266 research outputs found

    The gait and balance of patients with diabetes can be improved: a randomised controlled trial

    Get PDF
    Item does not contain fulltextAIMS/HYPOTHESIS: Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. METHODS: This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. RESULTS: The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. CONCLUSIONS/INTERPRETATION: Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT00637546 FUNDING: This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/1 maart 201

    Cardiovascular and hormonal responses to static handgrip in young and older healthy men

    Get PDF
    The purpose of this study was to investigate the effect of age on cardiovascular changes and plasma concentrations of adrenomedullin (ADM), catecholamines, endothelin-1 (ET-1) and plasma renin activity (PRA) in healthy men. A total of 15 young (21 ± 0.3 years) and 15 older (64 ± 0.7 years) healthy men performed two 3-min bouts of static handgrip at 30% of maximal voluntary contraction, alternately with each hand without any break between the bouts. During exercise heart rate (HR), blood pressure (BP), stroke volume (SV) and pre-ejection period (PEP) and left ventricle ejection time (LVET) were measured. Blood samples were taken before exercise, at the end of both exercise bouts and in the fifth minute of the recovery period. The handgrip-induced increases in HR and cardiac output were significantly smaller in older than in young men (p < 0.01). SV decreased only in older men (p < 0.001). There were no differences between groups in BP increases. The baseline plasma ADM and catecholamines were higher in older man compared to young subjects. Handgrip caused increases in plasma ADM, ET-1 and PRA only in older men (p < 0.05). The increases in plasma ADM correlated positively with those of noradrenaline (NA), PRA, ET-1 and LVET and negatively with changes in total peripheral resistance (TPR), SV, PEP and PEP/LVET ratio. The increases in plasma ET-1 correlated positively with those of NA, PRA, TPR, mean BP and SV. These results revealed that ADM, ET-1 and angiotensin II can contribute to maintain vascular tone during static exercise in older but not in younger men

    Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment

    Get PDF
    An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion. Here, we present ultra-conformal, customizable, and deformable drawn-on-skin electronics, which is robust to motion due to strong adhesion and ultra-conformality of the electronic inks drawn directly on skin. Electronic inks, including conductors, semiconductors, and dielectrics, are drawn on-demand in a freeform manner to develop devices, such as transistors, strain sensors, temperature sensors, heaters, skin hydration sensors, and electrophysiological sensors. Electrophysiological signal monitoring during motion shows drawn-on-skin electronics&apos; immunity to motion artifacts. Additionally, electrical stimulation based on drawn-on-skin electronics demonstrates accelerated healing of skin wounds. Designing efficient wearable bioelectronics for health monitoring, disease prevention, and treatment, remains a challenge. Here, the authors demonstrate an ultra-conformal, customizable and deformable drawn-on-skin electronics which is robust to motion artifacts and resistant to physical damage

    Effects of auditory stimuli on electrical activity in the brain during cycle ergometry

    Get PDF
    © 2017 The Authors. The present study sought to further understanding of the brain mechanisms that underlie the effects of music on perceptual, affective, and visceral responses during whole-body modes of exercise. Eighteen participants were administered light-to-moderate intensity bouts of cycle ergometer exercise. Each exercise bout was of 12-min duration (warm-up [3 min], exercise [6 min], and warm-down [3 min]). Portable techniques were used to monitor the electrical activity in the brain, heart, and muscle during the administration of three conditions: music, audiobook, and control. Conditions were randomized and counterbalanced to prevent any influence of systematic order on the dependent variables. Oscillatory potentials at the Cz electrode site were used to further understanding of time–frequency changes influenced by voluntary control of movements. Spectral coherence analysis between Cz and frontal, frontal-central, central, central-parietal, and parietal electrode sites was also calculated. Perceptual and affective measures were taken at five timepoints during the exercise bout. Results indicated that music reallocated participants' attentional focus toward auditory pathways and reduced perceived exertion. The music also inhibited alpha resynchronization at the Cz electrode site and reduced the spectral coherence values at Cz–C4 and Cz–Fz. The reduced focal awareness induced by music led to a more autonomous control of cycle movements performed at light-to-moderate-intensities. Processing of interoceptive sensory cues appears to upmodulate fatigue-related sensations, increase the connectivity in the frontal and central regions of the brain, and is associated with neural resynchronization to sustain the imposed exercise intensity.Coordination for the Improvement of Higher Education Personnel (CAPES)
    corecore