of the bacteria involved in secondary caries.</p> <p>Results</p> <p>Samples from a total of four groups were collected: two groups were collected from amalgam restorations, each had 21 samples from both Class I and Class II caries; and the other two groups were from composite resin restorations, each had 13 samples from both class I and class II caries. Our results showed: (1) Anaerobic species were dominant in both restoration materials. (2) In terms of the types of individual bacteria, no significant differences were found among the four groups according to the geometric mean of the detected bacteria (P > 0.05). However, there were significant differences among the detected bacteria within each group (P < 0.05). The composition of each bacterium had no statistical difference among the four groups (P > 0.05), but showed significant differences among the detected bacteria in each group (P < 0.05). (3) Among the four groups, there were no significant differences for the detection rate of each bacterium (P > 0.05), however, the detection rate of each bacterium within each group was statistically different among the detected bacteria (P < 0.05).</p> <p>Conclusions</p> <p>The proportion of obligatory anaerobic species was much greater than the facultative anaerobic species in the biofilm of secondary caries. Statistically, the materials of restoration and the location of secondary caries did not show any significant effects on the composition of the microflora.</p

    Functional Genomics Unique to Week 20 Post Wounding in the Deep Cone/Fat Dome of the Duroc/Yorkshire Porcine Model of Fibroproliferative Scarring

    Get PDF
    Background: Hypertrophic scar was first described over 100 years ago; PubMed has more than 1,000 references on the topic. Nevertheless prevention and treatment remains poor, because 1) there has been no validated animal model; 2) human scar tissue, which is impossible to obtain in a controlled manner, has been the only source for study; 3) tissues typically have been homogenized, mixing cell populations; and 4) gene-by-gene studies are incomplete.Methodology/Principal Findings: We have assembled a system that overcomes these barriers and permits the study of genome-wide gene expression in microanatomical locations, in shallow and deep partial-thickness wounds, and pigmented and non-pigmented skin, using the Duroc( pigmented fibroproliferative)/Yorkshire( non-pigmented non-fibroproliferative) porcine model. We used this system to obtain the differential transcriptome at 1, 2, 3, 12 and 20 weeks post wounding. It is not clear when fibroproliferation begins, but it is fully developed in humans and the Duroc breed at 20 weeks. Therefore we obtained the derivative functional genomics unique to 20 weeks post wounding. We also obtained long-term, forty-six week follow-up with the model.Conclusions/Significance: 1) the scars are still thick at forty-six weeks post wounding further validating the model. 2) the differential transcriptome provides new insights into the fibroproliferative process as several genes thought fundamental to fibroproliferation are absent and others differentially expressed are newly implicated. 3) the findings in the derivative functional genomics support old concepts, which further validates the model, and suggests new avenues for reductionist exploration. in the future, these findings will be searched for directed networks likely involved in cutaneous fibroproliferation. These clues may lead to a better understanding of the systems biology of cutaneous fibroproliferation, and ultimately prevention and treatment of hypertrophic scarring.The National Institute on Disability and Rehabilitation ResearchThe National Institutes of HealthThe Washington State Council of Fire Fighters Burn FoundationThe Northwest Burn FoundationUniv Washington, Dept Surg, Div Plast Surg, Seattle, WA 98195 USAIowa State Univ, Dept Anim Sci, Ames, IA USAUniv Washington, Dept Biostat, Seattle, WA 98195 USAMahidol Univ, Ramathibodi Hosp, Dept Surg, Bangkok 10700, ThailandUniv Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USAUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilThe National Institute on Disability and Rehabilitation Research: H133G050022The National Institutes of Health: 1R21GM074673The National Institutes of Health: 5U54GM062119-09Web of Scienc

    Synthetic α-Conotoxin Mutants as Probes for Studying Nicotinic Acetylcholine Receptors and in the Development of Novel Drug Leads

    Get PDF
    α-Conotoxins are peptide neurotoxins isolated from venomous marine cone snails that are potent and selective antagonists for different subtypes of nicotinic acetylcholine receptors (nAChRs). As such, they are valuable probes for dissecting the role that nAChRs play in nervous system function. In recent years, extensive insight into the binding mechanisms of α-conotoxins with nAChRs at the molecular level has aided in the design of synthetic analogs with improved pharmacological properties. This review examines the structure-activity relationship studies involving α-conotoxins as research tools for studying nAChRs in the central and peripheral nervous systems and their use towards the development of novel therapeutics

    Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    Get PDF
    BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord

    Genetic identification of brain cell types underlying schizophrenia

    Get PDF
    With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. Applying knowledge of the cellular taxonomy of the brain from single-cell RNA-sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common variant genomic results consistently mapped to pyramidal cells, medium spiny neurons, and certain interneurons but far less consistently to embryonic, progenitor, or glial cells. These enrichments were due to sets of genes specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (synaptic genes, FMRP interactors, antipsychotic targets, etc.) generally implicate the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with medium spiny neurons did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia
    corecore