11 research outputs found

    Do Conditions During Dormancy Influence Germination of Suaeda maritima?

    No full text
    Background and Aims Seeds of annual halophytes such as Suaeda maritima experience fluctuating salinity, hydration, hypoxia and temperature during dormancy. Germination then occurs in one flush of 2-3 weeks after about 5 months of winter dormancy during which time the seeds can remain in saline, often waterlogged soil. The aim of this study was to investigate the effect of simulated natural conditions during dormancy on germination and to compare this with germination following the usual conditions of storing seeds dry. The effects of hydration, salinity, hypoxia and temperature regimes imposed during dormancy on germination were investigated. Also looked at were the effects of seed size on germination and the interaction between salinity during dormancy and salinity at the time of germination. Methods Various pre-treatments were imposed on samples of seeds that had been stored dry or wet for different periods of time during the 5 months of natural dormancy. Subsequent germination tests were carried out in conditions that simulated those found in the spring when germination occurs naturally. Various salinities were imposed at germination for a test of interaction between storage salinity and salinity at germination. Key Results A temperature of about 15 degrees C was needed for germination and large seeds germinated earlier and better than small seeds. Cold seawater pre-treatment was necessary for good germination; the longer the saline pre-treatment during the natural dormancy period the better the germination. There appeared to be no effect of any specific ion of the seawater pre-treatment on germination and severe hypoxia did not prevent good germination. A short period of freezing stimulated early germination in dry-stored seed. Storage in cold saline or equivalent osmotic medium appeared to inhibit germination during the natural dormancy period and predispose the seed to germinate when the temperature rose and the salinity fell. Seeds that were stored in cold wet conditions germinated better in saline conditions than those stored dry. Conclusions The conditions under which seeds of S. maritima are stored affect their subsequent germination. Under natural conditions seeds remain dormant in highly saline, anoxic mud and then germinate when the temperature rises above about 15 degrees C and the salinity is reduced

    Salicornia ramosissima population dynamics and tolerance of salinity

    Get PDF
    Abstract Field and greenhouse studies have been conducted to clarify aspects of population dynamics and NaCl tolerance of Salicornia ramosissima J. Woods. Two populations, Varela and Verdemilho, were monitored in the field during two consecutive life cycles and aspects of their morphology and density were recorded monthly. In the laboratory seedlings were exposed to different salinity for 10 weeks and growth and mortality rate were recorded weekly. The growth of the populations differed significantly, possibly because of the different salinities of the two sampling sites and/or genetic adaptations of the two populations to the environmental conditions. The absence of a significant correlation between sediment salinity and stem elongation suggested, however, that salinity, alone was not responsible for the differences observed and was possibly associated with other factors, because of nutritional, edaphic, and microclimatic conditions. S. ramosissima did not develop well in conditions of elevated or moderate salinity; its growth was optimum at low salinity. Optimum development of S. ramosissima may, nevertheless, depend on the total number of large seeds in a population seed bank, because of their greater success in germination and germinability under stress conditions than small seeds

    Population ecology of halophyte seeds

    No full text
    corecore