28 research outputs found

    Two cold inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens

    Full text link
    The barley genesHvLtp4.2 andHvLtp4.3 both encode the lipid transfer protein LTP4 and are less than 1 kb apart in tail-to-tail orientation. They differ in their non-coding regions from each other and from the gene corresponding to a previously reportedLtp4 cDNA (nowLtp4.1). Southern blot analysis indicated the existence of three or moreLtp4 genes per haploid genome and showed considerable polymorphism among barley cultivars. We have investigated the transient expression of genesHvLtp4.2 andHvLtp4.3 following transformation by particle bombardment, using promoter fusions to the-glucuronidase reporter sequence. In leaves, activities of the two promoters were of the same order as those of the sucrose synthase (Ss1) and cauliflower mosaic virus 35S promoters used as controls. Their expression patterns were similar, except thatLtp4.2 was more active thanLtp4.3 in endosperm, andLtp4.3 was active in roots, whileLtp4.2 was not. The promoters of both genes were induced by low temperature, both in winter and spring barley cultivars. Northern blot analysis, using theLtp4-specific probe, indicated thatXanthomonas campestris pv.translucens induced an increase over basal levels ofLtp4 mRNA, whilePseudomonas syringae pv.japonica caused a decrease. TheLtp4.3-Gus promoter fusion also responded in opposite ways to these two compatible bacterial pathogens, whereas theLtp4.2-Gus construction did not respond to infectio

    Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis

    Get PDF
    The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, assembly, and restructuring are entirely unknown. To identify candidate proteins with a role in cuticle biogenesis, a surface protein extract was obtained from tomato (Solanum lycopersicum) fruits by dipping in an organic solvent and the constituent proteins were identified by several complementary fractionation strategies and two mass spectrometry techniques. Of the ∼200 proteins that were identified, a subset is potentially involved in the transport, deposition, or modification of the cuticle, such as those with predicted lipid-associated protein domains. These include several lipid-transfer proteins, GDSL-motif lipase/hydrolase family proteins, and an MD-2-related lipid recognition domain-containing protein. The epidermal-specific transcript accumulation of several of these candidates was confirmed by laser-capture microdissection and quantitative reverse transcription-PCR (qRT-PCR), together with their expression during various stages of fruit development. This indicated a complex pattern of cuticle deposition, and models for cuticle biogenesis and restructuring are discussed

    Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague–Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE(2) and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE(2) in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE(2) and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13020-016-0089-6) contains supplementary material, which is available to authorized users

    Earth–ionosphere couplings, magnetic storms, seismic precursors and TLEs: Results and prospects of the [SQUID]2 system in the low-noise underground laboratory of Rustrel-Pays d’Apt.

    Get PDF
    International audienceHigh sensitivity combined with an ultra-low-noise environment [SQUID]2 magnetometer (Superconducting QUantum Interference Device with Shielding QUalified for Ionosphere Detection) allows the observation of Earth–ionosphere couplings. Namely: – identification of a mesopause resonance mode excitable by P waves or by electric field as during the hour before the Sichuan earthquake (May 2008); – S and T breathing modes of the Earth during quiet magnetic and seismic periods; – worldwide signal integral of magnetic storms including polar contributions; – signals in time correlation with sprites (Transient Luminous Events). These results point to a worldwide network of at least a few stations of a similar typeGrâce à sa sensibilité et son environnement très bas bruit, les couplages Terre–ionosphère sont observables par le magnétomètre [SQUID]2 (Superconducting QUantum Interference Device with Shielding QUalified for Ionosphere Detection). Notamment : – un mode de résonance de la mésopause excitable par les ondes P ou par champ électrique comme dans lmodifier letter apostropheheure précédant le séisme de Sichuan en mai 2008 ; – les modes S et T de respiration du globe pendant des périodes de calme magnétique et sismique ; – lmodifier letter apostropheintégrale mondiale du signal des orages magnétiques y compris les contributions polaires ; – des signaux associés aux sylphes. Ceci permet de modifier d'envisager un réseau mondial de quelques stations de même type

    The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1

    No full text
    Copyright © The Author 2007. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved.Fiber-specific genes are expressed preferentially or exclusively in cotton (Gossypium spp.) fiber and are thought to have important functions in fiber development. The promoters of these genes are of interest because they control transcription in the fiber cell and may be used in the genetic manipulation of fiber quality. The promoter of a cotton lipid transfer protein gene, FSltp4, was isolated and shown to direct fiber-specific transcription of an abundant mRNA in cotton. In transgenic tobacco, this promoter was strongly active in leaf trichomes. Deletion analysis of the promoter identified an AT-rich 84 bp fiber specificity region (FSR) necessary for activity exclusively in the fiber cells. Cotton fiber proteins that bind the FSR were isolated using a yeast one-hybrid assay. One of these was a putative AT-hook transcription factor (GhAT1) containing two AT-hook motifs. GhAT1 was shown to be nuclear localized, and GhAT1 transcripts were found to be preferentially expressed in ovules and non-fiber tissues. Overexpression of GhAT1 strongly repressed the activity of the FSltp4 promoter in the trichomes of transgenic tobacco. These results suggest that GhAT1 assists in the specification of fiber cells by repressing FSltp4 in the non-fiber tissues of the cotton plant.Sven K. Delaney, Sharon J. Orford, Michael Martin-Harris and Jeremy N. Timmi
    corecore