9 research outputs found

    Real-time detection of Fe·EDTA/H2O2-induced DNA cleavage by linear dichroism

    Get PDF
    The conditions for the measurement of linear dichroism (LD) can be adjusted so as to solely reflect the length and the flexibility of DNA. The real-time detection of the EDTA·Fe2+-induced oxidative cleavage of double-stranded native and synthetic DNAs was performed using LD. The decrease in the magnitude of the LD at 260 nm, which reflects an increase in the flexibility and a decrease in the length of the DNA, can be described by the sum of two or three exponential curves in relation to the EDTA·Fe2+ concentration. The fast component was assigned to the cleavage of one of the double strands, inducing an increase in the flexibility, while the other slower component was assigned to the cleavage of the double strand, resulting in the shortening of DNA. The decrease in the magnitude of the LD of poly[d(A-T)2] was similar to that of poly[d(I-C)2], while that of poly[d(G-C)2] was found to be the slowest, indicating that the resistance of poly[d(G-C)2] against the Fenton-type reagent was the strongest. This observation suggests that the amine group in the minor groove of the double helix may play an important role in slowing the EDTA·Fe2+-induced oxidative cleavage

    Bio-assay based on single molecule fluorescence detection in microfluidic channels

    No full text
    Hollars CW, Puls J, Bakajin O, et al. Bio-assay based on single molecule fluorescence detection in microfluidic channels. Analytical and Bioanalytical Chemistry. 2006;385(8):1384-1388.A rapid bioassay is described based on the detection of colocalized fluorescent DNA probes bound to DNA targets in a pressure-driven solution flowing through a planar microfluidic channel. By employing total internal reflection excitation of the fluorescent probes and illumination of almost the entire flow channel, single fluorescent molecules can be efficiently detected leading to the rapid analysis of nearly the entire solution flowed through the device. Cross-correlation between images obtained from two spectrally distinct probes is used to determine the target concentration and efficiently reduces the number of false positives. The rapid analysis of DNA targets in the low pM range in less than a minute is demonstrated

    Tunable Blinking Kinetics of Cy5 for Precise DNA Quantification and Single-Nucleotide Difference Detection

    Get PDF
    Fluorescence correlation spectroscopy (FCS) can resolve the intrinsic fast-blinking kinetics (FBKs) of fluorescent molecules that occur on the order of microseconds. These FBKs can be heavily influenced by the microenvironments in which the fluorescent molecules are contained. In this work, FCS is used to monitor the dynamics of fluorescence emission from Cy5 labeled on DNA probes. We found that the FBKs of Cy5 can be tuned by having more or less unpaired guanines (upG) and thymines (upT) around the Cy5 dye. The observed FBKs of Cy5 are found to predominantly originate from the isomerization and back-isomerization processes of Cy5, and Cy5-nucleobase interactions are shown to slow down these processes. These findings lead to a more precise quantification of DNA hybridization using FCS analysis, in which the FBKs play a major role rather than the diffusion kinetics. We further show that the alterations of the FBKs of Cy5 on probe hybridization can be used to differentiate DNA targets with single-nucleotide differences. This discrimination relies on the design of a probe-target-probe DNA three-way-junction, whose basepairing configuration can be altered as a consequence of a single-nucleotide substitution on the target. Reconfiguration of the three-way-junction alters the Cy5-upG or Cy5-upT interactions, therefore resulting in a measurable change in Cy5 FBKs. Detection of single-nucleotide variations within a sequence selected from the Kras gene is carried out to validate the concept of this new method
    corecore