263 research outputs found

    MÉTODO DE DELIMITAÇÃO DE BACIAS DE DRENAGEM GLACIAL NA ILHA RENAUD – ANTÁRTICA

    Get PDF
    A ilha Renaud – Antártica possui dados topográficos com baixa resolução espacial (200 m) o que dificulta a delimitação das bacias de drenagem glacial. Assim, o objetivo desta pesquisa é a elaboração de um método para delimitação de bacias de drenagem, baseada em diferentes produtos cartográficos: imagem ASTER, direção de fluxo da geleira, curvas de nível e declividade

    Genome-Wide Analysis of leafbladeless1-Regulated and Phased Small RNAs Underscores the Importance of the TAS3 ta-siRNA Pathway to Maize Development

    Get PDF
    Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radial, abaxialized leaves. To investigate the basis for this phenotype, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects the accumulation of small RNAs in all major classes, and reveal unexpected crosstalk between ta-siRNA biogenesis and other small RNA pathways regulating transposons. Interestingly, in contrast to data from other plant species, we found no evidence for the existence of phased siRNAs generated via the one-hit model. Our analysis identified nine TAS loci, all belonging to the conserved TAS3 family. Information from RNA deep sequencing and PARE analyses identified the tasiR-ARFs as the major functional ta-siRNAs in the maize vegetative apex where they regulate expression of AUXIN RESPONSE FACTOR3 (ARF3) homologs. Plants expressing a tasiR-ARF insensitive arf3a transgene recapitulate the phenotype of lbl1, providing direct evidence that deregulation of ARF3 transcription factors underlies the developmental defects of maize ta-siRNA biogenesis mutants. The phenotypes of Arabidopsis and Medicago ta-siRNA mutants, while strikingly different, likewise result from misexpression of the tasiR-ARF target ARF3. Our data indicate that diversity in TAS pathways and their targets cannot fully account for the phenotypic differences conditioned by ta-siRNA biogenesis mutants across plant species. Instead, we propose that divergence in the gene networks downstream of the ARF3 transcription factors or the spatiotemporal pattern during leaf development in which these proteins act constitute key factors underlying the distinct contributions of the ta-siRNA pathway to development in maize, Arabidopsis, and possibly other plant species as well

    Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells

    Get PDF
    Mutations accumulating in hematopoietic stem and progenitor cells (HSPCs) during development can cause severe hematological disorders. Modeling these mutations in mice is essential for understanding their functional consequences. Here, we describe an efficient CRISPR/Cas9-based system to knock in and repair genes in mouse HSPCs. CRISPR/Cas9 ribonucleoproteins, in combination with recombinant adeno-associated virus (rAAV)-DJ donor templates, led to gene knockin efficiencies of up to 30% in the Lmnb1 and Actb loci of mouse HSPCs in vitro. The targeted HSPCs engraft and reconstitute all immune cell lineages in the recipient mice. Using this approach, we corrected a neomycin-disrupted Rag2 gene. The Rag2-corrected HSPCs restore B and T cell development in vivo, confirming the functionality of the approach. Our method provides an efficient strategy to study gene function in the hematopoietic system and model hematological disorders in vivo, without the need for germline mutagenesis

    Machine learning enabled experimental design and parameter estimation for ultrafast spin dynamics

    Full text link
    Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and material physics, which often suffer from the scarcity of facility resources and increasing complexities. To address the limitations, we introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED), exemplified with x-ray photon fluctuation spectroscopy (XPFS) measurements for spin fluctuations. Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED. The capability of automatic differentiation from the neural network model is further leveraged for more robust and accurate parameter estimation. Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time. Although focusing on XPFS and spin fluctuations, our method can be adapted to other experiments, facilitating more efficient data collection and accelerating scientific discoveries

    Mendelian and Non-Mendelian Regulation of Gene Expression in Maize

    Get PDF
    Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73×Mo17 recombinant inbred line population. RNA-based sequencing (RNA-seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL "hotspots," each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants. © 2013 Lin et al

    Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line

    Get PDF
    Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells

    Structural organization of mammalian prions as probed by limited proteolysis

    Get PDF
    Elucidation of the structure of PrP(Sc) continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrP(Sc)). However, the presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-based analysis impractical. In order to surmount these difficulties we analyzed PrP(Sc) from transgenic mice expressing prion protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot and mass spectrometry-based analysis. GPI-less PrP(Sc) samples were digested with PK. PK-resistant peptides were identified, and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179. The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrP(Sc). These results reinforce the hypothesis that the structure of PrP(Sc) consists of a series of highly PK-resistant β-sheet strands connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrP(Sc) is highly resistant to PK and therefore perhaps also contains β-sheet secondary structure

    Genic and nongenic contributions to natural variation of quantitative traits in maize

    Get PDF
    The complex genomes of many economically important crops present tremendous challenges to understand the genetic control of many quantitative traits with great importance in crop production, adaptation, and evolution. Advances in genomic technology need to be integrated with strategic genetic design and novel perspectives to break new ground. Complementary to individual-gene-targeted research, which remains challenging, a global assessment of the genomic distribution of trait-associated SNPs (TASs) discovered from genome scans of quantitative traits can provide insights into the genetic architecture and contribute to the design of future studies. Here we report the first systematic tabulation of the relative contribution of different genomic regions to quantitative trait variation in maize. We found that TASs were enriched in the nongenic regions, particularly within a 5-kb window upstream of genes, which highlights the importance of polymorphisms regulating gene expression in shaping the natural variation. Consistent with these findings, TASs collectively explained 44%-59% of the total phenotypic variation across maize quantitative traits, and on average, 79% of the explained variation could be attributed to TASs located in genes or within 5 kb upstream of genes, which together comprise only 13% of the genome. Our findings suggest that efficient, cost-effective genome-wide association studies (GWAS) in species with complex genomes can focus on genic and promoter regions

    Genome-wide discovery and characterization of maize long non-coding RNAs

    Get PDF
    BACKGROUND: Long non-coding RNAs (lncRNAs) are transcripts that are 200 bp or longer, do not encode proteins, and potentially play important roles in eukaryotic gene regulation. However, the number, characteristics and expression inheritance pattern of lncRNAs in maize are still largely unknown. RESULTS: By exploiting available public EST databases, maize whole genome sequence annotation and RNA-seq datasets from 30 different experiments, we identified 20,163 putative lncRNAs. Of these lncRNAs, more than 90% are predicted to be the precursors of small RNAs, while 1,704 are considered to be high-confidence lncRNAs. High confidence lncRNAs have an average transcript length of 463 bp and genes encoding them contain fewer exons than annotated genes. By analyzing the expression pattern of these lncRNAs in 13 distinct tissues and 105 maize recombinant inbred lines, we show that more than 50% of the high confidence lncRNAs are expressed in a tissue-specific manner, a result that is supported by epigenetic marks. Intriguingly, the inheritance of lncRNA expression patterns in 105 recombinant inbred lines reveals apparent transgressive segregation, and maize lncRNAs are less affected by cis- than by trans- genetic factors. CONCLUSIONS: We integrate all available transcriptomic datasets to identify a comprehensive set of maize lncRNAs, provide a unique annotation resource of the maize genome and a genome-wide characterization of maize lncRNAs, and explore the genetic control of their expression using expression quantitative trait locus mapping

    The nature of plasmon excitations in hole-doped cuprate superconductors

    Get PDF
    High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.Comment: 11 pages, 7 figures + Supplementary Informatio
    corecore