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The complex genomes of many economically important crops present tremendous challenges to understand the genetic
control of many quantitative traits with great importance in crop production, adaptation, and evolution. Advances in
genomic technology need to be integrated with strategic genetic design and novel perspectives to break new ground.
Complementary to individual-gene–targeted research, which remains challenging, a global assessment of the genomic
distribution of trait-associated SNPs (TASs) discovered from genome scans of quantitative traits can provide insights into
the genetic architecture and contribute to the design of future studies. Here we report the first systematic tabulation of
the relative contribution of different genomic regions to quantitative trait variation in maize. We found that TASs were
enriched in the nongenic regions, particularly within a 5-kb window upstream of genes, which highlights the importance
of polymorphisms regulating gene expression in shaping the natural variation. Consistent with these findings, TASs
collectively explained 44%–59% of the total phenotypic variation across maize quantitative traits, and on average, 79%
of the explained variation could be attributed to TASs located in genes or within 5 kb upstream of genes, which together
comprise only 13% of the genome. Our findings suggest that efficient, cost-effective genome-wide association studies
(GWAS) in species with complex genomes can focus on genic and promoter regions.

[Supplemental material is available for this article.]

Cloning of individual large-effect genes underlying qualitative and

quantitative traits has provided some insights into the genetic

control of trait variation. These studies have most frequently im-

plicated nucleotide polymorphisms in genic regions as being

causative (Doebley et al. 2006; Miura et al. 2011); however, gen-

eralizing from these results may not be appropriate because of as-

certainment bias, e.g., preference given to genic regions during the

efforts in gene cloning. In addition, it remains challenging to

identify, validate, and characterize genes underlying modest-to-

small-effect quantitative trait loci (QTLs), which are common

contributors to quantitative traits in crops with complex genomes.

With these challenges, a different approach is to identify what part

of a complex genome can be prioritized. Intuitively, this is known

from mutational dissection of ‘‘qualitative phenotypes,’’ but

a global assessment for ‘‘quantitative traits’’ is lacking and the

relative importance of genic and nongenic portions of the genome

has significant bearings on further biological research and crop

improvement.

By identifying trait-associated SNPs (TASs), genome-wide as-

sociation studies (GWASs) can enhance our understanding of

the genetic architecture (Meyer et al. 2008; Chang et al. 2009;

Teslovich et al. 2010). For example, a survey of 531 human TASs

found that most are located in noncoding regions (43% from

nongenic regions and 45% from introns), suggesting that the

search for functional polymorphisms should extend beyond cod-

ing regions (Hindorff et al. 2009). Indeed, some recent individual-

gene studies have suggested that functional nongenic poly-

morphisms can also contribute to the variation associated with

quantitative traits in plants (Frary et al. 2000; Stam et al. 2002;

Ashikari et al. 2005; Clark et al. 2006; Salvi et al. 2007). However,

previous GWASs in plants focused on single SNP testing or multi-

ple regression (Atwell et al. 2010; Huang et al. 2010; Tian et al.

2011) and did not address this critical issue. Hence, a systematic

evaluation of TASs in plants can help to answer several important

questions: (1) What are the overall contributions of genetic poly-

morphisms (i.e., SNPs) in explaining the phenotypic variation of

quantitative traits; (2) what are the relative contributions of genic

and nongenic polymorphisms; and (3) what is the distribution of

maize TASs across different genomic annotation sets (e.g., pro-

moter, intron, or coding region)?

Here we report genome scans of five quantitative traits with

SNPs identified by two complementary next-generation sequenc-

ing strategies to identify the underlying TASs, the genomic distri-

bution of these TASs, and the relative contributions of genic and

nongenic TASs to the phenotypic variation. We found that genic

and nongenic TASs contribute approximately equally to the phe-

notypic variation of maize quantitative traits. But the distributions

of maize TASs in specific annotation sets differed. Specifically,

nonsynonymous SNPs are underrepresented among TASs for
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maize quantitative traits, suggesting that regulatory variation plays

an important role in phenotypic variation. Our results suggest that

genotyping methods designed to discover SNPs in genes and their

upstream regions can be an economical approach for detecting

genome-wide association signals in future GWAS scans of quanti-

tative traits in crops with complex genomes.

Results
To be consistent with the GWAS literature (Hindorff et al. 2009),

a genic region in this study is defined as between the transcription

start site (TSS) and the end of 39 UTR. Toward this end, we first

conducted RNA-seq to identify gene-enriched SNPs. A targeted-

dissection genome scan method was implemented to identify the

TASs for five maize quantitative traits (leaf length, leaf width, up-

per leaf angle, days to anthesis, and days to silking) from 1 million

SNPs merged from the RNA-seq data and the previously defined set

of maize HapMap SNPs (Gore et al. 2009). We then systematically

characterized the genomic distribution and genetic features of the

discovered TASs across regions and traits. Two annotations sets

(high stringent filtered gene set [FGS] and low stringent working

gene set [WGS]) have been released for maize genome (Schnable

et al. 2009). Because the results obtained from the analysis of the

FGS and WGS were similar, for the simplicity of discussion only,

the FGS analysis results are presented in the text, but the results

from the WGS analysis are included in the Supplemental Material.

RNA-seq and SNPs for GWAS

RNA was extracted from shoot apices, which includes the shoot

apical meristem (SAM) and up to five young leaf primordia, of

2-wk-old seedlings from each of the nested association mapping

(NAM) founders (Methods) and used to conduct RNA-seq. To dis-

cover SNPs, the RNA-seq reads were aligned to the B73 maize ref-

erence genome sequence (Schnable et al. 2009). This tissue and

stage of development were selected because we had previously

shown that a substantial percentage of genes is expressed in the

SAM and leaf primordia at this stage of development (Emrich et al.

2007) and because we were interested in testing whether SNPs

identified from genes expressed at this stage of development are

enriched for genes related to leaf architecture traits versus flower-

ing-time traits.

Nearly 1 million SNPs (N = 942,793) were identified from

approximately 600 million 76-bp RNA-seq reads from the 26 in-

bred founders (not including B73) of the NAM population. Of all

discovered SNPs, only 289,461 that could be called with high

confidence (Methods) in >81% of the NAM founders (i.e., more

than 22/27) were used for GWASs (Table 1). As expected based on

their mode of discovery from RNA-seq reads, most of these SNPs

were located within annotated genes. Of the 289,461 SNPs, 87%

were located within 15,097 of the 32,540 FGS genes (46%).

Similarly, we retained 774,754 HapMap (Gore et al. 2009)

SNPs using the same threshold for missing SNP genotypes among

the NAM founders (i.e., >22/27). About half (49%) of the HapMap

SNPs resided within 25,738 genes (79% of the FGS), and 85% of

these genes were expressed in leaves (Li et al. 2010). In total, after

merging the two data sets, just over 1 million (1.01 million) SNPs,

of which 58% were located within 26,382 (81%) FGS genes, were

available for GWAS (Table 1; Supplemental Fig. S1). These SNPs

were projected from the NAM founders to the approximately 5000

recombinant inbred lines (RILs) based on the previous results from

genotyping the NAM population with 1106 tagging SNPs (tSNP;

Methods) (McMullen et al. 2009; Tian et al. 2011).

GWAS of quantitative traits

Genome scans using the 1.01 million merged SNPs identified TASs

underlying five quantitative traits (Supplemental Fig. S2). This was

accomplished using a two-stage scan method made possible by the

genetic design of NAM (Yu et al. 2008). The first stage was a low-

resolution mapping using 1106 tSNPs. This analysis identified 164

QTLs for the five quantitative traits; 44 of the 164 QTL regions were

colocalized by the adjacent or common tSNPs. The 164 target QTL

regions covered ;67% of the maize genome, with an average size

of 400 Mb for each trait. In the second stage of the genome scan,

the 1.01 million SNPs, which had been projected from the NAM

founders to the RILs, were tested for associations with the five

traits. Target regions were defined as the three tSNPs to the left

and the three tSNPs right of the tSNP most strongly associated

with each QTL in the first genome-wide QTL scan (Supplemental

Fig. S3). For each target region, on average, 7319 SNPs located

among the seven tSNPs were analyzed in this step. In terms of

answering the critical aforementioned questions, this targeted

scan is significantly different (see Discussion) from previous

analysis, in which an individual SNP search across a chromosome

is conducted. Here, only the target regions were scanned for TASs

to avoid false discoveries that might otherwise be introduced

from nearby regions. Genome-wide polygenic effects were con-

trolled by including other QTLs in the model during the scan. To

control for multiple testing, a minimum false-discovery rate,

Q-value (Storey and Tibshirani 2003), was calculated for each TAS.

The vast majority of TASs (85%) had a Q-value from 1.0 3 10�4 to

4.7 3 10�105 (Supplemental Table S1). After the genome scan, 40

out of 44 of the colocalized QTL regions were dissected to in-

dependent TASs, demonstrating the high resolving power of this

GWAS (Supplemental Fig. S2). The common TASs detected for

other four colocalized QTL regions were not unexpected because

they were detected for two flowering-time traits that have

a higher phenotypic correlation than other pairs of traits. RNA-

seq SNPs yielded the strongest signals in 16 of the 164 dissected

regions (Supplemental Fig. S1). Meanwhile, of the genes impli-

cated by the highest signals from HapMap SNPs, 58% also har-

Table 1. Distribution of maize SNPs across different genomic annotation sets

Data set Nongenic
Promoter

5kb
Promoter

1kb Intron 59 UTR 39 UTR Syn Nsy

HapMap 394,160 (51%) 149,018 (19%) 77,513 (10%) 109,912 (14%) 47,312 (6%) 33,264 (4%) 98,434 (13%) 83,271 (11%)
RNA-seq 36,416 (13%) 8,863 (3%) 2,588 (1%) 5,663 (2%) 15,597 (5%) 62,983 (22%) 101,907 (35%) 66,355 (23%)
Merged 424,703 (42%) 156,197 (16%) 79,448 (8%) 114,784 (11%) 57,814 (6%) 88,152 (9%) 176,435 (18%) 134,484 (14%)

Nongenic includes promoter 5kb, which in turn includes promoter 1kb. (UTR) Untranslated region; (Syn) synonymous SNPs; (Nsy) nonsynonymous
SNPs.

Genome Research 2437
www.genome.org

Genic and nongenic contributions to natural variation



bored RNA-seq SNPs with strong association signals, demon-

strating the value of using RNA-seq SNPs for GWAS.

Distribution of TASs

Only ;6% of the maize genome is genic (Schnable et al. 2009).

Knowledge of the relative proportion of TASs located in genic and

nongenic regions would shed light on the relative contributions of

these two regions to quantitative trait variation. To test whether

the final identification of TASs was context independent (i.e., to

confirm that identifying a nongenic TAS was not simply due to

a high proportion of nongenic SNPs within the starting SNP set),

the 164 dissected QTL regions were also separately scanned for

TASs using only the RNA-seq SNPs or only the HapMap SNPs in

addition to the merged SNP data set (Fig. 1; Supplemental Fig. S4).

For each analysis and for each QTL region, we identified the TAS

with the highest signal and classified it as genic or nongenic.

Summarizing the results across all 164 dissected QTL regions pro-

vided a genome-wide picture of the relative distributions of genic

and nongenic TASs (Fig. 1). From the merged SNP set, nongenic

TASs were identified for 46% of the dissected regions even though

only a few (6%) regions were classified as predominantly nongenic

(i.e., containing a higher proportion of nongenic than genic SNPs).

From the gene-enriched RNA-seq SNP set, nongenic TASs were

detected for 16% of dissected QTL regions. When only the HapMap

SNP set was analyzed, however, the classification of TASs obtained

was not independent of the classification of the regions. A similar

pattern was observed when the top five highest associated SNPs

within each region were tabulated as TASs (Supplemental Table S2).

Linkage disequilibrium analysis among the top five highest asso-

ciated SNPs suggested that the identified genomic regions and the

TASs are well supported (Fig. 2). For the majority of these QTLs, the

strongest association signals were concentrated within a window

of 500–1000 bp around the TASs. Moreover, genic or nongenic

TASs were equally likely to be identified within the QTL regions

with either large or small genetic effects, as shown by the well-

mixed pattern of TASs when the QTL effects were sorted in

descending order for each trait (Fig. 1; Supplemental Fig. S4; Sup-

plemental Table S2). Because very few shared TASs (3%) were found

among traits and because the proportion of nongenic TASs was

consistent across traits, our findings from these five traits may

represent a general feature of TASs underlying other quantitative

traits in plants, or at least cross-pollinated crops that have been

subjected to intense selection.

TASs in different genomic annotation sets

We further evaluated the distribution of TASs by testing for their

enrichment in eight sets of genomic annotations (nongenic re-

gion, promoter 5kb, promoter 1kb, 59 UTR, synonymous site,

nonsynonymous site, intron, and 39 UTR) (Table 1). Because pro-

moters are typically located upstream of TSSs, for the purposes

of this analysis, we defined 1 kb of the

TSS as the promoter 1kb, and likewise

5 kb upstream of the TSS as promoter

5kb, respectively. Three annotation sets

(nongenic region, promoter 5kb, and

nonsynonymous) exhibited significantly

different proportions of genic or nongenic

TASs from the tested SNPs (Fig. 3). TASs

were overrepresented in nongenic (P =

0.026) and promoter 5kb regions (P =

0.041) (Supplemental Fig. S5). Although

13% of the 1.01 M SNPs were non-

synonymous, only 4% of TASs were

nonsynonymous SNPs, indicating that

nonsynonymous polymorphisms are un-

derrepresented among maize TASs (P =

2.7 3 10�6).

Of 27 TASs within the promoter 5kb

set, 19 were located upstream of genes

for which duplication or single copy has

been characterized in a maize genome

duplication study (Schnable et al. 2011).

Interestingly, 12 of these TASs are located

in the upstream of genes with duplicated

copies (4507), and seven are located in

the upstream of genes without duplica-

tion (9867).

Variation explained by TASs

In the NAM population, 74%–89% of the

phenotypic variation for each of the five

analyzed quantitative traits is explained

by 28%–37% QTLs. Similar to findings

from other complex trait studies, only a

small fraction of the variation can be

Figure 1. Genic or nongenic TASs for each dissected QTL region and the proportion of genic SNPs
among all tested in the region. Genic region is defined as from the transcription start site to the end of 39

UTR. With the merged data set, the probability of a TAS being genic or nongenic is significantly in-
dependent of whether more genic or nongenic SNPs in the target region are tested (P < 0.05) for all five
traits. Each row represents a single QTL region for the indicated trait. Genic and nongenic TASs are
equally likely to be identified for QTLs with large or small effects, which are sorted in descending order
within each trait. (DTS) Days to silking.

Li et al.
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captured by individual TASs; however, these TASs collectively

explained 44%–53% of the total phenotypic variation (Fig. 4).

And this reduction in the amount of explained phenotypic vari-

ation by TASs compared with QTLs (equivalent to 56%–67% of

heritability by TASs) is much smaller than what has been reported

in human GWAS summaries, which is typically <10% (Manolio

et al. 2009). As expected from the genetic design, the contribution

from an individual TAS to the overall phenotypic variation is

determined by the allele frequency and genetic effect (Fig. 5). A

relatively large contribution from a TAS required a balanced allele

frequency (i.e., approaching to 0.5), a modest to large genetic

effect size, or both.

Upon partitioning TASs into genic or nongenic groups, 46%–

63% of the explained variation (i.e., 21%–35% of the total phe-

notypic variation) is attributed to genic TASs across the five traits.

Because maize TASs were found to be overrepresented in upstream

promoter regions, we also examined the expanded genic region

(gene + 1-kb or 5-kb upstream region). By including upstream

regions, the percentage of explained variation increased to 53%–

73% (genes + 1 kb) or 67%–91% (genes + 5 kb) (Fig. 4). Taken to-

gether, while the larger of the expanded genic region accounts for

only 13% of the maize genome, they comprise 71% (by count) of

the identified TASs and contribute to 79% (by variation explained)

of the phenotypic variation captured by all TASs.

Candidate genes implicated by TASs

A variety of gene ontology (GO) terms were overrepresented

among the TAS-implicated candidate genes, suggesting that com-

plex networks shape these traits (Supplemental Table S3). For

example, the terms ‘‘response to hormone stimulus,’’ ‘‘protein

transporter activity,’’ and ‘‘regulation of transcription, DNA-

dependent’’ were among the most significantly overrepresented.

Two genic SNPs (one intronic and one in the coding region)

within liguleless2 (lg2), which is required to form the ligule/auricle

hinge between leaf blade and sheath (Harper and Freeling 1996;

Walsh et al. 1998), had the highest association value with upper

leaf angle. This result differs from a previous analysis (Tian et al.

2011), in which a SNP downstream from lg2 was identified, al-

though the association signals at all three sites were among the

strongest in both analyses. Meanwhile, a TAS for leaf width were

located 95 kb upstream of rough sheath1 (rs1), which is expressed

in the base of initiating leaves and young leaf primordial

(Schneeberger et al. 1995). Importantly, no other predicted maize

genes are located between this TAS and the rs1 gene. Other can-

didate genes implicated by TASs included zea agamous5 (Mena

et al. 1995) and a YABBY transcription factor (GRMZM2G102218)

for days to silking. Two AP2 domain proteins (GRMZM2G129777

and GRMZM2G421033) showed associations for leaf length

and days to silking, respectively (Supplemental Table S1). This

maize YABBY transcription factor is a homolog of CRABS CLAW

in Arabidopsis, which has been shown to function in carpel and

nectary development (Lee et al. 2005)

Expression analysis

Investigation of our new expression profile (Methods) and pub-

lished transcriptome data (Li et al. 2010) revealed that almost

all TAS-implicated candidate genes were dynamically expressed

among 10 tissues (four embryo developmental stages, two types of

meristems, and four leaf gradient zones) (Supplemental Fig. S6).

Indeed, the expression level of the leaf length–associated AP2 gene

was higher than another AP2 gene related to flowering time

(Supplemental Fig. S7). On average, TAS-implicated candidate

genes associated with leaf width had higher expression levels

than other genes that were expressed in leaves (Supplemental

Table S4).

To provide further functional analysis of the TASs, we exam-

ined the expression patterns of TAS-implicated candidate genes in

an RNA-seq comparison between a leafbladeless1 (lbl1) mutant and

its wild-type controls. The lbl1 mutant affects a variety of leaf de-

velopmental processes (Timmermans et al. 1998; Nogueira et al.

2007). The finding that three candidate genes (GRMZM2G047129

for leaf length; GRMZM2G083812 and GRMZM2G417843 for

leaf width) were differentially expressed between lbl1 mutant

and wild type under one or both backgrounds (Supplemental

Fig. S8) provides additional functional support for the relevant

TASs.

Discussion
Maize, with extensive morphological variation and genetic di-

versity, has been exploited as a model species in studies of quan-

titative and population genetics, selection theory, domestication,

breeding methods, and molecular genetics. Recent maize research

in association mapping (Yu et al. 2006; Zhang et al. 2010), NAM

(Yu et al. 2008; Buckler et al. 2009), genome-wide selection

(Bernardo and Yu 2007; Riedelsheimer et al. 2012), and NAM-

GWAS scan (Tian et al. 2011) represented some new contributions

to complex trait dissection and selection in plants, many of which

are facing similar challenges. The maize NAM population con-

sists of 5000 RILs derived from crossing 26 diverse founders to

a common parent, B73. The NAM design combines the merits of

both linkage and linkage disequilibrium mapping to detect mo-

lecular polymorphisms underlying quantitative traits (Yu et al.

2008; Buckler et al. 2009), and represents a logical framework for

Figure 2. Linkage disequilibrium (LD) among the top five associated
SNPs within each target region and the LD among all tested SNPs.
A strong LD among top five associated SNPs and a plateau beyond
500–1,000 bp indicate that genomic regions signaled by TASs are well
supported.

Genic and nongenic contributions to natural variation
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conducting genome scans of multiple quantitative traits to answer

the aforementioned questions.

New angle into more important questions

In the current study, GWAS scans of five quantitative traits (three

leaf and two flowering-time traits) were conducted to estimate

the relative contributions of genic and nongenic genetic vari-

ants to phenotypic variation. Instead of searching for signals

on a chromosome base (Tian et al. 2011), the new targeted-

dissection method minimized the influence of other TAS-containing

regions on the search. More importantly, this method also

allowed us to tabulate the TAS findings across regions to sys-

tematically address the contribution of genic and nongenic

polymorphisms to quantitative traits, which was not possible

with the previous analysis. Specifically, two complementary

angles were presented: number of TASs in each class, and the

proportion of phenotypic variation explained by TASs in each

class. Unlike a previous analysis (Tian et al. 2011), the current

study included SNPs derived from the analysis of RNA-seq

reads to enable a valid comparison of

the relative contributions of genic ver-

sus nongenic variants, and included

the analyses of two nonleaf traits

(i.e., flowering time) to enable broader

inferences.

Value of RNA-seq for SNP discovery

RNA-seq has been proposed as a fast

and inexpensive genotyping method

(Barbazuk et al. 2007; Cloonan et al.

2008; Cirulli et al. 2010). Considering

that the total number of HapMap SNPs

is three times that of the RNA-seq SNP

set, a direct comparison between the two

genotyping approaches for association

tests is inappropriate; however, we dem-

onstrated the potential of using RNA-seq

to discover SNPs that are suitable for

GWAS. A total of 16 of the TASs were

identified from the RNA-seq SNP set,

and 58% of the genes captured by the

HapMap TASs also harbored strongly

associated RNA-seq SNPs. Because there

is much overlap between genes expressed

in shoot apices and other tissues (Sekhon

et al. 2011), SNPs discovered from RNA-

seq conducted on RNA isolated from

shoot apices can be used to map a variety

of complex traits. In our study, of these

16 TASs, nine were identified for the two

flowering-time traits and seven for the

three leaf architecture traits. More im-

portantly, having RNA-seq SNPs enabled

us to compare genome scan results with

different proportions of genic SNPs

(RNA-seq, HapMap, and merged). These

comparisons diminished the influence

of the distribution of SNPs on TASs (i.e.,

ascertainment bias), which therefore en-

abled us to evaluate the relative contri-

butions of genic and nongenic polymorphisms on phenotypic

variation of quantitative traits.

Distribution of maize TASs and candidate genes

A long-standing question in evolutionary biology is the nature of

the genetic variation that controls variation in quantitative traits.

That is, is the variation mainly driven by differences in protein

sequence or by differences in gene expression patterns (Clark et al.

2006; Doebley et al. 2006; Alonso-Blanco et al. 2009)? In human

GWASs, nonsynonymous SNPs are overrepresented among TASs

(Hindorff et al. 2009), which is consistent with a major role for

alterations in protein sequences (Stenson et al. 2009). In contrast,

our data demonstrate that among maize TAS, nonsynonymous

sites are significantly underrepresented. This is true regardless of

whether we analyze the FGS (which is predicted to include few

false-positive genes, but to be missing about one-third of genes) or

the WGS (which is expected to include all of maize gene space plus

an estimated approximately 50,000 nongenic sequences) (Sup-

plemental Figs. S9–S11). Interestingly, recent research has dem-

Figure 3. Distribution of TASs and tested SNPs for five quantitative traits across genomic annotation
sets. (A) Nongenic versus genic (genic region is defined as from the transcription start site to the end of
39 UTR); (B) different annotation sets; and (C ) synonymous versus nonsynonymous. Genic plus 5-kb
upstream regions comprise only 13% of the maize genome but account for 71% of TASs. Nongenic and
promoter 5kb regions are overrepresented among TASs. The nonsynonymous set is underrepresented
among TASs. Note that the nongenic region includes promoter 5kb, which in turn includes promoter
1kb, and the genic region includes the untranslated region (UTR), coding region (CDS), and intron.
Stars denote that the proportion of TASs from the annotation set significantly differs from that of tested
SNPs. (Arrow) Transcription start site.

Li et al.
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onstrated the functional outcomes of synonymous mutations

(Plotkin and Kudla 2011; Waldman et al. 2011). Tabulation of

cloned rice QTLs, which often have larger effects in the respective

populations than the TASs identified in the current study, also

indicated the importance of expression differences (Miura et al.

2011). In addition, no splicing site mutation or premature stop was

found to be TASs. Because the NAM founders were selected to

represent a broad range of genetic diversity, these results suggest

that in maize, alterations in protein sequence were quantitatively

less important during evolution and selection in defining the

natural variation in quantitative traits than changes in gene reg-

ulation, even though this type of protein sequence change muta-

Figure 4. Phenotypic variation explained by genic and nongenic TASs. (A) Genic TASs versus all other TASs; (B) genic region plus promoter 1kb versus
all other TASs; and (C ) genic region plus promoter 5kb versus all other TASs. Phenotypic variation explained by all QTLs is shown for comparison. TASs
located within genic region plus upstream 5 kb comprise only 13% of the maize genome but explain a large proportion (67%–91%) of the phenotypic
variation captured by all TASs.

Figure 5. Contribution from an individual TAS to the phenotypic variation is determined by allele frequency and genetic effect size. (A) Leaf length in
millimeters; (B) leaf width in millimeters; (C ) leaf angle in degrees; (D) days to anthesis (DTA); (E ) days to silking (DTS); and (F ) combined results for all traits
with standardized genetic effects.

Genic and nongenic contributions to natural variation
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tion is often found in genetic studies using individuals with ex-

treme phenotypes. Consistent with this hypothesis, we found that

SNPs from promoter regions (5 kb upstream of the genes) and

nongenic region as a whole were overrepresented among TASs (in

both the FGS and WGS analyses). These findings imply that long-

distance regulatory elements and other forms of causative variants,

like structural variations (Lai et al. 2010; Swanson-Wagner et al.

2010), probably also play important roles in the diverse mor-

phology of maize (Stam et al. 2002; Clark et al. 2006; Salvi et al.

2007).

For TAS-implicated candidate genes, the overrepresentation

of several GO terms and expression analysis among tissues pro-

vided supporting evidence of the dynamic nature of underlying

processes of these quantitative traits. Follow-up studies could be

prioritized for several of them, which were highlighted with ad-

ditional support.

Explained variation and GWAS strategy

As has been observed in the human GWAS (Manolio et al. 2009),

maize TASs also captured a portion of phenotypic variation. One

potential source of unexplained variation in human diseases could

be the action of rare variants having large effects. With the NAM

design, the allele frequency captured within the non-B73 founders

determines the actual frequency in the population, which affects

the phenotypic variation explained. The percentage of variation

explained by the TASs with the lowest possible minor allele fre-

quency in the maize NAM population (2%, i.e., the case where

only one NAM founder has different allele than B73) ranged from

0%–9% for these traits, demonstrating that the contribution of

low-frequency alleles varied among quantitative traits (Fig. 5).

Interestingly, although TASs explained less phenotypic vari-

ation than QTLs, for all five traits TASs yielded a better model fit

than QTLs as indicated by Bayesian information criterion (BIC)

values. While QTL analysis in the first stage required many more

model parameters to capture multiple alleles, the focus of the ge-

nome scan was to identify TASs, all of which were biallelic. Because

of a higher penalty associated with the greater number of model

parameters, the model fit was better for TASs than QTLs. Future

studies may be able to explain more of the phenotypic variation

and achieve a better model fit by considering haplotypes and

functional predictions of multiple SNPs (Dickson et al. 2010;

Singleton et al. 2010).

Efficient GWAS by including promoter regions

One of the main goals of this study was to evaluate the relative

contributions of genic and nongenic polymorphisms to pheno-

typic variation for quantitative traits. Three relevant findings

emerged from this study: (1) approximately half of the dissected

regions had genic TASs and the other half had nongenic TASs,

(2) genic or nongenic TASs contributed nearly half of pheno-

typic variation explained by all TASs, and (3) nongenic poly-

morphisms were significantly overrepresented among TASs,

indicating the importance of analyzing nongenic regions in

GWAS (Hindorff et al. 2009; Yang et al. 2011). But more im-

portantly, because a significant fraction of the nongenic TASs

and their corresponding contributions to the phenotypic var-

iation explained were from the promoter regions upstream of

genes (Figs. 3, 4; Supplemental Figs. S10, S11), targeting poly-

morphisms within genes and their promoter regions deserves

attention.

GWAS across a very large number of samples genotyped by

whole-genome sequencing would provide the most comprehen-

sive understanding of genetic architecture. The cost of such an

approach could, however, be prohibitive, especially for species

with large genomes (Cirulli and Goldstein 2010). Our results sug-

gest that at least in maize, the bulk of TASs are located in genes and

their promoters. Hence, the combination of RNA-seq and exome

capture experiments using long-read (e.g., 454) and paired-end

(Illumina and 454) technologies would facilitate the cost-effective

identification of promoter and genic polymorphisms for routine

GWAS scans in species with complex genomes.

Methods

Maize population
The NAM population was developed by crossing 25 diverse
founders (the NAM founders) to a common parent B73, whose
genome serves as the reference genome for maize (Schnable et al.
2009). Approximately 200 RILs were developed from each cross
(McMullen et al. 2009). All founders and 4892 RILs (including
200 RILs from the intermated B73 3 Mo17 population) were
genotyped with 1106 tSNPs. A consensus genetic map of the
NAM population was constructed based on the tSNPs. The maize
HapMap project sequenced genomic DNA from the NAM founders
using an Illumina Genome Analyzer and discovered SNPs by
aligning the reads to the RefGen_v1 B73 genome (Gore et al. 2009).

Discovery of SNPs via RNA-seq

Total RNA was extracted from the shoot apex from 2-wk-old
seedlings of the NAM founders using TRIzol reagent (Invitrogen).
The Poly(A) RNA was isolated from total RNA with oligo d(T) beads
and then used to construct the RNA-seq libraries, which were se-
quenced using the Illumina Genome Analyzer II instrument.

Raw sequence reads were scanned for low-quality bases. Nu-
cleotides with phred quality values less than 15 were trimmed.
Each read was examined in two phases. In the first phase, reads
were scanned starting at each end, and nucleotides with quality
values lower than the threshold were removed. The remaining
nucleotides were then scanned using overlapping windows of 10
bp, and sequences beyond the last window with average quality
value less than the specified threshold were truncated. Trimmed
reads were then aligned to the B73 reference genome (RefGen_v1)
using GSNAP (Wu and Nacu 2010), and uniquely mapped reads
(two or fewer mismatches every 36 bp and #3-bp tails allowed)
were used for SNP discovery using the 123SNP software (available
at http://schnablelab.plantgenomics.iastate.edu/software/). SNP
sites were called only if the site contains at least three reads sup-
porting the base call with error rates <0.03%, and the most
common allele must account for at least 80% of all aligned reads
covering that nucleotide position.

SNP annotation

SNPs were assigned as genic or nongenic based on their loca-
tions relative to two sets of annotated maize genes from maize
RefGen_v1. The FGS (N = 32,540) includes stringently called genes
and is therefore expected to include only a low number of false-
positive calls but to incompletely sample the full gene space. Based
on an analysis of an independent RNA-seq data, nearly all (99%) of
the 15,097 genes from the FGS that include SNPs are expressed in
maize seedling leaves (Li et al. 2010). In contrast, the WGS (N =

109,563) was generated using less stringent parameters and is
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therefore expected to sample more of the gene space but includes
more false-positive gene calls. The current estimate of gene num-
ber in maize also considers the classical gene set, a collection of N =

464 well-characterized (‘‘true’’) genes, each of which has been
cloned, confers a phenotype when mutated, and is supported by
at least three citations (Schnable and Freeling 2011). Approxi-
mately two-thirds of the classical gene set is included within the
FGS, suggesting that the true gene number in maize is about 50,000
(3/2 3 32,540). The entire classical gene set is included in the WGS,
suggesting that the WGS contains most of the gene space.

For genes with alternative splicing isoforms, the transcript
with the longest coding region was selected. The functional effects
of SNPs (synonymous mutation, nonsynonymous mutation, splice
site mutation, premature stop, or frame shift) were annotated using
custom perl scripts.

Statistical analysis

To avoid over-prediction, SNPs for which genotyping data were
missing for more than five of the NAM founders were not included
in the association analysis. Other missing genotypes were imputed
by fastPHASE 1.2 using default parameters (Scheet and Stephens
2006). The imputed SNPs between two adjacent informative tSNPs
were projected from founders to RILs based on information from
tSNPs (Tian et al. 2011).

The phenotypic data were available at the Panzea database
(www.panzea.org). In brief, three leaf traits (leaf length, leaf width,
and upper leaf angle) and two flowering times (days to anthesis
and days to silking) were collected in eight summer environments
across 2 yr. The best linear unbiased predictor (BLUP) of each line
was used for linkage and association analysis. Joint linkage analysis
across BLUP phenotype and 1106 of tSNPs was conducted in SAS
9.1 with the GLMSelect Procedure. The parameters (population
effect and tSNP by population effect) were estimated. tSNPs that
met the significant P-value (7.1 3 10�5) of the marginal F-test in
the final model were identified as QTLs.

GWAS was conducted in R (www.r-project.org). To control for
polygenic background effects, we conducted the scan by including
other QTLs located 10 cM away from the testing region (Supple-
mental Fig. S4). A dissected region was bordered by three flanking
tSNPs from each side of a QTL tSNP (Supplemental Fig. S4). Each
dissected region was classified as either predominantly genic if it
contains a higher proportion of genic than nongenic SNPs, or
predominantly nongenic if otherwise. The SNP with the highest
association value was retrieved from each dissected QTL region and
designated as the TAS. In cases where multiple TASs were tied in
association signal strength, these TASs were individually classified,
and the ratio of genic:nongenic TASs determined the final classi-
fication (Fig. 2; Supplemental Fig. S2). Test of independence was
conducted between the classifications of TASs and the target re-
gions. To address multiple testing issues, the Q-value (i.e., adjusted
P-value by adopting a false-discovery rate controlling procedure)
was estimated with Q-value (Storey and Tibshirani 2003).

The likelihood-ratio-based R2 was used for calculating the
phenotypic variation explained by all QTLs and the same pro-
cedure for all TASs (Sun et al. 2010). The contributions from genic
and nongenic TASs were calculated based on sum of squares from
the combined model with both types of TASs fitted, and the same
procedure for the contribution from TASs with the lowest minor-
allele-frequency.

We mapped the SNPs (including TASs) into eight annotation
sets (nongenic region, promoter 5kb, promoter 1kb, intron, 39 UTR,
59 UTR, synonymous site, and nonsynonymous site). The nongenic
region included promoter 5kb, which was defined as from the up-
stream 5 kb to the TSS. Similarly, promoter 1kb covered the region

from the upstream 1 kb to the TSS. To avoid the overlap issue, the
TAS distribution among different annotation used only the data
from 114 QTL regions with unique TASs. The proportion of TASs in
each annotation set was tested for enrichment or depletion against
the corresponding proportion of SNPs.

Candidate gene

GO annotations of the filtered gene set from maize RefGen_v1
were obtained from MaizeSequence (www.maizesequence.
org). Overrepresentation of the GO terms with more than one
TAS-implicated gene was tested by comparing the proportion of
the specific GO term among all implicated genes against all an-
notated maize genes. The significance of overrepresentation was
corrected with the Bonferroni method (Rice 1989).

We sequenced RNA from four developmental stages of the
embryo (proembryo, transition phase, coleoptile stage, and L1
stage embryo), and SAMs and lateral meristems (from 2-wk-old
seedlings) of B73 (available at www.maizegdb.org). The expression
patterns of TAS-implicated candidate genes were also analyzed
using previously published transcriptome data from four zones
(basal zone, transitional zone, maturing zone, and mature zone)
along the proximodistal gradient of maize B73 seedling leaves (Li
et al. 2010).

Transcriptome analysis of lbl1 mutants

Whole embryos of lbl1 mutants and wild type (B73 or W22, into
which lbl1 had been introgressed) were isolated from developing
seeds. mRNA from the embryos was then extracted. RNA-seq was
conducted on these samples using an Illumina Genome Analyzer II
with three replications. The TAS-implicated candidate genes for
leaf length and leaf width were screened to determine whether
they were differentially expressed.

Data access
The RNA-seq data from shoot apex have been deposited in the
NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.
gov/sra) under accession number SRA050451.
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